
Petri Net Analysis Using Boolean Manipulation

Enric Pastor� Oriol Roig� Jordi Cortadella� and Rosa M� Badia �

Department of Computer Architecture

Universitat Polit�ecnica de Catalunya

����� Barcelona� Spain

Abstract� This paper presents a novel analysis approach for bounded
Petri nets� The net behavior is modeled by boolean functions� thus reduc�
ing reasoning about Petri nets to boolean calculation� The state explosion
problem is managed by using Binary Decision Diagrams �BDDs�� which
are capable to represent large sets of markings in small data structures�
The ability of Petri nets to model systems� the �exibility and generality
of boolean algebras� and the e�cient implementation of BDDs� provide
a general environment to handle a large variety of problems� Examples
are presented that show how all the reachable states �	
��� of a Petri
net can be e�ciently calculated and represented with a small BDD �	
�

nodes�� Properties requiring an exhaustive analysis of the state space can
be veri�ed in polynomial time in the size of the BDD�

� Introduction

Petri nets were initially proposed by C�A� Petri in ���� for describing infor�
mation processing systems� characterized as being concurrent� asynchronous�
distributed� parallel� nondeterministic� and	or stochastic� Many di
erent appli�
cation areas have considered Petri nets for the modeling and analysis of their
systems� Among them� we could mention operating systems� communication
protocols� distributed systems� multiprocessor systems� etc�

Several methods for Petri net analysis have been proposed in the literature�
They can be classi�ed into three categories ���
� the reachability tree method�
the matrix�equation method and reduction or decomposition techniques� While
the �rst method is only applicable to small nets due to the explosion of the
number of states� the second and third methods are restricted to special classes
of nets�

In this paper� a novel analysis approach applicable to any type of bounded
Petri net is presented� It is based on the description of the net behavior by
means of boolean functions� thus reducing reasoning to calculation ��
� Questions
like �is there any marking with a deadlock �� or �can transitions t� and t� be

�red concurrently �� or properties like liveness� safeness and persistence can be
answered and veri�ed by properly manipulating the functions that describe the
system�

� Supported by CYCIT TIC �	�	

� and Dept� d�Ensenyament de la Generalitat de
Catalunya

Pastor, E. [et al.]. Petri net analysis using boolean manipulation. A: "Application and Theory of
Petri Nets 1994, 15th International Conference: Zaragoza, Spain, June 20–24, 1994:
proceedings". Berlín: Springer, 1994, p. 416-435.
The final authenticated version is available online at https://doi.org/10.1007/3-540-58152-9_23

The exponential complexity involved in the enumeration of the markings of a
net is managed by using Binary Decision Diagrams �BDD� ��
� BDDs have been
widely and successfully used in the areas of logic synthesis and veri�cation of
digital circuits� and their appeal comes from the capability of representing large
sets of coded data with small data structures�

One of the most interesting applications for this novel technique comes from
the area of logic synthesis and veri�cation of asynchronous circuits� Rosenblum
and Yakovlev ���
 and Chu ��
 proposed the use of Signal Transition Graphs

�STGs� to describe the behavior of asynchronous sequential circuits� An STG is
an interpreted Petri net where transitions correspond to rising or falling tran�
sitions of digital signals� Previous methods based on the explicit enumeration
of the reachable states for logic synthesis ��
 su
er the state explosion problem�
due to the arbitrary interleaving of concurrent transitions� while unfolding meth�
ods for veri�cation ���
 su
er a lack of �exibility and generality� With boolean
manipulation techniques� both logic synthesis and veri�cation of asynchronous
circuits can be comprised in a unique and fairly general environment� which is
also computationally capable of dealing with large systems� due to the e�cient
data representation and manipulation provided by BDDs� Although the main
interest of the authors comes from the area of asynchronous circuits� the under�
lying theory of this technique is applicable to any kind of Petri net� Boundedness
is the only restriction imposed by the approach�

The paper is organized as follows� In Sect� � we review the de�nition and
some basic properties of Petri nets� Section � sketches the fundamental concepts
on boolean algebras and algebras of classes� Logic functions� Boole�s expansion
theorem and logic abstractions are presented in Sect� �� BDDs are described in
Sect� �� The main result of this paper� the isomorphism between boolean alge�
bras and bounded Petri nets� is presented in Sect� �� The reachability analysis
algorithm is outlined in Sect� �� and some reduction techniques to improve the
e�ciency of the algorithms are described in Sect� �� Algorithms for the veri��
cation of properties such as safeness� liveness� and persistence are presented in
Sect� �� Section �� sketches the extension to k�bounded nets� Some experimental
results are analyzed in Sect� ��� Finally� the paper concludes in Sect� �� with a
discussion of the scope of this paper and future work�

� Petri Nets� De�nitions and Basic Properties

A Petri net ���
 is a ��tuple� N � hP� T� F�m�i� where P � fp�� p�� � � � � png is
a �nite set of places� T � ft�� t�� � � � � tmg is a �nite set of transitions� satisfying
P �T � � and P �T �� �� F � �P � T �� �T �P � is a set of arcs ��ow relation��
and m� � P � IN is the initial marking� The symbols �t� t�� �p and p� de�ne�
respectively� the pre�set and post�set of every place p or transition t�

A marking of a Petri net is an assignment of a nonnegative integer to each
place� If k is assigned to place p� we will say that p is marked with k tokens� The
structure of a Petri net de�nes a set of �ring rules that determine the behavior
of the net� A transition t is enabled when each p 	 �t has at least one token�

The Petri net moves from one marking to another by �ring one of the enabled
transitions� When a transition t �res� one token is removed from each place p 	 �t

and one token is added to each place p 	 t�� If m� and m� are markings� we will
denote by m��tim� the fact that m� is reached from m� after transition t being
�red� A marking m� is said to be reachable from a marking m if there exists a
sequence of transition �rings that transforms m into m�� The set of reachable
markings from m is denoted by �mi�

We denote by m�p� the number of tokens in place p for the markingm� Thus�
a marking can be represented by a vector of integers� m � �m�p��� � � � �m�pn���

De�nition�� A Petri net N � hP� T� F�m�i is said to be bounded if �m�i is a
�nite set�

De�nition�� A Petri net N � hP� T� F�m�i is said to be k�bounded if for any
m 	 �m�i and for any place p 	 P � m�p�
 k�

De�nition�� A Petri net is said to be safe if it is ��bounded�

As starting point� we will restrict the proposed approach to safe Petri nets�
Extensions to k�bounded nets will be presented in Sect� ���

� Boolean Algebras

In this section we brie�y sketch some basic theory on boolean algebras� Most of
the fundamental concepts presented here have been extracted from ��
�

��� Boolean Algebras

A boolean algebra is a quintuple

�B��� �� �� �� � ���

where B is a set called the carrier� � and � are binary operations on B� and � and
� are elements of B� such that �a� b� c 	 B the following postulates are satis�ed�

�� Commutative Laws� a � b � b� a� a � b � b � a
�� Distributive Laws� a� �b � c� � �a� b� � �a� c�� a � �b� c� � �a � b� � �a � c�
�� Identities� a� � � a� a � � � a

�� Complement� �a 	 B�
a� 	 B such that� a� a� � �� a � a� � �

As it is well known� the system �f�� �g��� �� ���� � with � and � de�ned as
the logic OR and logic AND operations respectively� is a boolean algebra �also
known as the switching algebra�� From now on� and since we will limit our scope
to logic functions� we will always assume that B � f�� �g�

��� Logic Functions and Boolean Algebras of Logic Functions

An n�variable logic function �also called switching function� is a mapping

f � Bn �� B � ���

Let Fn�B� be the set of n�variable logic functions on B� Then the system

�Fn�B���� �� �� �� � ���

is also a boolean algebra� in which � and � signify addition and multiplication of
logic functions� and � and � signify the zero� and one�functions �f�x�� � � � � xn� � �
and f�x�� � � � � xn� � ��� The cardinality of Fn�B� �number of di
erent n�variable
logic functions� is ��

n

�

��� Algebra of Classes �Subsets of a Set�

The algebra of classes of a set S consists of the set �S �the set of subsets of S�
and two operations on �S � � �union� and � �intersection�� This algebra satis�es
the postulates for a boolean algebra and the system ��S ����� �� S� is a boolean
algebra�

Next� the Representation Theorem �Stone� ����� establishes the basis of the
approach presented in this paper�

Theorem	� Every �nite boolean algebra is isomorphic to the boolean algebra of

subsets of some �nite set S�

Consequently� Stone�s theorem states that reasoning in terms of concepts such
as union� intersection� empty set � etc � � � � in a �nite set of elements is isomorphic
to performing logic operations ��� �� with logic functions� Furthermore� from
Stones�s theorem it can be easily deduced that the cardinality of the carrier of
any boolean algebra must be a power of two� In particular� the algebra of classes
of a set S �jSj � �n� is isomorphic to the boolean algebra of n�variable logic
functions�

� Logic Functions

In this section� we present some fundamental concepts on logic functions used
along the paper�

Given the boolean algebra of n�variable logic functions� we call a vertex each
element of Bn� The on�set �o
�set� of a function f is the set of vertices where the
function evaluates to � ���� Each vertex of the on�set is also called a minterm� A
literal is either a variable or its complement� A cube c is a set of literals� such that
if a 	 c then a� �	 c and vice versa� A cube is interpreted as the boolean product
of its elements� The cubes with n literals are in one�to�one correspondence with
the vertices of Bn�

	�� Boole
s Expansion

The functions
fxi � f�x�� � � � � xi��� �� xi	�� � � � � xn� ���

and
fx�

i
� f�x�� � � � � xi��� �� xi	�� � � � � xn� ���

are called the cofactor of f with respect to xi and x
�
i respectively� The de�nition

of cofactor can also be extended to cubes� If c � x�c�� x� being a literal and c�
another cube� then�

fc � �fx��c� � ���

Theorem� Boole�s expansion� If f � Bn � B is a boolean function	 for all

�x�� x�� � � � � xn� 	 Bn

f�x�� x�� � � � � xn� � xi � fxi � x�i � fx�
i
�

	�� Abstractions

Abstractions are of fundamental use in our framework� They have a direct cor�
respondence to the existential and universal quanti�ers applied to predicates in
boolean reasoning� The existential and universal abstractions of f with respect
to xi are de�ned as�

xif � fxi � fx�
i
� �xif � fxi � fx�

i
� ���

As an example� let us consider the function� f � bc� ab�c� � a�c � The cofactor
with respect to a and a� are� fa � bc � b�c� and fa� � c � and the abstractions
with respect to a are
af � fa � fa� � b� � c and �af � fa � fa� � bc �
af is
the function that evaluates to � for all those values of b and c such that there is
a value of a for which f evaluates to �� �af is the function that evaluates to �
for all those values of b and c such that f evaluates to � for any value of a�

� Binary Decision Diagrams

A logic function can be represented in many ways� such as truth tables� Karnaugh
maps orminterm canonical forms� Another form that can be muchmore compact
is the sum of products� where the logic function is represented by means of an
equation� i�e��

f � bc� ab�c� � a�c � ���

These techniques are ine�cient for fairly large functions� However� all these forms
can be canonical ��
� A form is canonical� if the representation of any function
in that form is unique� Canonical forms are useful for veri�cation techniques�
because equivalence test between functions is easily computable�

Recently� Binary Decision Diagrams �BDDs� have emerged as an e�cient
canonical form to manipulate large logic functions� The introduction of BDDs is

relatively old ��
� but only after the recent work of Bryant ��
 they transformed
into a useful tool� For a good review on BDDs we refer to ��� �� ��
�

We will present BDDs by means of an example� Given ���� its BDD is shown
in Fig� ��a�� A BDD is a Directed Acyclic Graph with one root and two leaf
nodes �� and ��� Each node has two outgoing arcs labeled T �then� and E �else��
To evaluate f for the assignment of variables a � �� b � �� and c � �� we only
have to follow the corresponding directed arcs from the root node� The �rst node
we encounter is labeled with variable a� whose value is �� Given this assignment�
the T arc must be taken� Next� a node labeled with variable b is found� Since
b � � the E arc must be taken now� Finally the T arc for variable c reaches the
� leave node�

1

c

b b

a
T E

c c c

0

T
TE E

E
T

TE T T
E E

1

c

b

a
T E

0

c

T
E

T
TE

E

1

c

b b

a

T E

0

a
T

T

T

T

E

E E

E

(a) (b) (c)

Fig� �� BDD example

��� Reduced and Ordered BDDs

The representation of a function by means of a BDD is not unique� Figures
��a�� ��b� and ��c� depict di
erent BDDs representing ���� The BDD in ��b�
can be obtained from ��a� by successively applying reduction rules that eliminate
isomorphic subgraphs from the representation ��
� The BDD in ��c� has a di
erent
variable ordering�

All BDDs shown in Fig� � are ordered BDDs� In an ordered BDD� all vari�
ables appear in the same order along all paths from the root to the leaves� If
a BDD is ordered and reduced �no further reductions can be applied� then we
have a Reduced Ordered BDD �ROBDD�� Given a total ordering of variables�
an ROBDD is a canonical form ��
� Figures ��b� and ��c� are ROBDDs with
variable ordering a � b � c and c � a � b respectively� The shape and size of an
ROBDD depend on the ordering of its variables�

Some important properties of ROBDDs are�

� The size of the BDD can be exponential in the number of variables ��
�
however BDDs are a compact representation for many functions�

� Boolean binary operations can be calculated in polynomial time in the size
of the BDDs�

� Some interesting problems like satis�ability� tautology and complementation
are solved in constant time using BDDs�

Henceforth� we will implicitly assume that BDDs are reduced and ordered�
Note that each BDD node represents at the same time a function whose root
is the node itself� This property allows the implementation of BDD packages
managing all BDDs using the same set of variables in only one multi�rooted
graph ��
�

��� Boolean Operations with ROBDDs

Let us see� �rst� how to calculate the BDD for ��� given the ordering a � b � c�
We will use �v� T � E� to denote a node labeled with variable v� and T and E as
�Then� and �Else� BDDs respectively� Applying Boole�s theorem to expand f

with variable a we have�
f � a fa � a� fa� � ���

with fa � bc� b�c�� and fa� � c� Expanding variable b in fa and fa� yields to

f � a �b fab � b� fab�� � a� �b fa�b � b� fa�b�� ����

with fab � c� fab� � c�� fa�b � c� and fa�b� � c� Thus the BDD for ��� is

f � �a� �b� c� c��� �b� c� c�� � ����

Note that the logic functions fab � fa�b � c and fab� � fa�b� � c� are isomorphic
and must be represented with the same node if we want to preserve canonicity�

BDDs can be created by combining existing BDDs by means of boolean
operations like AND� OR� and XOR� This approach is implemented using the
if�then�else operator �ITE�� de�ned as follows�

ite�F�G�H� � F �G� F � �H � ����

where F � G� H are logic functions represented by BDDs� The interesting prop�
erty of the ITE operator is that it can directly implement all two�operand logic
functions� For example�

AND�F�G� � ite�F�G� �� � XOR�F�G� � ite�F�G�� G� � ����

Let Z � ite�F�G�H�� and let v be the top variable of F � G� H� Then the
BDD for Z is recursively computed as follows ��
�

Z � �v� ite�Fv� Gv�Hv�� ite�Fv� � Gv��Hv��� � ����

where the terminal cases are�

ite��� F�G� � ite��� G� F � � ite�F� �� �� � ite�G�F� F � � F � ����

The code for the ITE algorithm is shown in Fig� �� Note that the algorithm
keeps the BDD reduced by checking if T equals E� and checking in a unique�

table if the produced node already exists in the graph� In this way� all isomorphic
subgraphs are always eliminated�

Unless there is a terminal case� every call to the procedure generates two
other calls� so the total number of ITE calls would be exponential in the number
of variables� To avoid this exponentiality� ITE uses a table of pre�computed
operations �computed table�� The computed table acts as a cache memory� in such
a way that the most recently used results are stored in this table� The e
ect of
this computed table is to cause ITE to be called at most once for each possible
combination of the nodes in F � G� H� So the complexity of the algorithm� under
the assumptions of in�nite memory and constant access time �hash� tables� is
reduced to O�jF j � jGj � jHj��

ite �F �G�H� f
if � terminal case � return result for terminal case�
else if � fF � G� Hg is in computed�table �

return pre�computed result�
else f

let v be the top variable of f F � G� H g�
T � ite �Fv�Gv�Hv��
E � ite �Fv��Gv��Hv���
if T equals E return T �
R � �nd or add unique table �v�T �E��
insert computed table �f F � G� H g� R��
return R�

g g

Fig� �� The ITE algorithm

An important consequence of representing all BDDs in the same graph is
that checking the equivalence between two BDDs can be done in constant time
�two BDDs representing the same function have the same root node�� Counting
the number of vertices represented by a BDD can be done in linear time in the
size of the BDD�

� Modeling Safe Petri Nets with Boolean Algebras

Let N � hP� T� F�m�i be a safe Petri net� A marking in �m�i can be represented
by a set of places m� where pi 	 m denotes the fact that there is a token in
pi� Therefore� any set of markings in �m�i can be represented by a set M of
subsets of P � Let MP be the set of all markings of a safe Petri net with jP j
places �jMP j � �jP j�� The the system

��MP ����� ��MP� ����

is the boolean algebra of sets of markings� This system is isomorphic with the
boolean algebra of n�variable logic functions� where n � jP j�

We will indistinctively use pi to denote a place in P � or a variable in the
boolean algebra of n�variable logic functions� Therefore� there is a one�to�one
correspondence between markings ofMP and vertices of Bn� A markingm 	MP

is represented by means of an encoding function that provides a binary mapping

fromMP into Bn� that is� E �MP � Bn� where the image of a markingm 	 MP

is encoded into an element �p�� � � � � pn� 	 Bn� such that�

pi �

�
� if pi 	 m

� if pi �	 m �
����

As an example� both the vertex ��� �� �� �� 	 B
 and the cube p�p��p�p
�

 represent

the marking in which p� and p� are marked and p� and p
 are not marked�

�� Characteristic Functions and Binary Relations

The characteristic function �V of a set of vertices V � Bn is de�ned as the logic
function that evaluates to � for those vertices of Bn that are in V � i�e��

�v 	 Bn � v 	 V � �V �v� � � � ����

Extending the use of the encoding function E � each set of markings M 	 �MP

has a corresponding characteristic function �EM � Bn � B� that evaluates to �
for those vertices that correspond to markings belonging to M � The image of
M � �MP according to E is the set V � Bn� de�ned by�

V � fE�m� � m 	MP g � ����

From now on� given the encoding function E � we will de�ne the characteristic

function ofM as the characteristic function of the set V � that is� �M � �V � For
example� given the Petri net depicted in Fig� ��a�� the characteristic function of
the setM � ffp�� p�g� fp�� p�� p�g� fp�� p�� p�g� fp�� p�� p�� p�g� fp�� p�� p�� p
� p�gg
is calculated as the disjunction of each boolean code E�m��m 	M � The resulting
function �M � p�p�p�p� � p�p

�

p� � represents the set of markings in which p��

p�� p�� and p� are marked or p� and p� are marked and p
 is not marked�

p1 p2

p3
p4

p5

t1

t2

t3

t4

{p1,p3}

{p2,p3}

{p1,p5} {p3,p4}

{p2,p5}

t1

t2 t3

t1 t4

(a) (b)

Fig� �� �a�Petri net� �b�reachable markings

Hence and for sake of simplicity we will indistinctively use M and �M to
denote the characteristic function of the set of safe markings M �

All set manipulations can by applied directly to the characteristic functions�
For example� given the sets of safe markings M��M� 	MP �

�M��M�
� �M�

� �M�
� �M��M�

� �M�
� �M�

� �
M�

� ��M�
� �MP

� ����

When implementedwith BDDs� characteristic functions provide� in general� com�
pact and e�cient representations�

Characteristic functions can also be used to represent binary relations� that
is� subsets of a cartesian product between two sets� To represent the binary
relation R �M��M�� it is necessary to use di
erent sets of variables to identify
the elements of M� and M�� Given the binary relation R between sets M� and
M�� the elements of M� that are in relation with some element of M�� are the
set�

V � fm� 	M� �
m� 	M�� �m��m�� 	 Rg � ����

and using the characteristic function of R� the characteristic function of V is
computed by�

�V �x�� � � � � xn� �
y������yn�R�x�� � � � � xn� y�� � � � � yn� � ����

�� Transition Firing

We de�ne the transition function of a Petri net as a function

� � �MP � T � �MP � ����

that transforms� for each transition� a set of markings M� into a new set of
markingsM� as follows�

��M�� t� �M� � fm� 	MP �
m� 	M�� m��tim�g � ����

This concept is equivalent to the one�step reachability in Petri nets�
Equation ���� can be generalized to be the transition function of a Petri net�

� � �MP � �MP � ����

where all the transitions are processed in the same function� � transforms a set
of markings M� into the set of markings M� that can be reached from M� in
one step �one transition �ring�� Equation ���� can be obtained by computing�

��M � �
�
�t�T

��M� t� � ����

Note that ���� calculates the image of several markings simultaneously� Us�
ing the terminology for veri�cation of sequential machines ��
� � performs the
constrained image computation of the net�

There are three di
erent techniques to implement the constrained image com�

putation for transitions using BDDs� by topological image computation� by the
transition function � and by the transition relation associated to �� In the re�
mainder of this section we will study the topological image computation� We
refer the reader to ��
 for the other techniques�

�� Topological Image Computation

Constrained image computation for transitions can be e�ciently implemented by
using the topological information of the Petri net and the characteristic function
of sets of markings� First of all� we will present the characteristic function of
some important sets related to a transition t 	 T �

Et �
Y
pi��t

pi �t enabled��

NPMt �
Y
pi��t

p�i �no predecessor of t is marked��

ASMt �
Y
pi�t�

pi �all successors of t are marked��

NSMt �
Y
pi�t�

p�i �no successor of t is marked��

Given these characteristic functions� the constrained image computation for
transitions is reduced to calculate�

��M� t� �
�
MEt

�NPMt

�
NSMt

�ASMt � ����

We will show with an example how this formula �simulates� transition �ring� In
the example of Fig� ��a�� given the set of markings

M � p�p
�
�p�p

�

p

�
� � p��p�p�p

�

p

�
� � p�p

�
�p

�
�p

�

p� ����

we will calculate M � � ��M� t��� First� MEt�

�the cofactor of M with respect

to Et� � p�� selects those markings in which t� is enabled and removes its
predecessor places from the characteristic function�

MEt�

� p��p�p
�

p

�
� � p��p

�
�p

�

p� � ����

Then the product with NPMt� � p�� simulates the elimination of the tokens in
the predecessor places�

MEt�

�NPMt� � p��p
�
�p�p

�

p

�
� � p��p

�
�p

�
�p

�

p� � ����

Next� taking the cofactor with respect to NSMt� � p�� removes all successor
places from the characteristic function�

�
MEt

�NPMt

� �
MEt�

�NPMt�

�
NSMt�

� p��p�p
�

p

�
� � p��p

�
�p

�

p� � ����

Finally� the product with ASMt� � p� adds a token in all the successor places
of t��

M � � p��p�p�p
�

p

�
� � p��p�p

�
�p

�

p� � ����

Note that ���� is correctly de�ned only for safe Petri nets� However� safeness
can be also veri�ed by using �� as it will be shown in Sect� ��

traverse Petri net �N � hP�T�F�m�i� f
�� Let � be the transition function of N ��

Reached � From � fm�g�
repeat f

To � ��From��
New � To � Reached�
From � New�
Reached � Reached �New �

g until �New � ���
return Reached � �� The set of all reached markings from m� ��

g

Fig� �� Algorithm for symbolic traversal

	 Net Traversal and Reachable Markings

Once the constrained image computation has been de�ned� the set �m�i can be
calculated by symbolic traversal� We will use an approach similar to symbolic

breadth��rst traversal for Finite State Machines ��
� This method allows to pro�
cess several markings simultaneously by using their characteristic function and
the constrained image computation�

The algorithm presented in Fig� � traverses the Petri net and calculates �m�i�
The union and di
erence of sets are performed by manipulating their character�
istic functions�

Each iteration of the traversal obtains all the markings reachable from the set
�From� in one step� Only those markings that are �New� in the set of reachable
markings are considered for the next iteration� The algorithm iterates until no
new markings are generated� The number of iterations performed by the algo�
rithm is determined by the maximumnumber of �rings from the initial marking
to the �rst occurrence of any of the reachable markings� and its called the se�

quential depth of the Petri net�
The �nal set of reachable markings are shown in Fig� ��b�� where the nodes

represent markings and the edges the �ring transitions� Note that the sequential
depth of this Petri net is four�

 Petri Net Reductions

Petri nets can be reduced to simpler ones by using transformation rules that
preserve the properties of the system being modeled� By using these rules� the
complexity inherent to the reachability analysis can be e
ectively reduced�

In ���
� a set of six transformations that preserve the properties of liveness�
safeness� and boundedness were proposed� Here we illustrate how these trans�
formations can be used to simplify the breadth��rst traversal analysis� Fig� �
depicts the set of transformations actually used�

(a)

(b)

(c)

(d) (f)

(e)

p1

p2

t p12

t1

t2

p t12

p2p1

t1

t2

t1

t2

p12

t1 t2

p1

p2 p2

p1

t12 pt p

ttp

Fig� �� Transformations preserving liveness� safeness and boundedness

The original Petri net N is reduced into a new net N � by applying these
transformations� Then� the reachability analysis technique presented in Sect� �
can be used more e�ciently with N � due to the reduction in both� the number
of places and the sequential depth of the net� Given the set of reachable mark�
ings �m�

�i of N
�� the set of reachable markings �m�i of the original net N is

derived using an inverted transformation on �m�
�i� The inverted transformations

are shown in Tab� ��

Table �� Petri net reductions and their inverse transformations

Forward Transformations Backward Transformations

�a� series places fusion R � R�

p�� � �p� � p�� �R�

p�
��

� �p��p
�

��

�b� series transitions fusion R � R�

Et��

� �Et� � Et� � �R�

E�

t��

� �E�

t� � Et��

�c� parallel places fusion R � R�

p��
� �p�p�� � R�

p�
��

� �p��p
�

��

�d� parallel transitions fusion R � R�

�e� self�loop place R � R� � p
�f� self�loop transition R � R�

For example� Fig� ��a� depicts how a net can be transformed into another
by fusing places p� and p� into place p��� If R

� is the set of reachable markings
of the resulting net� the set of markings in the original net can be derived as
follows�

R � R�
p��

� �p� � p�� �R�
p�
��

� �p��p
�
�� � ����

denoting that a token in p�� implies that either p� or �exclusive or� p� were
marked and no token in p�� implies that neither p� nor p� were marked in the
original net� Similar substitutions can be applied for other types of transforma�
tions�

� Veri�cation of Properties

In this section we show how di
erent Petri net properties can be veri�ed by
boolean manipulation on the set of reachable markings� From the wide range
of properties that can be veri�ed with this approach we have chosen three of
them as examples� safeness� liveness and persistence� Some properties can be
easily speci�ed with a boolean equation� thus not requiring any traversal to
be veri�ed� Others require partial or complete traversals of the net� However�
symbolic traversing by means of BDDs makes their computation a
ordable even
for large nets�

��� Safeness

The calculation of �m�i by means of constrained image computation is done
under the assumption that the Petri net is safe� This calculation is erroneous if
some of the markings is unsafe �� since unsafe markings are not representable by
encoding each place with one variable of the boolean algebra� A similar reasoning
can be done for k�bounded nets�

According to ����� unsafe markings are removed from the set of reachable
markings� However� detecting if some unsafe marking is reachable from �m�i
can be done by identifying a marking m in which a transition t is enabled� and
some successor place p of t� and not predecessor of t� is already marked� In that
situation� after �ring transition t� place p will have two tokens� Formally�

N is not safe�
�m 	 �m�i� t 	 T� p 	 P � such that

t is enabled in m� p 	 t�� p �	 �t and m�p� � ��

Given the set of reachable markings �m�i� the algorithmdepicted in Fig� � detects
whether a Petri net is safe or not by checking one equation for each transition�

is safe �N � hP�T� F�m�i � �m�i� f
foreach t � T do f

Succ p �
�
Enabled � �m�i � Et�
foreach �pi � t� � pi 	�

�t� do f Succ p � Succ p � pi g
if �Enabled � Succ p 	�
� return false�

g
return true�

g

Fig� �� Algorithm for safeness checking

��� Liveness

A Petri net is said to have a deadlock if there is a marking where no transition
can be �red� A transition is said to be dead �L��live� if it can never be �red

� In this context� unsafe markings are those with more than one token is some place�

in any �ring sequence from m�� A transition that can be �red at least once in
some �ring sequence fromm� is said to be potentially �reable �L��live�� All these
properties can be veri�ed with simple equations�

The set of markings where a deadlock occurs is calculated�

Deadlock � ��m�i �
Y
t�T

E�t� �� �� � ����

The set of markings where a transition is potentially �reable is calculated as�

Fireablet � �m�i �Et � ����

If Fireablet � �� then transition t is L��live� otherwise it is L��live�
To verify if a transition can be �red an in�nite number of times �L��liveness��

or if transition can be �red an in�nite number of times from any reachable mark�
ing of �m�i �L��liveness�� requires more elaborate techniques� Both problems can
be reduced to the calculation of the Strongly Connected Components of �m�i�

De�nition
� A Strongly Connected Component �SCC� U of a directed graph
G � �V�E�� is a maximal set of vertices U � V � such that for every pair of
vertices u and v in U we have both u� v and v � u� that is� vertices u and v
are reachable from each other�

De�nition�� A Strongly Connected Component U of a directed graph G �
�V�E� is terminal �TSCC� if from the vertices in U it is not possible to reach
any vertex in V nU �

A transition t enabled in all the TSCCs markings of the Petri net is L��live�
because from any marking of �m�i we will reach some TSCCi where t can be
�red an in�nite number of times� L��liveness of transition t can be computed as
follows�

t is L��live ��
�
�i

�TSCCi � Et �� �� � ����

If there is some SCCi where transition t is enabled� then t is L��live because
there is at least a �ring sequence from �m�i that leads to TSCCi where t can be
�red an in�nite number of times� L��liveness for transition t can be calculated
as follows�

t is L��live ��
�
�i

�SCCi � Et �� �� � ����

The algorithm to compute the TSCCs and SCCs of �m�i is shown in Fig� ��
First� the Transitive Closure �CT � of the Transition Relation is computed� where
CT �x� y� � � if there is a �ring sequence from x that leads to y �x� y� ��
� The
following steps compute the sets of markings that are in any SCC �InSCC� or
in any TSCC �InTSCC�� Finally� each individual SCC �TSCC� is obtained from
InSCC �InTSCC��

Let TR be the Transition Relation of N �

compute SCC TSCC �N � hP� T�F�m�i � �m�i� f
CT � compute Transitive Closure � TR ��
CY � CT �x� y� �CT �y� x�� CNY � CT �x� y� � CT �y� x�

��
InSCC �
yCY �x�y��
InTSCC � �
yCNY �x� y��

��
SCC����m � extract Strongly Connected Components � InSCC ��
TSCC����m � extract Strongly Connected Components � InTSCC ��

g

Fig� 	� Algorithm to compute the SCC and TSCC sets of �m�i

��� Persistence

A Petri net is said to be persistent if� for any two enabled transitions� the �ring
of one transition will not disable the other�

The algorithm depicted in Fig� � veri�es persistence for a Petri net� For each
transition t�� the set of markings with t� enabled are calculated� Next� the sets
of markings reachable in one step by �ring any transition di
erent from t� are
obtained� If t� is not enabled in any of those markings� then the net is not
persistent�

is persistent �N � hP�T�F�m�i � �m�i� f
foreach t� � T do f

Enabled � �m�i � Et� �
foreach t� � T � t� 	� t� do f

To � ��Enabled� t���
Not enabled � To � E�

t�
�

if �Not enabled 	�
� return false�
g g
return true�

g

Fig�
� Algorithm to verify persistence

�� Extension to k
Bounded Petri Nets

This section presents the modi�cations needed to extend the boolean manipula�
tion techniques to k�bounded Petri nets�

A k�bounded place p 	 P can be represented with a set of boolean variables�
v�� � � � � vq to encode the up�to�k possible number of tokens� The number of re�
quired variables depends on the type of encoding� If an one�hot encoding is used�
k variables are needed� For example� in a ��bounded Petri net the number of to�
kens in place p could be represented by three variables� With a binary encoding

dlog��k � ��e variables would be required �see Tab� ����
The one�hot encoding can be implemented using a transition function simpler

than the binary encoding� however the number of variables� which is a critical

Table �� Encoding of k�bounded places �k �
�

� tokens one�hot encoding binary encoding

 v��v

�

�v
�

� v��v
�

�

	 v��v
�

�v� v��v�

� v��v�v
�

� v�v
�

�

 v�v
�

�v
�

� v�v�

parameter in the e�ciency of BDD algorithms� is larger than for the one�hot
encoding� Comparative studies� analyzing the size of the BDDs and the perfor�
mance of the algorithms� are necessary to decide which is the practical limit for
each type of encoding�

�� Experimental Results

In this section we illustrate the power of using boolean reasoning and BDDs for
the analysis of Petri nets� We have chosen two simple and scalable examples to
show how the approach can generate all the states for fairly large nets� We present
the results corresponding to the calculation of the set of reachable markings�
which dominates the complexity of the analysis� Most properties can then be
veri�ed in a straightforward manner from �m�i� as shown in Sect� ��

���� The Dining Philosophers

The �rst example is the well�known dining philosophers paradigm represented
by the Petri net shown in Fig� �� The net has �n places and �n transitions� n
being the number of philosophers sitting at the table� By successively applying
the reductions depicted in Fig� �� the complexity of the net can be reduced down
to �n places and �n transitions�

F

F

...
...

i

(i+1) mod n

(idle) (eating)

Fig� �� Petri net for a dining philosopher

Table � shows the number of states of the original and the reduced Petri net�
the size of the BDDs representing the reachable markings and the number of
iterations and CPU time spent by the traversal algorithm� CPU times have been
obtained by executing the algorithms on a Sun SPARC �� workstation� with a
��Mbyte main memory�

It is worthwhile to point out how a small BDD ����� nodes � �� Kbyte
memory� can represent the complete set of markings of the Petri net for ��
philosophers ���� � ������ The BDD representing �m�i has been calculated by
using the traversal algorithm presented in Fig� �� The number of executed iter�
ations corresponds to the sequential depth of the reduced net�

Table �� Results for the dining philosophers example

� of states BDD size � of CPU
philos� original reduced orig� red� peak �red�� iters� �secs��

� ���� 	
� 	�
� 	
� ���
�� 	
�� 	� 	�

	� 	�
� 	
�
�
� 	
� ��� ���
�

 �� 	
�
	� ���� 	
�� 	�	� 	
�� ��� ��� ��
�

 �
	
�
 ���� 	
��
��� 	
�� 		�
 ��� �
�� �	 	���

�� 	�
� 	
�� 	�	� 	
�� 	��	 		�� 	
��� �� ��
�
�� ���� 	
��
��� 	
�� 	��� 	
�� 	��
� �� ����

Figure �� depicts the number of states represented by the BDD �Reached�

at each iteration for the reduced net� The slope between iterations �� and ��
illustrates the ability of the approach to process large sets of markings in parallel�
It is important to notice that� although the number of reached states is lower�
the size of the BDD �Reached� at intermediate iterations can be larger than the
�nal BDD� This is a usual phenomenon in the traversal of sequential machines
using BDDs� The peak BDD size achieved during the traversal is also shown in
Tab� �� and the evolution of the BDD size during the traversal is depicted in
Fig� ���

10 20 30 40 50

3e17

2e17

1e17

st

at
es 28

27

Fig� ��� Number of states reached at each iteration

���� Slotted Ring

The second example models a protocol for Local Area Networks called slotted

ring� The Petri net is depicted in Fig� ��� The example is scalable for any number
of nodes in the network� The results corresponding to the traversal of the net
are presented in Tab� ��

10 20 30 40 50

5000

10000

15000

no

de
s

28
24
20
16
12
8

Fig� ��� Size of the BDD �Reached� at each iteration of the traversal

put message in slot

give free slot

int ack

owner

go on

other

write

free i−1

used i−1

ack
i

used i

free i

ack i+1

. . .

. . .

 . . .

 . . .

. . .

. . .

Fig� ��� Slotted ring protocol for one node

�� Conclusions and Future Work

This paper proposes the combination of boolean reasoning and BDD algorithms
to manage the state explosion produced in Petri net analysis� This technique has
been successfully used for the analysis and veri�cation of sequential machines
and synthesis of logic circuits�

It has been shown that BDDs can represent large sets of markings ����� in
the example� with a small number of nodes ������ Once the reachable markings
have been generated� many properties can be veri�ed in a straightforward man�
ner� Therefore� BDDs are proposed as an alternative to the reachability tree�
providing a compact representation of the markings of a bounded net�

Many issues are still under research to increase the applicability of the ap�
proach� The ordering of variables is a topic of major interest that must be studied
in order to reduce even more the size of the BDDs� thus speeding�up BDD op�
erations� As mentioned in Sect� ��� encoding methods for k�bounded nets must
also be explored� The combination of further reduction techniques and analysis
with BDDs is another area for future research� Finally� the representation of
unbounded nets by means of BDDs is a challenge not discarded by the authors
yet�

Table �� Results for the slotted ring example

� of states BDD size � of CPU
nodes original reduced orig� red� peak �red�� iters� �secs��

� ��	� 	
� �� 	�� �� �
 		 	

 ��
� 	
� ��
� 	
� �	
 �	 	�� 	� �

� ���� 	
	 ��	� 	
�
�� 	�	 ��� �� �
� 	��� 	
� ���� 	
	 ��
 ��
 	
��
� ��
�
��� 	
� ���� 	
� ���
		 �	�� �	 	
�

� ��
� 	
� ���� 	
� 	
	� �		 �	�
 �� ��

� 	��� 	
�� ���� 	
� 	

� ��� ���
 �
 	�

�
��� 	
�� ���� 	
� 	�
� ��� 	���� �� �
�

References

	� K� S� Brace� R� L� Rudell� and R� E� Bryant� E�cient implementation of a BDD
package� In Proc� of the ��th DAC� pages �
���� June 	��
�

�� F� M� Brown� Boolean Reasoning� The Logic of Boolean Equations� Kluwer Aca�
demic Publishers� 	��
�

� R� E� Bryant� Graph�based algorithms for boolean function manipulation� IEEE

Transactions on Computers� C�
�����������	� August 	����
�� J� R� Burch� E� M� Clarke� K� L� McMillan� D� L� Dill� and L� J� Hwang� Symbolic

model checking� 	
�� states and beyond� In Proc� of the Fifth Annual Symposium

on Logic in Computer Science� June 	��
�
�� Tam�Anh Chu� Synthesis of Self�timed VLSI Circuits from Graph�theoretic Speci�

�cations� Ph�D� thesis� MIT� June 	����
�� O� Coudert� C� Berthet� and J� C� Madre� Veri�cation of sequential machines us�

ing boolean functional vectors� In L� Claesen� editor� Proc� IFIP International

Workshop on Applied Formal Methods for Correct VLSI Design� pages 			�	���
Leuven� Belgium� November 	����

�� L� Lavagno� K� Keutzer� and A� Sangiovanni�Vincentelli� Algorithms for synthesis
of hazard�free asynchronous circuits� In Proc� of the ��th� DAC� pages

��

��
June 	��	�

�� C� Y� Lee� Binary decision programs� Bell System Technical Journal�
���������
���� July 	����

�� H�T� Liaw and C�S� Lin� On the OBDD representation of generalized boolean
functions� IEEE Transactions on Computers� �	������	����� June 	����

	
� K� L� McMillan� Using Unfoldings to Avoid the State Explosion Problem in Veri��
cation of Asynchronous Circuits� In Proc� of the 	th Workshop on Computer�Aided

Veri�cation� June 	����
		� T� Murata� Petri Nets� Properties� analysis and applications� Proc� of the IEEE�

Vol� ��������	����� April 	����
	�� L� Ya� Rosenblum and A� V� Yakovlev� Signal graphs� From self�timed to timed

ones� In International Workshop on Timed Petri Nets� pages 	����
�� 	����
	
� H� Touati� H� Savoj� B� Lin� R� K� Brayton� and A� Sangiovanni�Vincentelli� Im�

plicit enumeration of �nite state machines using BDD�s� In Proc� of the ICCAD�
pages 	

�	

� November 	��
�

