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A b s t r a c t  

The purpose of this expository paper is to present a self-contained 
proof of a famous theorem of Fife that gives a full description of the set of 
infinite overlap-free words over a binary alphabet. Fife's characterization 
consists in a parameterization of these infinite words by a set of infinite 
words over a ternary alphabet. The result is that the latter is a regular 
set. The proof is by the explicit construction of the minimal automaton, 
obtained by the method of left quotients. 

I n t r o d u c t i o n  

One of the first results about avoidable regularities in words was Axel Thue's 
proof of the existence of an infinite overlap-free words over two letters. In two 
important papers [16, 17], Thue derived a great number of results in this and 
related topics. His papers were overseen for a long time (see [6] for a discussion) 
and his results have been rediscovered several times (e. g. by Morse [10]), when 
interest in combinatorics on words, both stinmlated by symbolic dynamics and 
computer science, became more important. 

Axel Thue also looked for a complete description of all overlap-free and 
square-free words. His main tools were morphisms and codes (in contempo- 
rary terminology). His aim was to express sets of infinite words as homomorphic 
images of what is now called a minimal set. He achieved this very quickly for 
overlap-free two-sided infinite words (since they form a minimal set), and in his 
second paper, obtained such a description for large families of square-free infinite 
words as a result of a more than thirty pages long investigation. 

The description of one-sided infinite words, either square-free or overlap-free, 
is much more involved. It was E. D. Fife [4] who gave, among other deep results, 
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the first full "description" of the set of infinite overlap-free words. His clever 
method consists in decomposing each such word in longer and longer blocks, 
where each block is obtained from preceding ones by exactly one among three 
rules. Coding each tu le 'by  a new symbol, he obtains a "description" by an 
infinite word over a new, ternary alphabet. The truly remarkable result is that  
the set of all words obtained in this way is regular, that  is recognized by a finite 
automaton (with five states, as we shall see). 

The proof of this result is not quite easy. In the terminology of au tomata  the- 
ory, it consists in computing the minimal automaton by the well-known method 
of derivatives (or left quotients). The purpose of this paper  is to present this 
proof in this context. The paper is aimed to be self-contained, excepted for 
some basic facts on overlap-free words that  can be found in Lothaire [9] and 
Salomaa [14].. After some preliminaries, we give two general, basic lemmas on 
overlap-free words. In the next section, we present the result of Fife. The last 
section is devoted to the proof. 

Recently, two results have given new insights in this topic. J. Cassaigne [2] 
and A. Carpi [1] have presented encodings of finite overlap-free words that  are 
similar to Fife's. Both act simultaneously on both ends of the words to be 
described. J. Cassaigne succeeded in giving explicit recurrence equations for 
the number of overlap-free words of a given length, a problem that  was open 
for a while; A. Carpi also constructs au tomata  but which are different from 
Cassaigne's for the description of overlap-free words. 

1 Pre l iminar ies  

An alphabet is a finite set (of symbols or letters). A word oveY some alphabet  A 
is a (finite) sequence of elements in A. The length of a word w is denoted by 
Iwl. The empty word of length 0 is denoted by ~. An infinite word is a mapping 
from the set of nonnegative integers into A. 

A factor of a word w is any word u that  occurs in w, i. e. such that  there 
exist word x, y with w = xuy. A square is a nonempty word of the form uu. A 
word is square-free if none of its factors is a square. Similarly, an overlap is a 
word of the form xuxux,  where x is nonempty. The terminology is justified by 
the fact that  xux has two occurrences in xuxux,  one as a prefix (initial factor) 
one as a suffix (final factor) and that  these occurrences have a common part  (the 
central x). As before, a word is overlap-free if none of its factors is an overlap. 

The set of words over A is denoted by A*. A function h : A* ~ B* is a 
morphism if h(uv) = h(u)h(v) for all words u, v. If  there is a letter a such that  
h(a) starts  with the letter a, then h'~(a) starts with the word h '~- l (a)  for all 
n > 0. If the set words {hn(a)) [ n >_ 0} is infinite, the morphism is prolongeable 
in a and defines a unique infinite word say x by the requirement that  all hn(a) 
are prefixes o fx .  The word x is said to be obtained by iterating h on a, and x is 
also denoted by h~(a). Clearly, x is a fixed point of h. For a detailed discussion 
and results on iterating morphisms, see [3]. 
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2 The  T h u e - M o r s e  sequence  

In this section, we recall some basic properties concerning the Thue-Morse se- 
quence. Other properties and proofs can be found in Lothaire [9] and Salo- 
maa  [14]. 

