Strong Normalization in a Non-Deterministic
Typed Lambda-Calculus

Philippe de Groote

INRIA-Lorraine — CRIN — CNRS
Campus Scientifique - B.P. 239

54506 Vandoeuvre-les-Nancy Cedex — FRANCE
e-mail: degroote@loria.fr

Abstract. In a previous paper [4], we introduced a non-deterministic A-calculus
(A-LK) whose type system corresponds exactly to Gentzen’s cut-free LK [9]. This
calculus, however, cannot be provided with a computational interpretation. Some of
the constructs act as oracles and, for this reason, it is not possible to define an effective
notion of reduction. In the present paper, we address this problem. We consider a weak
version of the implicative fragment of A\-LK, and we define for it a relation of reduction
that models, at the level of the terms, the appropriate proof-theoretic notion of proof
reduction. This reduction relation satisfies several properties of interest, among others,
the property of strong normalization. We prove this last result by using a reducibility
argument a la Tait.

1 Introduction

In recent works, several authors have addressed the problem of extending the formulae-as-
types principle to classical logic, in order to express the computational content of classical
proofs [2, 10, 12, 17, 18, 19]. This problem cannot have a unique solution because one knows
that the technical content of the formulae-as-types principle, namely the Curry-Howard
isomorphism [3, 11, 14, 21], is strongly related to the constructive aspects of intuitionistic
logic. Therefore, when dealing with classical logic, one has to drop some of the properties
that exist in the intuitionistic case. Then, according to the properties that one drops, the
solutions proposed to the problem are different. For instance, cut-elimination in classical
logic is non-deterministic. Hence, in order to obtain a classical calculus that satisfies the
Church-Rosser property, one has to restore confluence by defining some appropriate reduction
strategy.

Yet as another proposal, we introduced, in a previous paper [4], a non-deterministic
A-calculus (A-LK) whose type system corresponds to Gentzen’s cut-free LK [9]. Our goal,

however, was not to express the computational content of classical logic but rather to provide
a model in which the non-deterministic and non-constructive aspects of classical logic can
be explained.

Our idea was to introduce a dummy element (L) to allow for the rule of right-weakening,
a non-deterministic binary choice operators (— [—) to allow for the rule of right-contraction,
and a non constructive choice operator akin to Hilbert’s e [16] to allow for the classical rule
of right-implication. These features are highly non-deterministic. Moreover, because of the
operator € that acts as an oracle, this non-determinism must be interpreted in an angelic
way. Because of this, it is not possible to provide A-LK with usual reduction rules that would
model faithfully the proof-theoretic process of cut-elimination.

In this paper, we study more deeply this last problem and we show that the angelic
nature of \-LK is only related to the operator €. In contrast, the non-determinism that arises
from the right structural rules may be handled by using appropriate reduction rules.

Technically, we consider a weakening of the implicative fragment of A-LK that is ob-
tained by dropping the e operator. The resulting system, that we have called A-wLK™ (read
“weak lambda-LK”), remains a non-deterministic typed A-calculus. Its typing system is a
sequent calculus whose sequents may be manifold concluded. The underlying logic, how-
ever, is intuitionistic because of some proviso on the introduction rule of implication. It
is then possible to define a reduction relation between the terms of A-wLK that models a
proof-theoretic notion of proof reduction. This reduction relation satisfies the properties of
subject reduction, of Church-Rosser, and of strong normalization.

We prove this last property by using Gallier-Koletsos version of reducibility, as described
in [8]. J. Gallier claims that this variant of the reducibility method is smoother than other
versions in the sense that it can be easily adapted to various typed calculi. Our proof is also
an illustration of this fact.

2 Problems with A\-LK

The idea behind the design of A\-LK [4] was to add three new constructs to the ones of the
A-calculus: a special constant (L) and two non-deterministic choice operators (— [— and
€(—)). The intuitive meaning of these constructs is the following:

L is a fictitious proof; in some sense, it stands for something that does not exist;

— [— is a binary choice operator whose non-determinism is angelic; the value of M | N
is the value of M or the value of N but cannot be fictitious unless the values of both
M and N are fictitious;

¢(—) is a choice operator akin to Hilbert’s € [16]; if « is a non-empty type, €(a) stands

for some element of «a; if «v is empty, () is a fictitious term.

These constructs are used to decorate the formulas occurring in the right-hand side of
a classical sequent. More precisely, they are used in the right rules as follows:

' 0©
'-06, 1L«
'-6,M:a N :«
'-6 M|N:«

(weakening — right)

(contraction — right)

z:a, ' 06, M:j3
I'~ Oz:=¢(a)], \e:a. M : e — 3

(implication — right)

As far as cut-free proofs are concerned, the system A-LK is satisfactory. If one allows
for cuts, however, there is a mismatch between [-reduction, which acts at the local level of
the terms, and cut elimination, which acts at the global level of the sequents. This can be
shown by considering the main step of cut elimination:

I1; I, H3

r:a, ' 06, M:j3 A+ Z, N« y: B3, Ay — =
I' — Olz=e(a)], \e:a. M 1 v — zia— B, Ay, Ay v Ey, Soly:=(2 N)]
[, Ay, Ay + Olri=¢(a)], 1, Zaoly:=(A\x:a. M) N]

cuT

reduces to:

1T, 1T

A= Z, N:a r:a, -6, M:p3 :

Ay, T v 2y, Olzi=N], M[z:=N]: 3 v B, Ay v 2,
Ay T, Ay v =y, Olz:=N], E

[, Ay, Ay + Olz:=N], 2y, Zs[y:=M[x:=N]]

cuT

The sequent obtain by cut elimination is the following one:
I, Ay, Ay + Ox:=N], E1, Esly:=M[z:=N]]
On the other hand, the process of 3-reduction yields the following result:
I, Ay, Ay + Ozi=e(a)], =1, Egly:=M[x:=N]]

In fact the problem of providing \-LK with an appropriate reduction theory is twofold.
On the one hand, as suggested by the above example, we should allow for non-effective
reductions related to the e-construct. On the other hand, we must also provide reduction
rules related to the constant | and the operator (— [—).

In this paper, we address the second question by considering the system A-LK without
the operator e.

3 Formal Definition of \-wLK™

In this section, we introduce formally A-wLK™, which is obtained from the implicative frag-
ment of \-LK by dropping the € operator. For more motivations about the design of \-LK
we report the reader to our previous work [4].

Definition 3.1 (Syntax of Raw Terms) Let A be a countably infinite set of type-variables.
The set T of types of A-wLK ™ is inductively defined as follows:

(i) ifae AthenaeT;
(ii) ifa,B €T then (a —) eT.

Let X be a countably infinite set of term-variables. The set A,k of terms of A-WLK™ is
inductively defined as follows:

i) L1,€ Ak foreachaeT;

(
(i) ifx € X then x € Ayrk;

(i) ifr € X, a €T and M € Ayix then (Ax:a. M) € Ayik-
(

(

~—

iV) Zf M,N € Aw1x then (M N) € AwLK;’
V) ZfM,N € A1k then (MI]N) € Auik.

The relation of syntactic identity (=) between the terms of \-wLK™ is defined as the
finest congruence containing the relation of a-conversion and satisfying the three following
axioms:

(MIN)[O)=M[(N]O)) (M[N)=(N[M) (M][M)=M
From now on, any term M will stand for its class of equivalence modulo =. The notation

| M;

ISP
will stand for the term (My [M;]---[M,_1), where no M; is of the form M/ [M/. Never-
theless, in order to simplify the notation, we will sometimes write M, | M, to mean [, M;.

We use a, (3,7, ... to denote types and M, N,O,... to denote terms. Expressions of

the form M : « are called statements, or declarations when M is a variable. A sequence
of declarations (z7 : ai,...,x, : «,) where all the x;’s are different is called a context.
We use I', A, ... to denote contexts, and ©,Z=, ... to denote sequences of statements. The
expression M [x:=N] denotes the result of substituting N for the free occurrences of x in
M. 1f © is the sequence (M; : aq,..., M, : «,) then ©[z:=N] is the sequence (M;[z:=N] :
ag, ..., Mylx:=N]: ay,).

