Petri Net Analysis Using Boolean Manipulation

Enric Pastor, Oriol Roig, Jordi Cortadella, and Rosa M. Badia *

Department of Computer Architecture
Universitat Politécnica de Catalunya
08071 Barcelona, Spain

Abstract. This paper presents a novel analysis approach for bounded
Petri nets. The net behavior is modeled by boolean functions, thus reduc-
ing reasoning about Petri nets to boolean calculation. The state explosion
problem is managed by using Binary Decision Diagrams (BDDs), which
are capable to represent large sets of markings in small data structures.
The ability of Petri nets to model systems, the flexibility and generality
of boolean algebras, and the efficient implementation of BDDs, provide
a general environment to handle a large variety of problems. Examples
are presented that show how all the reachable states (1018) of a Petri
net can be efficiently calculated and represented with a small BDD (103
nodes). Properties requiring an exhaustive analysis of the state space can
be verified in polynomial time in the size of the BDD.

1 Introduction

Petri nets were initially proposed by C.A. Petri in 1962 for describing infor-
mation processing systems, characterized as being concurrent, asynchronous,
distributed, parallel, nondeterministic, and/or stochastic. Many different appli-
cation areas have considered Petri nets for the modeling and analysis of their
systems. Among them, we could mention operating systems, communication
protocols, distributed systems, multiprocessor systems, etc.

Several methods for Petri net analysis have been proposed in the literature.
They can be classified into three categories [11]: the reachability tree method,
the matrix-equation method and reduction or decomposition techniques. While
the first method is only applicable to small nets due to the explosion of the
number of states, the second and third methods are restricted to special classes
of nets.

In this paper, a novel analysis approach applicable to any type of bounded
Petri net is presented. It 1s based on the description of the net behavior by
means of boolean functions, thus reducing reasoning to calculation [2]. Questions
like “is there any marking with a deadlock 27 or “can transilions t1 and t- be
fired concurrently ?” or properties like liveness, safeness and persistence can be
answered and verified by properly manipulating the functions that describe the
system.

* Supported by CYCIT TIC 91-1036 and Dept. d’Ensenyament de la Generalitat de
Catalunya

Pastor, E. [et al.]. Petri net analysis using boolean manipulation. A: "Application and Theory of
Petri Nets 1994, 15th International Conference: Zaragoza, Spain, June 20-24, 1994:
proceedings”. Berlin: Springer, 1994, p. 416-435.

The final authenticated version is available online at https://doi.org/10.1007/3-540-58152-9_23

The exponential complexity involved in the enumeration of the markings of a
net is managed by using Binary Decision Diagrams (BDD) [3]. BDDs have been
widely and successfully used in the areas of logic synthesis and verification of
digital circuits, and their appeal comes from the capability of representing large
sets of coded data with small data structures.

One of the most interesting applications for this novel technique comes from
the area of logic synthesis and verification of asynchronous circuits. Rosenblum
and Yakovlev [12] and Chu [5] proposed the use of Signal Transition Graphs
(STGs) to describe the behavior of asynchronous sequential circuits. An STG is
an interpreted Petri net where transitions correspond to rising or falling tran-
sitions of digital signals. Previous methods based on the explicit enumeration
of the reachable states for logic synthesis [7] suffer the state explosion problem,
due to the arbitrary interleaving of concurrent transitions, while unfolding meth-
ods for verification [10] suffer a lack of flexibility and generality. With boolean
manipulation techniques, both logic synthesis and verification of asynchronous
circuits can be comprised in a unique and fairly general environment, which is
also computationally capable of dealing with large systems, due to the efficient
data representation and manipulation provided by BDDs. Although the main
interest of the authors comes from the area of asynchronous circuits, the under-
lying theory of this technique is applicable to any kind of Petri net. Boundedness
is the only restriction imposed by the approach.

The paper is organized as follows. In Sect. 2 we review the definition and
some basic properties of Petri nets. Section 3 sketches the fundamental concepts
on boolean algebras and algebras of classes. Logic functions, Boole’s expansion
theorem and logic abstractions are presented in Sect. 4. BDDs are described in
Sect. 5. The main result of this paper, the 1somorphism between boolean alge-
bras and bounded Petri nets, is presented in Sect. 6. The reachability analysis
algorithm 1s outlined in Sect. 7, and some reduction techniques to improve the
efficiency of the algorithms are described in Sect. 8. Algorithms for the verifi-
cation of properties such as safeness, liveness, and persistence are presented in
Sect. 9. Section 10 sketches the extension to k-bounded nets. Some experimental
results are analyzed in Sect. 11. Finally, the paper concludes in Sect. 12 with a
discussion of the scope of this paper and future work.

2 Petri Nets: Definitions and Basic Properties

A Petri net [11] is a 4-tuple, N = (P, T, F, mg), where P = {p1,pa2,...,pn} is
a finite set of places, T' = {t1,ta,...,1,n} is a finite set of transitions, satisfying
PNT=0and PUT #0, F C(P xT)U(T x P)is a set of arcs (flow relation),
and mg : P — IN is the initial marking. The symbols *¢, ¢*, *p and p* define,
respectively, the pre-set and post-set of every place p or transition .

A marking of a Petri net 1s an assignment of a nonnegative integer to each
place. If k is assigned to place p, we will say that p is marked with & tokens. The
structure of a Petri net defines a set of firing rules that determine the behavior
of the net. A transition t 1s enabled when each p € *¢ has at least one token.

The Petri net moves from one marking to another by firing one of the enabled
transitions. When a transition ¢ fires, one token is removed from each place p € *t
and one token is added to each place p € t*. If m; and my are markings, we will
denote by mq[t)ms the fact that ms is reached from my after transition ¢ being
fired. A marking m’ is said to be reachable from a marking m if there exists a
sequence of transition firings that transforms m into m’. The set of reachable
markings from m is denoted by [m).

We denote by m(p) the number of tokens in place p for the marking m. Thus,
a marking can be represented by a vector of integers, m = (m(p1), ..., m(pn)).

Definition1. A Petri net N = (P, T, F, mg) is said to be bounded if [mg) is a
finite set.

Definition2. A Petri net N = (P, T, F,mg) is said to be k-bounded if for any
m € [mg) and for any place p € P, m(p) < k.

Definition 3. A Petri net is said to be safe if it i1s 1-bounded.

As starting point, we will restrict the proposed approach to safe Petr: nets.
Extensions to k-bounded nets will be presented in Sect. 10.

3 Boolean Algebras

In this section we briefly sketch some basic theory on boolean algebras. Most of
the fundamental concepts presented here have been extracted from [2].

3.1 Boolean Algebras

A boolean algebra is a quintuple
(Ba+a'a0a1) ; (1)

where B is a set called the carrier, + and - are binary operations on B, and 0 and
1 are elements of B, such that Va, b, ¢ € B the following postulates are satisfied:

. Commutative Laws: a+b=b+a; a-b=0b-a

. Distributive Laws: a4+ (b-¢)=(a+b)-(a+¢); a-(b+e)=(a-b)+(a-¢)
. Identities: a+0=a; a-1=a

. Complement. Va € B, 3a’ € B such that: a+ad' =1; a-a’=0

H O DN —

As it is well known, the system ({0,1},4,-,0,1) , with + and - defined as
the logic OR and logic AND operations respectively, is a boolean algebra (also
known as the switching algebra). From now on, and since we will limit our scope
to logic functions, we will always assume that B = {0,1}.

3.2 Logic Functions and Boolean Algebras of Logic Functions
An n-variable logic function (also called switching function) is a mapping
f:B"—B . (2)
Let F,,(B) be the set of n-variable logic functions on B. Then the system
(Fn(B), +,-,0,1) (3)

is also a boolean algebra, in which + and - signify addition and multiplication of
logic functions, and 0 and 1 signify the zero- and one-functions (f(z1,...,2,) =0
and f(z1,...,2,) = 1). The cardinality of F},(B) (number of different n-variable
logic functions) is 22".

3.3 Algebra of Classes (Subsets of a Set)

The algebra of classes of a set S consists of the set 2° (the set of subsets of S)
and two operations on 2°: U (union) and N (intersection). This algebra satisfies
the postulates for a boolean algebra and the system (2°,U,N, 0, S) is a boolean
algebra.

Next, the Representation Theorem (Stone, 1936) establishes the basis of the
approach presented in this paper:

Theorem 4. Fvery finite boolean algebra is isomorphic to the boolean algebra of
subsets of some finite set S.

Consequently, Stone’s theorem states that reasoning in terms of concepts such
as unton, intersection, empty set, etc ..., in a finite set of elements is isomorphic
to performing logic operations (+, -) with logic functions. Furthermore, from
Stones’s theorem it can be easily deduced that the cardinality of the carrier of
any boolean algebra must be a power of two. In particular, the algebra of classes
of a set S (|S| = 2") is isomorphic to the boolean algebra of n-variable logic
functions.

4 Logic Functions

In this section, we present some fundamental concepts on logic functions used
along the paper.

Given the boolean algebra of n-variable logic functions, we call a vertez each
element of B". The on-set (off-set) of a function f is the set of vertices where the
function evaluates to 1 (0). Each vertex of the on-set is also called a minterm. A
literal 1s either a variable or its complement. A cube ¢ is a set of literals, such that
if a € ¢ then o' & ¢ and vice versa. A cube is interpreted as the boolean product
of 1ts elements. The cubes with n literals are in one-to-one correspondence with
the vertices of B".

4.1 Boole’s Expansion

The functions
fo.o = fler, oo, L agg, o0, 2n) (4)
and

fx/lIf(l‘l,...,ﬁi_l,o,xi+1a""$”) (5)

are called the cofactor of f with respect to #; and z} respectively. The definition
of cofactor can also be extended to cubes. If ¢ = #1¢1, 1 being a literal and ¢;
another cube, then:

Je= (fxl)cl . (6)

Theorem 5 Boole’s expansion. If f : B" — B is a boolean function, for all
(x1,®2,...,2,) € B":

f(xlaxZa“wxn):$i'fx,+$;'fxi .

4.2 Abstractions

Abstractions are of fundamental use in our framework. They have a direct cor-
respondence to the existential and universal quantifiers applied to predicates in
boolean reasoning. The ezistential and universal abstractions of f with respect
to x; are defined as:

Elx,f:fx,‘i'fx’l) Vx,f:fx,'fx’l . (7)
As an example, let us consider the function: f = bc + ab’c’ + a’c . The cofactor
with respect to @ and &’ are: f, = bc+ b'¢’ and f,» = ¢ , and the abstractions

with respect to a are 3 f = fo+ for =V +cand Vof = fo - for = bc . Ao f is
the function that evaluates to 1 for all those values of b and ¢ such that there is
a value of a for which f evaluates to 1. V¥, f is the function that evaluates to 1
for all those values of b and ¢ such that f evaluates to 1 for any value of a.

5 Binary Decision Diagrams

A logic function can be represented in many ways, such as truth tables, Karnaugh
maps or minterm canonical forms. Another form that can be much more compact
is the sum of products, where the logic function is represented by means of an
equation, i.e.,

f=be+abd +dc . (8)

These techniques are inefficient for fairly large functions. However, all these forms
can be canonical [2]. A form is canonical, if the representation of any function
in that form is unique. Canonical forms are useful for verification techniques,
because equivalence test between functions is easily computable.

Recently, Binary Decision Diagrams (BDDs) have emerged as an efficient
canonical form to manipulate large logic functions. The introduction of BDDs is

relatively old [8], but only after the recent work of Bryant [3] they transformed
into a useful tool. For a good review on BDDs we refer to [1, 3, 13].

We will present BDDs by means of an example. Given (8), its BDD is shown
in Fig. 1(a). A BDD is a Directed Acyclic Graph with one root and two leaf
nodes (0 and 1). Each node has two outgoing arcs labeled T (then) and E (else).
To evaluate f for the assignment of variables a = 1, 6 = 0, and ¢ = 1, we only
have to follow the corresponding directed arcs from the root node. The first node
we encounter is labeled with variable a, whose value is 1. Given this assignment,
the T arc must be taken. Next, a node labeled with variable b is found. Since
b = 0 the E arc must be taken now. Finally the T arc for variable ¢ reaches the
0 leave node.

() (b) (©
Fig. 1. BDD example

5.1 Reduced and Ordered BDDs

The representation of a function by means of a BDD is not unique. Figures
1(a), 1(b) and 1(c) depict different BDDs representing (8). The BDD in 1(b)
can be obtained from 1(a) by successively applying reduction rules that eliminate
isomorphic subgraphs from the representation [3]. The BDD in 1(c) has a different
variable ordering.

All BDDs shown in Fig. 1 are ordered BDDs. In an ordered BDD, all vari-
ables appear in the same order along all paths from the root to the leaves. If
a BDD is ordered and reduced (no further reductions can be applied) then we
have a Reduced Ordered BDD (ROBDD). Given a total ordering of variables,
an ROBDD is a canonical form [3]. Figures 1(b) and 1(c) are ROBDDs with
variable ordering a < b < ¢ and ¢ < a < b respectively. The shape and size of an
ROBDD depend on the ordering of its variables.

Some important properties of ROBDDs are:

— The size of the BDD can be exponential in the number of variables [9];
however BDDs are a compact representation for many functions.

— Boolean binary operations can be calculated in polynomial time in the size
of the BDDs.

— Some interesting problems like satisfiability, tautology and complementation
are solved in constant time using BDDs.

Henceforth, we will implicitly assume that BDDs are reduced and ordered.
Note that each BDD node represents at the same time a function whose root
is the node itself. This property allows the implementation of BDD packages
managing all BDDs using the same set of variables in only one multi-rooted

graph [1].

5.2 Boolean Operations with ROBDDs

Let us see, first, how to calculate the BDD for (8) given the ordering a < b < c.
We will use (v, T, E) to denote a node labeled with variable v, and T and E' as
“Then” and “Else” BDDs respectively. Applying Boole’s theorem to expand f
with variable a we have:

f=afa+d fa, 9)
with fo = bc+b0'c’, and f, = c. Expanding variable b in f, and f,: yields to
f=a fa +V far) + a (b far + 0 fasr) (10)
with for = ¢, far = ¢, fars = ¢, and farpr = ¢. Thus the BDD for (8) is
I = (a,(b,c,), (byc,c)) . (11)

Note that the logic functions fup = fars = ¢ and fapr = farpr = ¢’ are isomorphic
and must be represented with the same node if we want to preserve canonicity.

BDDs can be created by combining existing BDDs by means of boolean
operations like AND, OR, and XOR. This approach is implemented using the
if-then-else operator (ITE), defined as follows:

ite(F,G,H)=F -G+ F'-H |, (12)

where F', G, H are logic functions represented by BDDs. The interesting prop-
erty of the ITE operator is that it can directly implement all two-operand logic
functions. For example:

AND(F, @) = ite(F, G,0) , XOR(F,G) = ite(F, G, G) . (13)

Let 7 = ite(F,G, H), and let v be the top variable of ', GG, H. Then the
BDD for 7 is recursively computed as follows [3]:

7 = (v,ite(Fy, Gy, Hy),ite(Fyr, Gy, Hyr)) (14)
where the terminal cases are:
ite(1, F, G) = ite(0, G, F') = ite(F,1,0) = ite(G, F, F) = F . (15)

The code for the ITE algorithm is shown in Fig. 2. Note that the algorithm
keeps the BDD reduced by checking if T" equals £, and checking in a unique-
table if the produced node already exists in the graph. In this way, all isomorphic
subgraphs are always eliminated.

