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Abstract. In the last few years, the semantics of Petri nets has been in-
vestigated in several different ways. Apart from the classical “token game”,
one can model the behaviour of Petri nets via non-sequential processes, via
unfolding constructions, which provide formal relationships between nets
and domains, and via algebraic models, which view Petri nets as essentially
algebraic theories whose models are monoidal categories.

In this paper we show that these three points of view can be reconciled.
More precisely, we introduce the new notion of decorated processes of Petri
nets and we show that they induce on nets the same semantics as that of
unfolding. In addition, we prove that the decorated processes of a net N

can be axiomatized as the arrows of a symmetric monoidal category which,
therefore, provides the aforesaid unification.

Introduction

Petri nets, introduced by C.A. Petri in [18] (see also [21]), are a widely used
model of concurrency. This model is attractive from a theoretical point of view
because of its simplicity and because of its intrinsically concurrent nature, and
has often been used as a semantic basis on which to interpret concurrent lan-
guages (see e.g. [27, 17, 26, 5]). Concerning Petri nets themselves, several differ-
ent semantics have been proposed in the literature. Most of them can be coarsely
classified as process-oriented semantics, unfolding semantics, or algebraic seman-
tics, though the latter is not as clearly delimited and is not as widely known as
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the former two classes. Of course, such classes are not at all incomparable, as
this paper aims to support. We further discuss these approaches below.

To account for computations involving many different transitions and for
the causal connections between the “events” which constitute them, the basic
notion of computation of Petri nets has been formalized using various notions of
process [20, 8, 2]. The main criticism raised against process models is that they
do not provide a semantics for a net as a whole, but specify only the meaning
of single, deterministic computations, while the accurate description of the fine
interplay between concurrency and nondeterminism is one of the most valuable
features of nets.

Other semantic investigations have capitalized on the algebraic structure of
Place/Transition (PT) nets, first noticed by Reisig [21] and later exploited by
Winskel [29]. The clear advantage of these approaches resides in the fact that
they tend to clarify both the structure of the single PT net, so giving insights
about their essential properties, and the global structure of the class of all nets.
They provide, for example, useful combinators able to describe operations such
as parallel and nondeterministic composition of nets [28, 29, 11, 3, 4, 13].

The formal framework which has proved superior for this kind of investiga-
tions is category theory. The discovery of categories, occurred in the context
of algebraic topology in the early forties, emphasized the by now well estab-
lished conviction that mathematical entities are to be studied in terms of their
structure, i.e, in terms of the abstract properties that they enjoy, rather than
in terms of their actual elements. Indeed, the theory of categories builds on
such conceptual guidelines introducing a new idea: the entities we intend to
investigate can be equipped with a notion of morphism by means of which all
their relevant structural properties can be expressed. (Of course, the actual
meanings of “morphism” and “structure” depend on the specific nature of the
subject one is considering.) This paradigm is clearly well suited for the study
of models of computation, where the entities one considers, i.e., system or be-
haviour descriptions of some kind, come naturally with an associated notion of
“morphism”, e.g., simulations, bisimulations, or similar behavior-based relation-
ships, which encapsulates their real essence. This is in fact also the case of Petri
nets whose very structure suggests a notion of morphism which captures the
intuitive idea of simulation and, therefore, the idea of behaviour itself. Then,
with this understanding of the role of category theory, founding an algebraic
theory of Petri nets on categories simply means considering an abstract frame-
work in which behaviour is a “first class citizen”. One of the first direct benefits
of the use of a categorical framework is that, as a generalization of universal
algebra, it provides universal constructions which can give fully satisfactory jus-
tifications to otherwise ad hoc defined combinators. For example, the parallel
and non deterministic compositions of nets discussed above can be understood,
respectively, as products and coproducts in the category of nets. An original
interpretation of the algebraic structure of PT nets has been proposed in [11],
where the theory of monoidal categories is exploited to the purpose. Unlike
the preceding approaches, [11] yields an algebraic theory of Petri nets in which
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notions such as firing sequence, case graph, relationships between net descrip-
tions at different levels of abstraction, duality, and invariants find adequate al-
gebraic/categorical (universal) formulations. Alternative interesting categorical
approaches are [3, 4].

In addition to that, since from the formal viewpoint categories are simply
algebraic graphs, and in particular graphs whose arcs are closed under an op-
eration of sequential composition, it is often the case that the computations of
a single behavioural entity, say a Petri net, can be modelled themselves as a
category, yielding in this way an axiomatization of its space of computations.
One may call this use of categories “in the small”, as opposed to their use “in
the large” to study the global properties of the entire class of nets as illustrated
above. This idea has been exploited in [6], where it is shown that the com-
mutative processes [2] of a net N are isomorphic to the arrows of a symmetric
monoidal category T [N ]. Moreover, [6] introduced the concatenable processes
of N—a slight variation of Goltz-Reisig processes [8]—and structured them as
the arrows of the symmetric monoidal category P [N ]. In particular, the dis-
tributivity of tensor product and arrow composition in monoidal categories is
shown to capture the basic identifications of net computations, thus providing a
model of computation for Petri nets.

Roughly speaking the unfolding semantics consists, as the name indicates,
in “unfolding” a net to simple denotational structures such that the identity of
every event in their computations is unambiguous. However, not every assign-
ment of denotations yields an appropriate semantics for nets. In other words,
when defining an unfolding semantics, an integral part of the work is to provide
some justification of adequacy of the obtained semantics. Exploiting the cat-
egorical framework, it is possible to achieve such a justification implicitly and
more satisfactorily than appealing to mere intuition. The idea is to ensure that
the denotation assigned to each net enjoys a certain universal property whose
role is exactly to guarantee that, for the given target category, the assignment
is, informally speaking, “as good as possible”. The theory of categories provides
the right notion to express this: the notion of adjunction. Thus, one would like
to identify an adjoint functor assigning a denotation to each PT net and pre-
serving certain compositional properties in the assignment. This is exactly what
the present authors—building on Winskel’s work on safe nets [28]—have done
in [12, 13] for PT nets (see [7, 9] for related approaches).

In Winskel’s work—which in turn builds on the previous work [15]—the de-
notation of a safe net is a coherent finitary prime algebraic Scott domain [25],
or dI-domain [1]. Winskel shows that there exists a coreflection—a particularly
nice form of adjunction—between the category Dom of (coherent) finitary prime
algebraic domains and the category Safe of safe Petri nets. This coreflection
factorizes through the chain of coreflections

Safe Occ PES Dom

U [ ] ///Ooo
E[ ] //

N [ ]
oo

L[ ] //

Pr[ ]
oo

18



where PES is the category of prime event structures (with binary conflict rela-
tion), which is equivalent to Dom, Occ is the category of occurrence nets [28]
and ←֓ is the inclusion functor. In [12, 13], such a chain has been extended
to a quite general category PTNets of PT nets by defining the unfoldings of
PT nets and relating them by means of an adjunction to occurrence nets and
therefore—exploiting the already existing adjunctions—to prime event struc-
tures and finitary prime algebraic domains. Namely, the adjunction between
Dom and PTNets is the composition of the chain of adjunctions

PTNets DecOcc

Occ PES Dom

U [ ] //

( )+
oo

F [ ]

��
D[ ]

OO

E[ ] //

N [ ]
oo

L[ ] //

Pr[ ]
oo

where DecOcc is the “key” category of decorated occurrence nets. These are
occurrence nets in which places belonging to the post-set of the same transition
are partitioned into families. In this way, since families are used to relate places
corresponding in the unfolding to multiple instances of the same place in the
original net, they naturally represent the unfoldings of PT nets and can account
for the multiplicities of places in transitions.

We have already mentioned that these three views of net semantics are not
mutually exclusive and, in fact, we have discussed how [6] provides a unification
of the process-oriented and algebraic views via the categories T [N ] and P [N ]
modelling, respectively, commutative and concatenable processes. Concerning
the relationships between process and unfolding semantics, in the case of safe
nets the question is easily answered by exploiting the existence of a coreflection
of Occ into Safe, which directly implies the existence of an isomorphism between
the processes of N and the deterministic finite subnets of U [N ], i.e., the finite
configurations of EU [N ]. Thus, in this case, the process and unfolding semantics
coincide, although it should not be forgotten that the latter has the great merit
of collecting together all the processes of N as a whole, thus accounting at the
same time for concurrency and nondeterminism.

In this paper we study the relationships between the algebraic paradigm,
the process semantics described above, and the unfolding semantics for PT nets
given in [12, 13]. We find that, in the context of general PT nets, the latter
two notions do not coincide. In particular, the unfolding of a net N contains
information strictly more concrete than the collection of the processes of N .
However, we show that the difference between the two semantics can be axioma-
tized quite simply. In particular, we introduce a new notion of processes, whose
definition is suggested by the idea of families in decorated occurrence nets, and
which are therefore called decorated processes, and we show that they capture
the unfolding semantics, in the precise sense that there is a one-to-one trans-
lation between decorated processes of N and finite configurations of EFU [N ].
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Then, following the approach of [6], we axiomatize the notion of decorated (con-
catenable) process in terms of monoidal categories. More precisely, we define
an abstract symmetric monoidal category DP [N ] and we show that its arrows
represent decorated concatenable processes.

The natural environment for the development of a theory of net processes
based on monoidal categories is, as illustrated in [6], a category Petri of unmarked
nets, i.e., nets without initial markings, whose transitions have finite pre- and
post-sets. However, since the unfolding of a net is considered with respect to
an initial marking, PTNets and all the categories of nets considered in [12] (and
in related works) are categories of marked nets whose transitions, because of
technical reasons, are forced to have possibly infinite pre- and post-sets and
nonempty pre-sets. In order to solve this discrepancy, we simply restrict our
attention to the subcategory of PTNets, say MPetri

∗, consisting of the nets
whose transitions have finite pre- and post-sets, i.e., the nets with nonempty pre-
sets in Petri equipped with an additional initial marking. Therefore, summing
up, our result is that the following diagram commutes up to isomorphism

MPetri
∗

MSMonCat

PreOrd

PTNets DecOcc Occ PES

DP∗[ ] //oO
��

〈 ↓ 〉
PPPPPPPPP ''

U [ ]
//

F [ ]
//

E[ ]
//

LF [ ]nnnnnnnnnn77

where →֒ is the inclusion of MPetri
∗ in PTNets, MSMonCat is the category

of the “marked” symmetric strict monoidal categories, i.e., symmetric strict
monoidal categories C with a distinguished object c ∈ C, DP∗[ ] maps the
marked net (N, uN ) to (uN ,DP[N ]), PreOrd is the category of preorders, 〈 ↓ 〉 is
the comma category functor (c, C) 7→ 〈c↓C〉 (see Definition 3.11), and LF returns
the finite configurations of prime event structures ordered by inclusion. It should
be stressed that our concern here is at the level of a single net, which means that
the diagram above is defined only at the object level, i.e., the correspondence
we establish is not functorial. Nevertheless, we think that this is an interesting
result, since it provides a natural and unified account of the algebraic, the process-
oriented, and the denotational views of net semantics. We remark that a similar
approach has been followed in [16] in the case of elementary net systems—a
particular class of safe nets without self-looping transitions—for unfoldings and
non-sequential processes.

To conclude this discussion, we would like to mention that the correspon-
dence of semantics presented here can be lifted smoothly to infinite computations.
In [24], the present authors show that the symmetric monoidal category P [N ]ω

obtained as the completion of P [N ] by colimits of ω-diagrams can be under-
stood as the category of possibly infinite concatenable processes of N . Working
analogously, one can see that the arrows of the symmetric strict monoidal cate-
gory DP [N ]ω are possibly infinite decorated concatenable processes. Then, one
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can prove the commutativity (up to equivalence) of a diagram analogous to the
one above involving all the configurations of EFU [N ] and the comma category
〈uN↓DP[N ]ω〉. Unfortunately, due to lack of space, we shall not say more about
this extension here. The details of this construction can be found in [22].