Definition 3.2 (Type Assignment) The type assignment system of A-wLK ™ consists of the
following rules:

i) 'eT

(i) e:a,y:06,A+ 6 (i) 'O, M:a N: £,
Dy:6,z:a, A~ 0O '-06, N:3, M:a,
I' -6) ' - 06
r:a, '~ 6 v '-06, 1,:«a
(vi) y:a,z:a, '~ 0 (vii) '-6,M:a N:«
A a, I' v Oly:=z][z:=x] v 'O M|N:«
-0, M:a—f03 ArZ N:«
INAv-0O,=Z MN:[
) r:a, 'O, M:[3
(ix)
' 06, \r:a.M:a—
In Rule (iv) and Rule (vi), the variable x must be fresh. Let M € Aypx. We say that M is

a well-typed term of \-wLK ™ if and only if there exist a context I', a sequence of statements
O, and a type o such that the sequent I' — ©, M : « is derivable.

(11} [1]

(iv)

(viii)

if x does not occur free in ©.

The non-occurrence condition of Rule (ix) is sufficient to force our system to remain
intuitionistic. This is not surprising because there is a strong connection between semantic
tableaux and our system. For classical logic, the method of semantic tableaux corresponds
exactly to the sequent system G1 of Kleene [15]. For intuitionistic logic there is no similar
correspondence: in intuitionistic tableaux one deals with sets of F-signed formulas [5], while
the succedent of any intuitionistic sequent contains at most one formula. The only difference
between intuitionistic and classical tableaux for propositional logic lies in the treatment of
an F-signed implication or negation. The non-occurrence condition of Rule (ix) can be seen
as a refinement of a similar proviso that exists in the case of intuitionistic tableaux.

Proposition 3.3 Let the sequent (z; : &)ien & (M; : B)jem be derivable according to
the system of Definition 3.2. Then the formula

Nai — \ B (1)

en jEM

18 1ntuitionistically valid. O

4 Term and Proof Reduction

Prawitz has introduced, in the framework of Gentzen’s NJ [9], the notion of normal proof [20].
Given any proof in NJ, its normal form may be reached by a process of proof reduction, which
corresponds, through the isomorphism of Curry-Howard, to a relation of reduction between
A-terms.

In NJ, a proof is not in normal form when the principal formula of an elimination rule is
obtained as the conclusion of the corresponding introduction rule. In the case of implication,
such a proof corresponds to a f-redex. In our system, a formula may also be introduced by
weakening and this possibility gives rise to additional reduction steps:

I'-06

'~ 0, Lgap :a—pf Avr = M:« A+ 0=
H
[AwO,E L M: 3 I'Aw©,Z 15:0

We must also allow for structural reductions that are related to the commutation of the
right-contraction with application. Putting these ideas together, we are led to the following
definition.

Definition 4.1 (Reduction) The relation of one-step reduction (—) is the smallest rela-
tion containing the following redex-contractum pairs and compatible with the term formation
rules.

(i) (Az:a.M)N — M[z:=N]|
(i) LaopM — Lg

(i) Lo]M — M

(iv) (| M;)) N— [M; N

SO 1EN

The relation of strict reduction (=) is the transitive closure of the relation of one-step reduc-
tion. Finally, the relation of reduction (—) is the reflexive closure of the relation of one-step
reduction.

The reduction relation is such that the reducts of a well-typed term are typable with
respect to the same context and within the same sequence of statements. This result is a
piece of evidence that the reduction relation between terms models faithfully the process of
proof reduction.

Proposition 4.2 (Subject Reduction) Let I' v ©, M : « be derivable and let M — M'.
Then the sequent I' v~ O, M’ : a is derivable. O

The relation of reduction also satisfies the Church-Rosser property.