Unless there 1s a terminal case, every call to the procedure generates two
other calls, so the total number of ITE calls would be exponential in the number
of variables. To avoid this exponentiality, ITE uses a table of pre-computed
operations (computed table). The computed table acts as a cache memory, in such
a way that the most recently used results are stored in this table. The effect of
this computed table 1s to cause ITE to be called at most once for each possible
combination of the nodes in F'; (G, H. So the complexity of the algorithm, under
the assumptions of infinite memory and constant access time (hash) tables, is

reduced to O(|F| - |G| - |H|).

ite (F,G,H) {

if (terminal case) return result for terminal case;

else if ({F, G, H} is in computed-table)
return pre-computed result;

else {
let v be the top variable of { F', G, H };
T =ite (Fy,Gy,Hy);
FE = ite (FUI,GUI,HUI);
if T equals £ return T
R = find_or_add_unique_table (v, E);
insert_computed_table ({ F, G, H }, R);

return R;

Fig.2. The ITE algorithm

An important consequence of representing all BDDs in the same graph is
that checking the equivalence between two BDDs can be done in constant time
(two BDDs representing the same function have the same root node). Counting
the number of vertices represented by a BDD can be done in linear time in the
size of the BDD.

6 Modeling Safe Petri Nets with Boolean Algebras

Let N = (P, T, F,mg) be a safe Petri net. A marking in [mg) can be represented
by a set of places m, where p; € m denotes the fact that there is a token in
pi. Therefore, any set of markings in [mg) can be represented by a set M of
subsets of P. Let Mp be the set of all markings of a safe Petri net with |P|
places (|Mp| = 2!F1). The the system

(2Mr u,N, 0, Mp) (16)

is the boolean algebra of sets of markings. This system is isomorphic with the
boolean algebra of n-variable logic functions; where n = |P].

We will indistinctively use p; to denote a place in P, or a variable in the
boolean algebra of n-variable logic functions. Therefore, there is a one-to-one
correspondence between markings of Mp and vertices of B". A marking m € Mp
is represented by means of an encoding function that provides a binary mapping

from Mp into B", that is, £ : Mp — B", where the image of a markingm € Mp

is encoded into an element (py,...,p,) € B", such that:
[lifpem
pl_{OifpiQm. (17)

As an example, both the vertex (1,0, 1,0) € B* and the cube p; phpsp), represent
the marking in which p; and ps are marked and ps and p4 are not marked.

6.1 Characteristic Functions and Binary Relations

The characteristic function xy of a set of vertices V' C B” is defined as the logic
function that evaluates to 1 for those vertices of B" that are in V, i.e.,

YVoeB" JveV e xpv)=1. (18)

Extending the use of the encoding function &, each set of markings M € 2Mr
has a corresponding characteristic function x§; : B* — B, that evaluates to 1
for those vertices that correspond to markings belonging to M. The image of
M C 2MP according to & is the set V C B”, defined by:

V={&m):meMp} . (19)

From now on, given the encoding function &£, we will define the characteristic
function of M as the characteristic function of the set V| that is; y3r = xv. For
example, given the Petri net depicted in Fig. 3(a), the characteristic function of
the set M = {{p2,ps}, {p2, p3,ps}, {P1, P2, Ps}, {P1, P2, p3, ps}, {p1, P2, P3, Pa, s})
is calculated as the disjunction of each boolean code £(m), m € M. The resulting
function xpr = p1papsps + p2phps , represents the set of markings in which py,
pa, ps, and ps are marked or p, and ps are marked and p4 is not marked.

{p1,p3}
t1
{p2,p3}

2
{p1,p5} {p3.p4}
N

{p2,p5}
(b)

Fig. 3. (a)Petri net, (b)reachable markings

Hence and for sake of simplicity we will indistinctively use M and yas to
denote the characteristic function of the set of safe markings M.

All set manipulations can by applied directly to the characteristic functions.
For example, given the sets of safe markings M, My € Mp:

XMUM, = XMy + XM, 5 XMiaM, = XMy XM, 5 X371, = Xan, - Xmp - (20)

When implemented with BDDs, characteristic functions provide, in general, com-
pact and efficient representations.

Characteristic functions can also be used to represent binary relations, that
1s, subsets of a cartesian product between two sets. To represent the binary
relation R C M; x My, it is necessary to use different sets of variables to identify
the elements of M; and M>. Given the binary relation R between sets M; and
Ms, the elements of M, that are in relation with some element of M,, are the
set:

V:{m1€M1 :ElmQEMz,(ml,mz)ER} , (21)

and using the characteristic function of R, the characteristic function of V is
computed by:

xvi(er, .., @n) =Ty, gl XR(Z1, o T, Y1, Yn) (22)

6.2 Transition Firing
We define the transition function of a Petri net as a function
§:2Me o - oMe (23)

that transforms, for each transition, a set of markings M; into a new set of
markings Ms as follows:

(S(Ml,t):MZ:{mz € Mp :Amy € My, ml[t)mz} . (24)

This concept is equivalent to the one-step reachability in Petri nets.
Equation (23) can be generalized to be the transition function of a Petri net:
A oMe _ oMe (25)
where all the transitions are processed in the same function. A transforms a set

of markings M; into the set of markings M, that can be reached from M; in
one step (one transition firing). Equation (25) can be obtained by computing:

AM)= | 6,1y . (26)

Note that (25) calculates the image of several markings simultaneously. Us-
ing the terminology for verification of sequential machines [6], A performs the
constrained image computation of the net.

There are three different techniques to implement the constrained image com-
putation for transitions using BDDs: by topological image computation, by the
transition function & and by the transition relation associated to 6. In the re-
mainder of this section we will study the topological image computation. We
refer the reader to [6] for the other techniques.

6.3 Topological Image Computation

Constrained tmage computation for transitions can be efficiently implemented by
using the topological information of the Petri net and the characteristic function
of sets of markings. First of all, we will present the characteristic function of
some important sets related to a transition ¢ € 7"

E, = H i (t enabled),

pi€*t

NPM; = H Pl (no predecessor of ¢ is marked),
pi€®t

ASM; = H i (all successors of ¢ are marked),

pi€t®

NSM; = H 4 (no successor of ¢ is marked).
pi€t®

Given these characteristic functions, the constrained image computation for
transitions is reduced to calculate:

§(M,t) = (Mg, - NPMy) gy - ASM; . (27)

We will show with an example how this formula “simulates” transition firing. In
the example of Fig. 3(a), given the set of markings

M = p1phpspyps + Dy p2pspiyps + pipapspips (28)
we will calculate M' = §(M,¢;). First, Mg, (the cofactor of M with respect

to By, = p1) selects those markings in which ¢; is enabled and removes its
predecessor places from the characteristic function:
Mg, = phpspaps + phpspips - (29)
Then the product with NPM,;, = p/| simulates the elimination of the tokens in
the predecessor places:
Mg, -NPMy, = piphpspyps + pipapsrsps - (30)

Next, taking the cofactor with respect to NSM;, = p, removes all successor
places from the characteristic function:
(M, - NPM;) (MEH 'NPMtl)NSM = phpsphps +Pipsrhps - (31)
t1
Finally, the product with ASM;, = p» adds a token in all the successor places
of t;:
M’ = pyp2pspyps + P p2papsps - (32)
Note that (23) is correctly defined only for safe Petri nets. However, safeness
can be also verified by using é, as it will be shown in Sect. 9.

traverse_Petri_net (N = (P, T, F,mg)) {
/* Let A be the transition function of N */
Reached = From = {mq};
repeat {
To = A(From);
New = To — Reached,
From = New;
Reached = Reached U New;
} until (New = 0);

return Reached; /* The set of all reached markings from mo */

Fig. 4. Algorithm for symbolic traversal

7 Net Traversal and Reachable Markings

Once the constrained image computation has been defined, the set [mg) can be
calculated by symbolic traversal. We will use an approach similar to symbolic
breadth-first traversal for Finite State Machines [6]. This method allows to pro-
cess several markings simultaneously by using their characteristic function and
the constrained image computation.

The algorithm presented in Fig. 4 traverses the Petri net and calculates [mg).
The union and difference of sets are performed by manipulating their character-
istic functions.

Each iteration of the traversal obtains all the markings reachable from the set
“From” in one step. Only those markings that are “New” in the set of reachable
markings are considered for the next iteration. The algorithm iterates until no
new markings are generated. The number of iterations performed by the algo-
rithm is determined by the maximum number of firings from the initial marking
to the first occurrence of any of the reachable markings, and its called the se-
quential depth of the Petri net.

The final set of reachable markings are shown in Fig. 3(b), where the nodes
represent markings and the edges the firing transitions. Note that the sequential
depth of this Petri net is four.

8 Petri Net Reductions

Petri nets can be reduced to simpler ones by using transformation rules that
preserve the properties of the system being modeled. By using these rules, the
complexity inherent to the reachability analysis can be effectively reduced.

In [11], a set of six transformations that preserve the properties of liveness,
safeness, and boundedness were proposed. Here we illustrate how these trans-
formations can be used to simplify the breadth-first traversal analysis. Fig. 5
depicts the set of transformations actually used.

pl

p2

:
3

(e) (e)

éépl2
t

e

:
Ve

:
A

(a)

- %:é 12 tl
t2
(b)

Fig. 5. Transformations preserving liveness, safeness and boundedness

(d) (£)

The original Petri net N is reduced into a new net N’ by applying these
transformations. Then, the reachability analysis technique presented in Sect. 7
can be used more efficiently with N’ due to the reduction in both, the number
of places and the sequential depth of the net. Given the set of reachable mark-
ings [my) of N/, the set of reachable markings [mg) of the original net N is
derived using an inverted transformation on [my). The inverted transformations
are shown in Tab. 1.

Table 1. Petri net reductions and their inverse transformations

||F0rward Transformations | Backward Transformations ||
(a) series places fusion R=Ry, (p ®p2) + R;IH ~(piph)
(b) series transitions fusion |R = R]—ﬂtm (B, Ew,) + R]—ﬂ;m - (Ef, - Ee,)
(c) parallel places fusion R=R,,, (mp2)+ R;QQ - (pip3)
(d) parallel transitions fusion R=FR
(e) self-loop place R=Rp
(f) self-loop transition R=FR

For example, Fig. 5(a) depicts how a net can be transformed into another
by fusing places p; and p; into place pi. If R’ is the set of reachable markings
of the resulting net, the set of markings in the original net can be derived as
follows:

R=Ry, - (p1®p2)+ Ry - (pip3) (33)

denoting that a token in py2 implies that either p; or (exclusive or) ps were
marked and no token in pis implies that neither p; nor p, were marked in the
original net. Similar substitutions can be applied for other types of transforma-
tions.

9 Verification of Properties

In this section we show how different Petri net properties can be verified by
boolean manipulation on the set of reachable markings. From the wide range
of properties that can be verified with this approach we have chosen three of
them as examples: safeness, liveness and persistence. Some properties can be
easily specified with a boolean equation, thus not requiring any traversal to
be verified. Others require partial or complete traversals of the net. However,
symbolic traversing by means of BDDs makes their computation affordable even
for large nets.

9.1 Safeness

The calculation of [mg) by means of constrained image computation is done
under the assumption that the Petri net is safe. This calculation is erroneous if
some of the markings is unsafe ?, since unsafe markings are not representable by
encoding each place with one variable of the boolean algebra. A similar reasoning
can be done for k-bounded nets.

According to (27), unsafe markings are removed from the set of reachable
markings. However, detecting if some unsafe marking is reachable from [mg)
can be done by identifying a marking m in which a transition ¢ is enabled, and
some successor place p of ¢, and not predecessor of £, is already marked. In that
situation, after firing transition ¢, place p will have two tokens. Formally:

N is not safe < 3(m € [mg),t € T, p € P) such that
t is enabled in m, p €%, p &€ *t and m(p) = 1.

Given the set of reachable markings [mg), the algorithm depicted in Fig. 6 detects
whether a Petri net is safe or not by checking one equation for each transition.

is_safe (N = (P, T, F,mq) , [mo)) {
foreach ¢ € T do {
Suce_p = 0;
Enabled = [mo) - Ey;
foreach (p; € t* Ap; & *t) do { Succ_p = Succp +pi }
if (Enabled - Succ_p # 0) return false;
}

return true;

Fig. 6. Algorithm for safeness checking

9.2 Liveness

A Petri net is said to have a deadlock if there is a marking where no transition
can be fired. A transition is said to be dead (LO-live) if it can never be fired

2 In this context, unsafe markings are those with more than one token is some place.

in any firing sequence from mg. A transition that can be fired at least once in
some firing sequence from myg is said to be potentially fireable (L1-live). All these
properties can be verified with simple equations.

The set of markings where a deadlock occurs is calculated:

Deadlock = ([mo) - H E}) #0) . (34)

teT

The set of markings where a transition is potentially fireable is calculated as:
Fireable; = [mg) - E¢ . (35)

If Fireable; = 0, then transition ¢ is L0-live, otherwise it is L1-live.

To verify if a transition can be fired an infinite number of times (L3-liveness),
or if transition can be fired an infinite number of times from any reachable mark-
ing of [mg) (L4-liveness), requires more elaborate techniques. Both problems can
be reduced to the calculation of the Strongly Connected Components of [myg).

Definition 6. A Strongly Connected Component (SCC) U of a directed graph
G = (V, E), is a maximal set of vertices U C V, such that for every pair of
vertices u and v in U we have both u ~+ v and v ~ u; that 1s, vertices u and v
are reachable from each other.

Definition7. A Strongly Connected Component U of a directed graph G =
(V, E) is terminal (TSCC) if from the vertices in U it is not possible to reach
any vertex in V\U.

A transition ¢ enabled in all the TSCCs markings of the Petri net is L4-live,
because from any marking of [mg) we will reach some TSCC; where ¢ can be
fired an infinite number of times. L4-liveness of transition ¢ can be computed as
follows:

tis La-live < A(TSCC;-E, #0) . (36)
vi

If there is some SCC; where transition ¢ is enabled, then ¢ is L3-live because
there is at least a firing sequence from [mg) that leads to TSCC; where ¢ can be
fired an infinite number of times. L3-liveness for transition ¢ can be calculated
as follows:

tis L3-live <= \/(SCC; - E, £0) . (37)
Vi

The algorithm to compute the TSCCs and SCCs of [mg) is shown in Fig. 7.
First, the Transitive Closure (Cr) of the Transition Relation is computed, where
Cr(z,y) = 1 if there is a firing sequence from x that leads to y (# ~ y) [4]. The
following steps compute the sets of markings that are in any SCC (InSCC) or
in any TSCC (InTSCC). Finally, each individual SCC (TSCC) is obtained from
InSCC (InTSCC).