Let A = {a, b} be a two letter alphabet.  Consider the inorphism p from the 
free monoid A* into itself defined by 

Setting, for n > O, 

one gets 

and more generally 

a n d  

p ( a ) = a b ,  # ( b ) = b a  

= p " ( a ) ,  = 

Uo = a Vo -- b 
ul  = ab Vl = ba 
u2 = abba v2 = baab 

uz  = abbabaab v3 = baababba 

"an+ 1 -~-- UnVn, Vn+l  = ?)nUn 

Un ---- Vn,  ?in ~ Un 

where ~ (the opposite of w) is obtained from w by exchanging a and b. Words 
u ,  and t'n are Morse blocks. It  is easily seen that  u2n and 'v2,~ are palindromes, 
and that  u2,~+1 = v~,~+l, where w ~ is the reversal of w. The morphism p can 
be extended to infinite words; it has two fixed points 

t = abbabaabbaababbabaab. . .  = #( t )  

= baababbaabbabaababba. . .  = p(-t) 

and u ,  (resp. vn) is the prefix of length 2 n of t (resp. of t ) .  It  is equivalent to 
say that  t is the limit of the sequence (un)n>o (for the usual topology on finite 
and infinite words), obtained by iterating the morphism #. 

The T h u e - M o r s e  sequence is the word t. There are several other characteri- 
zations of this word. For instance, let t ,  be the n-th symbol in t ,  s tart ing with 
n = 0. Then tn = a or t,~ = b according to the parity of the number of bits equal 
to 1 in the binary expansion of n. For instance, bin(19)  = 10011, consequently 
d1(19) = 3, and indeed t19 = a. 

T h e o r e m  2.1 [17](Satz 6) Th e  sequence  t is overlap-free.  

What  Thue actually shows is that. a word w is overlap-free iff p(w) is overlap- 
free. 
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3 Factor izat ion  of overlap-free words 

T h e  following l emmas  have been given by many  peoples independent ly  (e. g. 
Shel ton and Soni [15], Kobayashi  [8], Restivo and Salemi [11], Kfoury  [7].) 

L e m m e  3.1 ("Progression Lemma") Let n > 0 and let x = uvwc he an overlap- 
free word of  length 1 + 3 . 2  ~, with = Ivl = Iwl = 2 ~ and  e c A. I f  u and v 
are Morse blocks, then w is a Morse block. 

Proof. By induction on n. The  result  is clear for n = 0. Assume n >_ 1. By  
assumpt ion ,  x has the form 

z = U V U V B C c ,  or x = U V V U B C c  

where U and V are the Morse blocks of size 2 n - '  and IB] = ]C I = 2 n-~ .  By 
induct ion,  b o t h  B and C are Morse blocks. It  remains  to show tha t  B C  # UU 
and B C  7s VV .  

I f  x = U V U V B C a ,  then B C  r UU, V V  since otherwise x has an overlap.  
If  x = U V V U B C a ,  then clearly B C  r UU. Suppose B C  = VV.  Then  x = 
(UVV)2a,  but  a can be neither the first let ter  of  U nor the first let ter  of  V 
wi thout  producing  an overlap in x. The  proof  is complete.  �9 

L e m m e  3 .2  ("Factorization Lemma") Let x be an overlap-free word. There  
exist three words u, v, y, with u, v E {~, a, b, aa, bb}, such that 

x = u (y)v. 

Moreover, the triple (u, y, v) is unique if Ix[ > 7. 

Proof. The  result  is s t ra ight forward by inspection if ]x[ _< 5. Suppose Izl >__ 6. 
We show tha t  x contains two consecutive Morse blocks ab or ba. The  result  then  
follows f rom the progression le,nma. 

By symmet ry ,  we may  suppose tha t  x s tar ts  with a. The  possible prefixes of  
x, developed up to an encounter  of two consecutive Morse blocks ab or ba are: 

aabaab, aabab, aabba, abaab, abab, abba 

This shows tha t  the prefixes are of  the required form. To prove uniqueness,  
consider two triples (u,y,  v) and (u',  y' ,  v ' )  such tha t  x = up(y)v = u'p(y')v ' .  
Since Ixl >_ 7, one has lyh ly'l >- 2. But  then the occurrences of  #(y) and # (y ' )  
cannot  overlap wi thout  being equal. This  shows uniqueness.  �9 

As an i l lustrat ion,  we ment ion  the following result,  a l ready known to A. Thue  
(for a re lated result ,  see T. H a , j ,  N ) :  

T h e o r e m  3.3 The overlap-free squares  over A are the words 

for n ~ 0, their  opposites, and their conjugates. 