5 Strong Normalization

In this section we establish the main result of this paper, i.e., the strong normalization of the
well-typed terms of A-wLK™. To this end we introduce a weaker notion of well-typedness.
For technical reasons, this definition is a definition a la Church, and we assume the existence
of a family (X,)aec7, Where each X, is a countably infinite set of variables of type .

Definition 5.1 The family of sets (Ay)aeT of terms of type « is inductively defined as
follows:
i) L1, €A,,

(
(ii) if x € X, then x € A,

(ili) of v € Xy and M € Ag then Ax:o. M € Aoy,
(

(

~—

iv) if M € Aa—py and N € A, then (M N) € Ag.
v) if M,N € A, then (M| N) € A,.

Let T" be an environment that agrees with (X,)aer, i.e., an environment such that
xr € X, whenever z : « occurs in I'. It is easy to show that for every terms M; and every
types «; (0 <i < n) such that

'+ (Mz . ai)iEn
one has that M; € A,,'. Therefore to show that every term well-typed according to Defini-
tion 3.2 is strongly normalizable with respect to the reduction relation of definition 4.1, we
may show that every term in the family (A,).e7 satisfies the same normalization property.

To show that every term in the family (A,)ae7 is strongly normalizable (SN, for short),
we use a reducibility argument [7, 8, 11].

Definition 5.2 (Reducibility) The sets [a] of reducible terms of type a are inductively
defined as follows:

(i) [a] ={M € Ay | M is SN} when « is atomic,
(i) [a— 6] ={M € Aa—p) | for all N € [af, (M N) € [F]}-

Our strong normalization proof is adapted from [8]. Following Gallier, we define the
notions of I-term, simple term, and stubborn term.

Definition 5.3 An I-term is a term of the form 1,, Ax:a. M, or (M| N). A simple
terms is a term that is not an I-term (that is either a variable or an application). A stubborn
term is a term that reduces (in zero or more steps) only to simple terms.

!The converse, however, does not hold

In fact the I-terms are the terms that correspond to introduction rules. Their key
property is that they give rise to a redex when applied to another term. Therefore to show
that an application M @ is SN, it is sufficient to show that, for any I-term N such that
M — N, N @ is SN. This is an instance of the property (P3) in [8].

The stubborn terms, on the other hand, when applied to another term cannot give rise
to a redex, even after reduction. Therefore, when a stubborn term is applied to another
term, the resulting application and all its possible reducts are stubborn.

The strong normalization proofs consists of five lemmas. The first one concerns the
following closure properties of the sets of reducible terms:

(R1) if M € [, then M is SN;
(R2) if M € [a] and M — N then N € [a].
(R3) if M is simple, and if N € [a] for any I-term N such that M — N, then M € [[a].

Remark that the second condition of Property (R3) is vacuously satisfied when M is stub-
born. Therefore, Property (R3) implies that every stubborn term is reducible.

Lemma 5.4 For every type «, the set of reducible terms [[a] satisfies Properties (R1),
(R2), and (R3).

Proof. The proof is by induction on the structure of «.
Base: « is an atomic type. The three properties follow easily.

Induction step: o = (6 — 7).

(R1) Let x € Xj3. By induction hypothesis (R3), z € [3]. Hence, by definition of reducibility,
M z € [y]. Therefore, by induction hypothesis (R1), M x is SN and so is M.

(R2) For any O € [#] one has that MO € [v] and that MO — NO. Therefore, by induction
hypothesis (R2), for any O € [3] one has that NO € [y]. Hence, by definition of
reducibility, N € [— ~v].

(R3) Let @ € [A]. We must show that M @ is reducible.
If M is stubborn, so is M Q. Therefore, by induction hypothesis (R3), M Q € [v].

Assume that M is not stubborn. We proceed by induction on +.

If v is atomic, we must show that M @ is SN. By assumption, N € [— ~] for any
I-term N such that M — N. Hence N @ € [v]. Therefore N @ is SN by induction
hypothesis (R1), and so is M Q.

If v is not atomic, we show that M @ € [v], by using induction hypothesis (R3). On
the one hand we have that M @ is simple. On the other hand, if there is any [-term P
to which M () reduces, the reduction is necessarily of one the following forms:

MQ & 15.,Q; — L, = P

MQ - (\x:B8.M)Q, — Mlr:=Q,] — P
MQ = (M1[|M2)Q1 - MlQl[IM2Q1 — P
MQ =5 (La[M2)@Q1 — M@, — P

where M respectively reduces to the I-terms Lg .., Ax: 5. My, M| M, or L, [| Ms;
and @ reduces to Q1. Let N be respectively Lg_., Ax: 3. My, M [M, or L, [M. By
assumption N € [# — ~]. On the other hand, by induction hypothesis (R2), @, € [5].
Therefore N @, € [y]. Hence, again by induction hypothesis (R2), P € [y]]. This
allows us to apply induction hypothesis (R3) and conclude that M @ € [+].

U

We have established that every reducible term is strongly normalizable. The next step,
in a reducibility proof, is to establish that every term is reducible. To establish this second
property, in the case of pure A-terms, one needs first to prove a lemma about A-abstraction.
More generally, what is needed are such lemmas concerning each form of I-term. Thus we
need here three lemmas.

Lemma 5.5 For every type o, L, € [a].

Proof. 'The proof is by induction on .
If a is atomic, we have that 1, is SN.
If o is not atomic, the property follows by induction hypothesis and Property (R3). O

Lemma 5.6 Let « be a type. If M, N € [a] then (M| N) € [o].

Proof. 'The proof is by induction on «.

At base type, we have that M and N are SN by Property (R1). Therefore, so is (M | N).
Let « = 3 — v, and assume @Q € [5]. If (M [N) @, which is simple, reduces to some I-term
P, the reduction is necessarily of the following form:

(MIN)Q — (Mi[N)Q1 — MiQi[NiQ1 — P
MIN)Q — (La[NM)Q1 — NiQ1 — P

where M — M;, N — Np, and Q — ;. By hypothesis, assumption, and Property (R2),
M, €[—], N1 € [— 7], and Q; € [B]. Hence M; Q1, N1 Q; € [7], and, by induction
hypothesis, (M; Q1 [| N1 Q1) € [7]]. Therefore, by Property (R2), P € [7]. This allows us to
conclude by applying Property (R3). O

Lemma 5.7 Let x € X, and M € Ag. If for all N € [a] one has that M[xz:=N] € [5],
then A\x:a. M € [a — f].

Proof. We must show that for every N € [a], one has that (Ax:a. M) N € [5]. The proof
is by induction on £3.

Let 3 be atomic. By hypothesis, M[x:=N]| € [f]. Therefore, by Property (R1), M[z:=N]
is SN. It is easy to show that this implies that (Az:a. M) N is SN (for instance, by using
Substitution Lemma 3.2.4 in [1]).

Let 3 be non-atomic. On the one hand, the term (Az:«a. M) N is simple. On the other hand,
if (Az:a. M) N reduces to some I-term P, the reduction must be of the following form:

(AM:a. M) N — (Az:a.My)N, — M[z:=N,] — P
where M — M; and N — N;. This implies that
M[z:=N] — M;[x:=N]

Hence, since M[z:=N| € [] by hypothesis, we have that P € [5] by (R2). Therefore, by
(R3), Ax:a. M € [ao —][] O

Lemma 5.8 Letx; € X,, (1 <i<n) and let M € Az be a term whose free variables are
among the z;’s. If N; € [au]] (1 <i<mn), then M[z1:=Ny]---[z,:=N,] € [5].