Let Tr be the Transition Relation of N.

compute SCC_TSCC (N = (P, T, F, mg) , [mo)) {
Cr = compute_Transitive_Closure (Tr);
Cy = Cr(z,y) - Cr(y,z); Cny = Cr(z,y) - Cr(y,)
InSCC = 3,Cy(z,y);
InTSCC = (3,Cnv (z,¥));
SCC1. .m = extract_Strongly_Connected_Components (InSCC);
TSCCy .. m = extract_Strongly_Connected_Components (InTSCC);

Fig. 7. Algorithm to compute the SCC and TSCC sets of [mo)

9.3 Persistence

A Petri net is said to be persistent if, for any two enabled transitions, the firing
of one transition will not disable the other.

The algorithm depicted in Fig. 8 verifies persistence for a Petri net. For each
transition 1, the set of markings with ¢; enabled are calculated. Next, the sets
of markings reachable in one step by firing any transition different from ¢; are
obtained. If #; is not enabled in any of those markings, then the net is not
persistent.

is_persistent (N = (P, T, F, mq) , [mo)) {
foreach ¢, € T do {
Enabled = [mg) - Ey,;
foreach &> € T, 12 # t1 do {
To = §(Enabled, t2);
Not_enabled = To - Ei ;
if (Not_enabled # 0) return false;

bl

return true;

Fig. 8. Algorithm to verify persistence

10 Extension to k-Bounded Petri Nets

This section presents the modifications needed to extend the boolean manipula-
tion techniques to k-bounded Petri nets.

A k-bounded place p € P can be represented with a set of boolean variables,
V1,...,v to encode the up-to-k possible number of tokens. The number of re-
quired variables depends on the type of encoding. If an one-hot encoding is used,
k variables are needed. For example, in a 3-bounded Petri net the number of to-
kens in place p could be represented by three variables. With a binary encoding
[log,(k + 1)] variables would be required (see Tab. 10).

The one-hot encoding can be implemented using a transition function simpler
than the binary encoding, however the number of variables, which is a critical

Table 2. Encoding of k-bounded places (k = 3)

tokens|one-hot encoding|binary encoding
0 vivlv] vhv]
t o '
1 V3 Vs U1 VU1
' ' '
2 V3U207 V2V
3 vavhv] V201

parameter in the efficiency of BDD algorithms, is larger than for the one-hot
encoding. Comparative studies, analyzing the size of the BDDs and the perfor-
mance of the algorithms, are necessary to decide which is the practical limit for
each type of encoding.

11 Experimental Results

In this section we illustrate the power of using boolean reasoning and BDDs for
the analysis of Petri nets. We have chosen two simple and scalable examples to
show how the approach can generate all the states for fairly large nets. We present
the results corresponding to the calculation of the set of reachable markings,
which dominates the complexity of the analysis. Most properties can then be
verified in a straightforward manner from [mg), as shown in Sect. 9.

11.1 The Dining Philosophers

The first example is the well-known dining philosophers paradigm represented
by the Petri net shown in Fig. 9. The net has 7n places and 5n transitions, n
being the number of philosophers sitting at the table. By successively applying
the reductions depicted in Fig. 5, the complexity of the net can be reduced down
to 6n places and 4n transitions.

©
Fi

O—|—0O
(id(lg) / l \ (eating)

—| |=~o—|
\O —>|—>O/

F(i+1) mod n

@®

Fig.9. Petri net for a dining philosopher

Table 3 shows the number of states of the original and the reduced Petri net,
the size of the BDDs representing the reachable markings and the number of
iterations and CPU time spent by the traversal algorithm. CPU times have been
obtained by executing the algorithms on a Sun SPARC 10 workstation, with a
64Mbyte main memory.

It is worthwhile to point out how a small BDD (1347 nodes = 21 Kbyte
memory) can represent the complete set of markings of the Petri net for 28
philosophers (4.8 x 10'®). The BDD representing [mg) has been calculated by
using the traversal algorithm presented in Fig. 4. The number of executed iter-
ations corresponds to the sequential depth of the reduced net.

Table 3. Results for the dining philosophers example

of states BDD size # of| CPU
philos.| original | reduced |orig.|red. |peak (red.)liters.|(secs.)

8 [2.2x10°[1.0 x 10° [429 [347 1354 17 | 15

12 [1.0x10%(3.3x107 [677 | 547 3230 25 | 137
16 4.7 x 10%°]1.1 x 101°] 925 | 747 5906 33 | 731
20 [2.2 x 107%[3.5 x 10%2[1173] 947 9382 41 | 1952
24 1.0 x 107%]1.1 x 10%° (1421|1147 13658 49 | 4208
28 [4.8 x 10%[3.6 x 10%7[1669[1347| 18734 57 | 8274

Figure 10 depicts the number of states represented by the BDD “Reached”
at each iteration for the reduced net. The slope between iterations 27 and 43
illustrates the ability of the approach to process large sets of markings in parallel.
It is important to notice that, although the number of reached states is lower,
the size of the BDD “Reached” at intermediate iterations can be larger than the
final BDD. This is a usual phenomenon in the traversal of sequential machines
using BDDs. The peak BDD size achieved during the traversal is also shown in
Tab. 3, and the evolution of the BDD size during the traversal is depicted in
Fig. 11.

3e17 —
g 2e17 ~ - 28
1] —— 27
H*

1el7 H

10 20 30 40 50
Fig.10. Number of states reached at each iteration

11.2 Slotted Ring

The second example models a protocol for Local Area Networks called slotted
ring. The Petri net is depicted in Fig. 12. The example 1s scalable for any number
of nodes in the network. The results corresponding to the traversal of the net
are presented in Tab. 4.

nodes

10 20 30 40 50

Fig. 11. Size of the BDD “Reached” at each iteration of the traversal

- free; O— givefreedot —=©—> freej - -
| /N /N
. acki @) O=—intack =—=O @ = ack 1
N/ N/
. ujed i-1 put message in slot —O— used it
O other @)

Fig. 12. Slotted ring protocol for one node

12 Conclusions and Future Work

This paper proposes the combination of boolean reasoning and BDD algorithms
to manage the state explosion produced in Petri net analysis. This technique has
been successfully used for the analysis and verification of sequential machines
and synthesis of logic circuits.

It has been shown that BDDs can represent large sets of markings (10*® in
the example) with a small number of nodes (10%). Once the reachable markings
have been generated, many properties can be verified in a straightforward man-
ner. Therefore, BDDs are proposed as an alternative to the reachability tree,
providing a compact representation of the markings of a bounded net.

Many issues are still under research to increase the applicability of the ap-
proach. The ordering of variables is a topic of major interest that must be studied
in order to reduce even more the size of the BDDs, thus speeding-up BDD op-
erations. As mentioned in Sect. 10, encoding methods for k-bounded nets must
also be explored. The combination of further reduction techniques and analysis
with BDDs 1s another area for future research. Finally, the representation of
unbounded nets by means of BDDs is a challenge not discarded by the authors
yet.

Table 4. Results for the slotted ring example

of states BDD size # of| CPU
nodes| original | reduced |orig.|red.|peak (red.)liters.|(secs.)
2 [2.1 x 102 52 158 | 56 70 11 1
3 [4.0x 10°[5.0 x 10%] 210 | 91 177 19 2
4 [8.2x10%[5.1 x 10°] 356 [151 488 28 7
5 [1.7 x 10% (5.4 x 10*| 540 [223 1024 39 | 27
6 [3.7x107 (5.8 x 10°| 758 [311| 2156 51 | 105
7 18.0x10%(6.2 x 10%[1014[411] 4150 65 | 453
8 [1.7 x 10%°[6.8 x 107[1304|527| 7280 80 | 1600
9 (3.8 x 1011[7.5 x 10%]1632[655| 12259 97 | 4080

References

1.

2.

10.

11.

12.

13.

K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient implementation of a BDD
package. In Proc. of the 27th DAC, pages 40—45, June 1990.

F. M. Brown. Boolean Reasoning: The Logic of Boolean Equations. Kluwer Aca-
demic Publishers, 1990.

R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEFE
Transactions on Computers, C-35(8):677-691, August 1986.

. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill; and L. J. Hwang. Symbolic

model checking: 10?° states and beyond. In Proc. of the Fifth Annual Symposium
on Logic in Computer Science, June 1990.

Tam-Anh Chu. Synthesis of Self-timed VLSI Circuits from Graph-theoretic Speci-
fications. Ph.D. thesis, MIT, June 1987.

. O. Coudert, C. Berthet, and J. C. Madre. Verification of sequential machines us-

ing boolean functional vectors. In L. Claesen, editor, Proc. IFIP International
Workshop on Applied Formal Methods for Correct VLSI Design, pages 111-128,
Leuven, Belgium, November 1989.

L. Lavagno, K. Keutzer, and A. Sangiovanni-Vincentelli. Algorithms for synthesis
of hazard-free asynchronous circuits. In Proc. of the 28th. DAC, pages 302-308,
June 1991.

. C. Y. Lee. Binary decision programs. Bell System Technical Journal, 38(4):985-

999, July 1959.

. H-T. Liaw and C-S. Lin. On the OBDD representation of generalized boolean

functions. IEEE Transactions on Computers, 41(6):661-664, June 1992.

K. L. McMillan. Using Unfoldings to Avoid the State Explosion Problem in Verifi-
cation of Asynchronous Circuits. In Proc. of the 4th Workshop on Computer-Aided
Verification, June 1992.

T. Murata. Petri Nets: Properties, analysis and applications. Proc. of the IEFFE,
Vol. 77(4):541-574, April 1989.

L. Ya. Rosenblum and A. V. Yakovlev. Signal graphs: From self-timed to timed
ones. In International Workshop on Timed Petri Nets, pages 199-206, 1985.

H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-Vincentelli. Im-
plicit enumeration of finite state machines using BDD’s. In Proc. of the ICCAD,
pages 130-133, November 1990.