As a consequence,  if xx is an overlap-free square,  then Ixl = 3 .2  n or Ix] = 2 n 
for sonle n. 
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4 F i l e ' s  T h e o r y  

Let X ,  = {u , ,  v,~} denote  the set. of  Morse blocks of length  2 '~ and  set X = 

[.J,~> 0 X,~. 
"Let w E A ' X 1 .  Thus  w ends wi th  ab or ba. The  canonical decomposition of  

w is the  t r ip le  

(z, v, 
where y is the  longest  word in X such tha t  

w = zy~l 

[n o the r  t e rms ,  (z, y, ~) is the canonical  decompos i t ion  of  w iff .~y is not  a suffix 
of z. As an example ,  the  canonical  decompos i t ion  of  aabaabbabaab is 

( aaba, abba, baab ) 

and t h a t  of  aabaabbabaababbaabbabaabbaababbaabbabaab is 

(aabaabbabaababbaabbabaab, baababba, abbabaab) 

Define now three  mapp ings  (x,/3, 7 : A ' X 1  --+ A ' X 1 ,  wri t t en  on the r ight  of the i r  
a rgumen t s  like act ions,  as follows: let w E A ' X 1  have the  canonical  decompos i -  
t ion (z, y, .0), then 

w . a .  = z y ~ l . ~ = z y ~ t y y ~ = w y y ~ l  
w . / 3  = zy~ . /3  = zy~lyyyy = wy~l~ly 

w . 7  = zy~t .7  = z y ~ y =  w~y 

Se t t ing  

the  word w �9 f is well defined for all f E B*. Since w is a prefix of w - a ,  w �9 
and w �9 7, the  infinite word w �9 f is well defined of  any infinite word f over B.  
A finite or infinite word f over B is called a descmption of the  finite or  infini te  
word x if x = ab. f or x = aab. f (or symmet r i ca l l y  x = ba. f or x = bba �9 f ) .  
Here are some examples :  

a b . ~  = abaab 

a b . ~  = ababba 

a b . 7  = abba 
aba ab b a . a  = aba ab ba ab ab ba=abaabbaababba 

aba ab ba./3 = aba ab ba ab ba ba ab = abaabbaabbabaab 

a b . 7  ~ = t 
a a b . ~  = aabaab = a ( a b . ~ )  

a a b . ~ a 7  = aabaabbabaababbaabbabaabbaababbaabbabaab 

The  word 

= aaba abbabaab abbabaab baababba baababba abbabaab baababba baabbaa 

- (aab.  c~/37)baababba baabbaa 
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of Restivo and Salemi [11] admits no description. As we shall see, this means 
that  it is not the prefix of an infinite overlap-free word. 

P r o p o s i t i o n  4.1 E v e r y  inf ini te overlap-free word admi ts  a unique description. 

Proof. This is a simple application of the progression lemma. �9 

Let 

and consider the set 
F - B "~ - B * I B  ~ 

of infinite words over B having no factor in I,  and the set 

G = {f I Z f e  F )  

T h e o r e m  4.2 ("File's Theorem") Let  x be an inf ini te word over A.  
(1) I f  x s tar ts  with ab, then x is overlap-free i f f  i ts  descript ion is in F;  
(2) I f  x s tar t s  with aab, then x is overlap-free i f f  i ts  description is in G. 

The set F of Fife's words is recognized by an automaton with 5 states, given 
in the following figure. 

7 

Fig. 1 File's automaton. 

Fife's theorem has a number of consequences. Call a word w infini tely ex- 
tensible if it is a prefix of an infinite overlap-free word. Then one has: 

C o r o l l a i r e  4.3 A word w is inf ini tely  ex tens ib le  i f f  i t  is a pre f ix  o f  a f ini te  word 
that  adnfi ts  a description which is a pref ix  o f  a word in F or G. I t  is decidable 
whe ther  a word is inf ini tely  extensible.  

Indeed, it is easily seen that  if w is a prefix of a w~rd x that  admits a (finite) 
description, then Ixl < 21w I. Another consequence is: 
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C o r o l l a i r e  4.4 The  Thue-Morse  t is the greates t  inf ini te overlap-free word, for 

the  lexicographic order, among  those s tar t ing  with the le t ter  a. 

Proof. If  one chooses a < b and a < /3  < 3' then indeed f < f~ implies ab.f  < ab. f  I. 
Now the greatest word in F is 7 ~ and t = ab �9 3"~. �9 

Observe that  this result can also be proved directly, by arguing on the form 
of overlap-free words, and using the progression lemma. 

5 P r o o f  

We observe first that  the second statement of tile theorem is a consequence of 
the first s tatement.  Indeed, let x be an infinite overlap-free word start ing with 
aab, and let f be its description (which exists by the proposition). To prove that  
/3f is in F,  observe that  

#(aab . f )  = tt(aab) . f = ababba . f = ab . /3f 

and since aab.  f is overlap-free iff #(aab .  f)  is overlap-free, the word aab .  f is 
overlap-free iff a b . / 3 f  is overlap-free, thus iff/3f E F. 

It  is convenient to use, for the proof, the notation n for u ,  = #n(a) ,  and 

symmetrically ~ for v~ = p ' ( b ) .  
example 

0 - - a ,  0 = b  
1 = ab, i = ba 

2 = abba, 3 = abbabaab 

It  follows that  

(Consider n as a shorthand for p~.) For 

1 . 4 = 0 2 ,  n . ~ =  ( n -  1 ) ( n + l )  
1./3 = 12, n ./3 = , ( n  + 1) 
1 . 7 = 2  , n . 3 ' = n + l  

We denote by P the set of finite overlap-free words over A and by W those words 
over B that  are description of words in P starting with 1 = ab: 

W = { f E B * I I . f E P  } 

Recall that  
I = {a, fl}(72). {/3a, 7t3, ~7} 

Fife's theorem is a straightforward extension to infinite words of the following: 

T h e o r e m  5.1 One has W = B* - B * I B * .  

We star t  with a useful observation: 

P r o p o s i t i o n  5.2 The  set W is factorial : i f  1 �9 f 9 h is overlap-free, then 1 �9 g is 

overlap-free. 
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Proof. We show first tha t  W is suffix-closed, by showing tha t  if a f  E W ,  then 
f E W, and similarly for fl and 7. Now 

1. a f  ---- 02.  f---- 02 .  f = O/.t(1. f )  
1 . f l f  = 12. f = l p ( 1 .  f )  
1 - T f  = p ( 1 .  f )  

This shows that  in all three cases, the word 1 �9 f is overlap-free. 
We now prove tha t  W is prefix-closed. Let f g  E W and set w = 1 �9 f g  and 

u = 1 �9 f .  Then  w = u �9 g and u is a prefix of w. Consequently u is overlap-free 
and f E W.  This completes the proof. �9 

For the proof  of  5.1, we compute  the minimal au toma ton  of the set W.  This 
will be done by the method of quotients. For a word u and a set Y, we definie 

u - l Y  = {w I uw ~ Y}  

We shall see tha t  the minimal au tomaton  of W is the au toma ton  of  the figure 
which recognizes B* - B * I B * .  This shows the theorem. 

We s tar t  by the following easy properties: 

L e m m e  5.3  ( a 2 7 ) - l W  = (o(flo~)-iw = (crrf l ) - l l /v  = ~. 

Proof. It  suffice to verify tha t  the words 1 �9 a27, 1 �9 a r i a  and 1 �9 aTfl  all have an 
overlap. Indeed: 

1 �9 a27 = abaabb abaabb a ababba 
1 �9 aria = abaabbaababb abaabbaababb a 
1 �9 aTfl  = abaababb abaababb a abbabaab 

The following equations are more difficult: 

P r o p o s i t i o n  5 .4  The following equations hold for W : 
(i) w = .r-~w; 

(ii) a - l w  = f l - l W  = ( a T a ) - X w  = ( a 7 7 ) - X w ;  
(iii) ( a 2 ) - l W  = ( a 3 ) - l W ;  
(iv) (ozfl)- lW ~- (r  
(v) ( ~ v ) - l w =  ( ~ v ) - l w .  

Let Pa be the set of  overlap-free words that  have no prefix tha t  is a square 
ending with the letter a. Thus w E Pa iff for each prefix xcxc  of w with c a 
letter, on has c = b .  We show tha t  a w E P  r  w E P a ,  tha t  is 

Pa = a - l P .  