Proof. The proof is by induction on the structure of M. We write M* for M[z1:=N1| - - - [x,:=N,].

i) M= _lg.
By Lemma 5.5, L5 € [].
(i) M =x; and § = «;.
M* = N; and, by hypothesis, N; € [as].
(ii) M =Xzx:7.0 and B = (y — 0).
By induction hypothesis, for any P € [v], we have that 0*[z:=P] € [0]. Therefore, by
Lemma 5.7, Az:v.0* € [3].
(iv) M = (OP) with O € A, and P € A,
By induction hypothesis, O* € [y — (] and P* € [y]. Therefore, by definition of
reducibility, (O* P*) € [5].
(v) M=(0]P).
By induction hypothesis, O*, P* € []. Therefore, by Lemma 5.6, (O* | P*) € [/].
U

Proposition 5.9 (Strong Normalization) All the well-typed terms of \-wLK ™ are strongly
normalizable.

Proof. By Lemma 5.8, taking N; = z;, every well-typed term is reducible. Then, by
Lemma 5.4, Property (R1), every well-typed term is SN. O

10

6 Other Reduction Rules

Reduction Rules (ii), (iii), and (iv) of Definition 4.1 model the way in which the right
structural rules interact with the other rules. In Gentzen’s LK, other interactions exist. For
instance, right-contraction commutes with implication-introduction:

Iavr (0,0

av (5,5, 0 lar f,a— 0,0
Lorp6 Tra-jo-p6
' a— 3,06 ' a— (3,06

Therefore, one may think of the following additional reduction rules:

v) M1l,— lg (in a context where M is of type a — [3)
vi) Aria Lg — Lap)

i€En €N
viil) Az:a. (| M) — | Az:a. M;

en 1EN

(
(
(
(

Strong Normalization still holds with these additional reduction rules (the proof of
course is longer because there are numerous subcases, and the notion of I-term is more
intricate). Besides, with the additional rules, the normal form of a term is either L, or of
the form [,_,, M; where each M; is a well-typed term of Church’s simply typed A-calculus.
Moreover, when a sequent is derivable, there is a least one term whose normal form is not
1. This, together with subject reduction, proves Proposition 3.3, and gives us an effective
procedure to extract natural deduction proofs from a term in our system.

There are, however, good reasons why we did not allow for the additional reduction
rules. On the one hand, they correspond to a sort of awkward call-by-value strategy. Rule (v),
for instance, amounts to a kind of strictness while Rule (vi) says that the functions must be
completely evaluated. On the other hand, they distroy the confluence of the calculus.

7 Conclusions and Future Work

The results that are presented in this paper can be extended in several ways.

While we have worked in the implicative fragment, the other propositional connectives
can be taken into account as we exposed in [4]. Then the extension of Definition 4.1 to the
system containing all the connectives is rather systematic, and the proofs of the different
lemmas and theorems may be adapted.

As we already mentioned, there is a strong connection with intuitionistic semantic
tableaux [5]. By adapting Definition 3.2 we could define a typing system in which the

11

derivation of a typing judgment can be interpreted as an intuitionistic tableau. Then, strong-
normalization would give us an effective procedure to extract natural deduction proofs from
semantic tableaux.

Our final goal remains to analyze classical proofs. Therefore we must waive the side
condition that comes with the introduction rule for implication.

A first solution would be to reintroduce the e-operator. With respect to this, the results
that we have obtained in this paper are encouraging. In particular, the strong normalization
proof is not affected by the addition of the e-operator, which corresponds simply to the
addition of new constants. This observation, however, makes only one half of the job because
we must also provide reduction rules to deal with €. As we have stressed in the introduction,
the natures of the non-determinisms related respectively to € and to the right structural
rules are different. In this paper, we have explained how to deal with the latter. In order to
handle the former, we must accept to deal with reduction relations that are not confluent
and not effective. For instance, we must accept reduction rules such as the following:

'-0,¢la):a T O, M:a«a
' 0,¢la) = M:«

A second solution consists in providing the A-terms with some communication mecha-
nism. Consider once more the introduction rule for implication:
r:a, 'O, M:j3
'-06, \e:aM:a—p3

The problem, in the classical case, is that x may occur free in ©. If one allows for one-
producer /many-consumers communication, the classical rule may become the following:
Z'IOJ,FI— @7 (Ni:%)iEnvM:ﬂ
'+~ 0, ([a?z].N; : ¥i)ien, \e: o [alzx].M a0 —

x does not occur free in ©.

where [a?z] means input x from channel a, and [alzx] means output x on channel a. With
such a rule, the sequent corresponding to a main cut reduces as follows:

[1]

I'~ O, ([a?z].N; : Vi)ien, Zly:=(Az:a.|alz].M) N] —

I'w~ O, ([a?z].N; : ¥)ien, Z[y:=[a!N].M[x:=N]] —
I'~ O, (Ni[z:=N] : %)ien, Zly:=M[z:=N]]

We are currently working on this solution.

References

[1] H.P. Barendregt. The lambda calculus, its syntax and semantics. North-Holland, revised
edition, 1984.

12

2]

[11]

[12]

[13]

[14]

[15]

R. Constable and C. Murthy. Finding computational content in classical proofs. In
G. Huet and G. Plotkin, editors, Logical Frameworks, pages 341-362. Cambridge Uni-
versity Press, 1991.

H.B. Curry and R. Feys. Combinatory Logic, Vol. 1. North-Holland, 1958.

Ph. de Groote. Denotations for Classical Proofs — Preliminary Results. In A. Nerode
and M. Taitslin, editors, Second International Symposium on Logical Foundations of
Computer Science, Tver’92, volume 620 of Lecture Notes in Computer Science, pages
105-116. Springer Verlag, 1992.

M.C. Fitting. Intuitionistic Logic Model Theory and Forcing. North Holland Publishing
Company, 1969.

J.H. Gallier. Logic for Computer Science. John Wiley & Sons, 1988.

J.H. Gallier. On Girard’s “Candidats de Réductibilité”. In P. Odifreddi, editor, Logic
and Computer Science, pages 123-203. Academic Press, 1990.

J.H. Gallier. On the correspondence between proofs and A-terms. In Ph. de Groote,
editor, Cahiers du Centre de Logique (Université Catholique de Louvain), Volume 8,
pages b5—-138. Academia, Louvain-la-Neuve, 1995.

G. Gentzen. Recherches sur la déduction logique (Untersuchungen tber das logische
schliessen). Presses Universitaires de France, 1955. Traduction et commentaire par R.
Feys et J. Ladriere.

J.-Y. Girard. A new constructive logic: Classical logic. Mathematical Structures in
Computer Science, 1:255-296, 1991.

J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1989.

T. G. Griffin. A formulae-as-types notion of control. In Conference record of the seven-

teenth annual ACM symposium on Principles of Programming Languages, pages 47-58,
1990.

J.R. Hindley and J.P. Seldin. [Introduction to combinators and \-calculus. London
Mathematical Society Student Texts. Cambridge University Press, 1986.

W.A. Howard. The formulae-as-types notion of construction. In J. P. Seldin and J. R.
Hindley, editors, to H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, pages 479-490. Academic Press, 1980.

S.C. Kleene. Introduction to metamathematics. North-Holland Publishing Company,
1954. Sixth Reprint (1971).

13

[16]

[17]

[18]

[19]

[20]

[21]

A.C. Leisenring. Mathematical Logic and Hilbert’s e-Symbol. Gordon and Breach Science
Publishers, New-York, 1969.

C. R. Murthy. An evaluation semantics for classical proofs. In Proceedings of the sizth
annual IEEE symposium on logic in computer science, pages 96-107, 1991.

C. R. Murthy. A computational analysis of Girard’s translation and LC. In Proceedings
of the seventh annual IEEE symposium on logic in computer science, pages 90-101,
1992.

M. Parigot. Au-Calculus: an algorithmic interpretation of classical natural deduction. In
A. Voronkov, editor, Proceedings of the International Conference on Logic Programming

and Automated Reasoning, volume 624 of Lecture Notes in Artificial Intelligence, pages
190-201. Springer Verlag, 1992.

D. Prawitz. Natural Deduction, A Proof-Theoretical Study. Almqvist & Wiksell, Stock-
holm, 1965.

S. Stenlund. Combinators A-terms and proof theory. D. Reidel Publishing Company,
1972.

14