Indeed,  let w E Pa. If  aw has an overlap, this overlap is a prefix of  aw, and has 
the form axaxa .  But then xaxa  is a prefix of w, a contradiction.  Thus  w E Pa. 
The converse is straightforward.  The set 195 is defined similarly. Set 

W a = { f E W I I . f E P ~ } ,  W b = { f E W I I . f E P b }  

Then:  
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P r o p o s i t i o n  5.5 The following 

(1) f e w  ~ ~ f e w ;  
f E Wa ~ 7 f  El~b; 
f E Wb r 7 f  E Wa; 

(2) a f  E l4: ~:~  a f  e Wb 
(3) f l f  E W ~ f E Wa; 
(4) ~2f ~ W => ~ f  e W~; 
(5) ~ f  ~ W ~ ~ f  e wo; 
(6) f lT f  E W ~ ~ T f  E W, .  

relations hold: 

�9 V -' ~- fEI: a; 

Proof of proposition 5.4. 
(i). From (1). 
(ii). From (2) and (3), it follows that a f  e W ~ flf E W. Next 

a l e  W ~ a f e W b  ~ 7 a l e  Wa ~ a T a f E  W 
a f E W  ~ f E W a  r 7 7 f E W a  ~ a 7 7 f E W  

(iii). From (4) and (1), one obtains 

a 2 f  E W ~ ~2f  E Wa ~ o3f  E W 

the converse implication holds because W is prefix-closed. 
(iv). From (5), 

a/3f E W =r aC3f e W~ ::~ a2/3f E W 

the converse implication holds because W is suffix-closed. 
(v). From (ii),(6) and (2), one gets 

ceTf E W r162 f lTf  E W ~ f lTf  E Ifa ~ crr E W 

It remains to prove proposition 5.5. For this, we use the following lemnm: 

L e m m e  5.6 Let w be a word in P. Then 
(a) i f  w E abaabbaX[, then w E P~; 
(b) i fw  E aabbaX~, then w E Pb; 
(c) i f  w E abaabX~, then w E Pb. 

Proof of proposition 5.5. 
(1). First 1 . f  E P ~ p (1 . f )  = 1 .Tf  E P. Next, let f E Wa and suppose 

#(1 . f )  = ububv. Then lubl # 3, since otherwise u = ab and ubub = abbabb ~ X[ ,  
or u = ba and ubub = babbab ~ X{ .  Thus lubl is e ve n ,  and 1. f ~ Pa- The 
converse is immediate. 

(2). One has w = 1. crf = 02. f = abaabv for some v e X[ ,  and by (c) of 
the lemma, one has w E Pb. Thus a f E Wb. Next 

a f e W b  ~ 0 2 . f E P b  
f e w a  r 1 . F e P ,  r T . f e P b  ~ ~ . f e P ,  
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Thus it remains to show that 0 5 - f  E Pb ~ 2 . f  E Pa. I f 0 " 2 . f  E Pb then 
2 .  f E Pa since otherwise 2 .  f has an overlap. Conversely, if 2 .  f E Pa, then 
05. f = a2.  f is overlap-free and, again by (c) of the lemlna, it is in Pb. 

(3). One h a s w =  1;"fir = 1 2 . f  = a b a b b a . f  = , ( a a b . f )  = , ( a ( 1 . f ) ) .  
If f l f  E W, then w E P, whence a(1 �9 f )  E P, and f E W, and even f E Wa. 
Conversely, if f E We, then a(1 �9 f )  E P, whence W E P and 3 f  E W. 

(4). One has w = 1 . a 2 f  = 0 ] -3 . f  E abaabbaX~MP, and by (a) of the 
lemma, a2 f E Wa. 

(5). One has w = 1 . a / ~ f - -  02"3.f E abaabbaX[MP,  and by (a) of the 
lemma, a ~ f  E Wa. 

(6). One has w = 1 �9 ~Tf  = 1 , (2 .  f )  = #(aabbav) for some v E X~'. By 
statement (b) of the lemma, aabbav E Pb, whence w E Pa. �9 

Proof of the lemma. 
(a). Suppose the conclusion is false. Then 

w = abaabbaw' = uuv 

where u end with an a. The word u has not length 3, hence it has even length, 
and is o f the  form u = aura, with u' of even length. But then u~aa is in X~, a 
contradiction. 

(b). Suppose the conclusion is false. Then 

w = aabba'tt/= uuv = (au'b)(au'b)v 

Again, u is not of length 3, hence it has even length. Since u'bau'b has odd 
length, the word by is in X[,  and v starts by a letter a and w has an overlap, 
contradiction. 

(c). Suppose the conclusion is false. Then 

w = abaabw'= uuv = (au'b)(au'b)v 

Again, u has even length because its length is not 3, and by E X[ ,  thus v starts 
with an a and w has an overlap, contradiction. �9 

This ends the proof of Fife's theorem. Let us mention again two finitary 
versions of this result, which are more complicated, due to J. Cassaigne and A. 
Carpi. 
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