Concerning the organization of the paper, in Section 1 we recall the ba-
sic facts about the algebraic approach to Petri nets as given in [11] and [6].
Then, in Section 2 we give a brief overview of the formal development concern-
ing the unfolding semantics introduced in [12]. In Section 3 we introduce the
decorated processes and we illustrate their relationships with the unfolding se-
mantics. Finally, we study the decorated concatenable processes of N and their
axiomatization as the arrows of the symmetric monoidal category DP [N ].

Due to the extended abstract nature of this paper, we omit all proofs; the
interested reader is referred to [14]. Some of the results presented here appear
also in [22].

1 Petri Nets and their Processes

In this section we briefly recall the basic definitions about Petri nets (see [21]
for a thorough introduction) and their processes.

Notation. Throughout the paper, S⊕ denotes the set of finite multisets on the set S.
We recall that S⊕ is a commutative monoid, actually the free commutative monoid
on S, under the operation of multiset union. For µ ∈ S⊕ we write [[µ]] to indicate
the subset of S consisting of those elements s such that µ(s) > 0. We shall represent
a nonempty multiset µ as a formal sum

⊕

i∈I
nisi where {si | i ∈ I} = [[µ]] and

ni = µ(si). The empty multiset, i.e., the unit of the monoid, will be written as 0.
Finally, given a finite subset S′ ⊆ S, we shall write

⊕

S′ for the (multi)set
⊕

s∈S′
s.

Definition 1.1 (Petri Nets and Marked PT Nets)
A Place/Transition (PT) Petri net is a structure N = (∂0

N , ∂1
N : TN → S⊕

N ), where
TN is a set of transitions, S is a set of places, and ∂0

N and ∂1
N are functions such

that ∂0
N (t) 6= 0.

A marked PT net is a pair (N, uN ), where N is a PT net and uN ∈ S⊕
N is the

initial marking.

This describes a Petri net precisely as a graph whose set of nodes is a free
commutative monoid, i.e., the set of finite multisets on a given set of places.
The source and target of an arc, here called a transition, are meant to represent,
respectively, the marking consumed by the transition, i.e., the minimum multiset
of tokens which allows the transition to fire, and the marking produced by the
firing of the transition. The restriction to nets in which ∂0

N (t) 6= 0 for each
transition t is due to the fact that such transitions are highly degenerated. In
particular, the firing of any number of parallel instances of them is enabled at
any marking, and this represents a serious problem for the unfolding semantics.

The formalization of nets as graphs with structure suggests considering graph
morphisms which respect such structure as morphisms of nets.
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Definition 1.2 (PT Nets Morphisms)
A PT net morphism f : N0 → N1 consists of a pair of functions 〈ft, fp〉, where
ft: TN0

→ TN1
and fp: S

⊕
N0
→ S⊕

N1
is a monoid homomorphism, such that 〈ft, fp〉

respects source and target, i.e., it makes the two diagrams below commute.

TN0 S⊕
N0

TN1 S⊕
N1

∂0
N0 //

ft

��
fp

��

∂0
N1

//

TN0 S⊕
N0

TN1 S⊕
N1

∂1
N0 //

ft

��
fp

��

∂1
N1

//

A morphism of marked PT nets from N0 to N1 is a PT net morphism f : N0 → N1

which preserves the initial marking, i.e., such that fp(uN0
) = uN1

.

Notation. To simplify notation we shall almost always omit the subscripts t and p

which distinguish the components of a morphism f . The type of the argument will
identify which component we are referring to.

Processes provide a causal explanation of net behaviours, which is achieved
by decorating the step sequences defined by the “token game” with explicit
information about the causal links which ruled the firing of the transitions in
the sequence. Usually one assumes that such links can be expressed faithfully
as a partial order of transitions, the ordering being considered a cause/effect
relationship. Thus, roughly speaking, a process of a net N consists of a partial
order built on a multisubset of transitions of N . The formalization of this gives
the following notion of deterministic occurrence net.

Notation. In the following, in case of nets without multiplicities, we use the standard
notation •a, for a ∈ SN , to mean the pre-set of a, that is •a = {t ∈ TN | a ∈ [[∂1

N (t)]]}.
Symmetrically, a• indicates {t ∈ TN | a ∈ [[∂0

N (t)]]}, the post-set of a. These notations
are extended in the obvious way to the case of sets of places. Recall that the terminology
pre- and post-set is used also for transitions to indicate, respectively, •t = [[∂0

N (t)]] and
t• = [[∂1

N (t)]]. As usual, | | indicates the cardinality of sets.

Definition 1.3 (Occurrence and Process Nets)
An (nondeterministic) occurrence net is a PT net Θ such that:

i) for all t ∈ TΘ, for all a ∈ SΘ one has ∂0
Θ(t)(a) ≤ 1 and ∂1

Θ(t)(a) ≤ 1;

ii) for all a ∈ SΘ, |•a| ≤ 1;

iii) ≺ is irreflexive, where ≺ is the transitive closure of the relation

≺1= {(a, t) | a ∈ SΘ, t ∈ a•} ∪ {(t, a) | a ∈ SΘ, t ∈ •a};

moreover, ∀t ∈ TΘ, {t′ ∈ TΘ | t
′ ≺ t} is finite;

iv) the binary “conflict” relation # on TΘ ∪ SΘ is irreflexive, where

∀t1, t2 ∈ TΘ, t1 #m t2 ⇔
•t1 ∩

•t2 6= ∅ and t1 6= t2,
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∀x, y ∈ TΘ ∪ SΘ, x # y ⇔ ∃t1, t2 ∈ TΘ : t1 #m t2 and t1 4 x and t2 4 y,

where 4 is the reflexive closure of ≺.

Given x, y ∈ TΘ∪SΘ, we say that x and y are concurrent, in symbols x co y, if it
is not the case that (x ≺ y or y ≺ x or x # y). A set X ⊆ TΘ∪SΘ is concurrent,
in symbols Co(X), if ∀ x, y ∈ X, x co y and |{t ∈ TΘ | ∃x ∈ X, t 4 x}| ∈ ω.

We say that an occurrence net Θ is deterministic if for all a ∈ SΘ, |a•| ≤ 1.
Observe that, in this case, we have # = ∅. We shall refer to deterministic
occurrence nets also as process nets.

Thus, in an occurrence nets each place belongs at most to one post-set and,
if the net is a process net, at most to one pre-set. This makes the “flow” relation
4 be a pre-order. Thus, requiring ≺ to be irreflexive, which is equivalent to
requiring that the net be acyclic, identifies a partial order on the transitions.
The constraint about the cardinality of the set of predecessors of a transition
is then the fairly intuitive requirement that each transition be finitely caused.
(See [28] for a discussion in terms of event structures of this issue.)

We stipulate that occurrence nets are to be considered also as marked nets
whose minimal (wrt. ≺) places constitute the initial marking. Observe that this
matches exactly with the standard definition, according to which occurrence nets
can be marked only by assigning a single token to each of its minimal places. In
the following, therefore, we shall use occurrence nets both in contexts in which
marked nets are expected and in contexts in which unmarked nets are.

Definition 1.4 (Non-Sequential Processes [8])
Given a net N , a process of N is a PT net morphism π: Θ → N which maps
places to places (as opposed to morphisms which map places to markings), where
Θ is a finite process net.

Similarly, a process of a marked net N is a morphism π: Θ → N of marked PT
nets which maps places to places, for a finite process net Θ.

For the purpose of defining processes at the right level of abstraction, we need
to make some identifications among process nets. Of course, we shall consider
as identical process nets which are isomorphic and, consequently, we shall make
no distinction between two processes π: Θ→ N and π′: Θ′ → N for which there
exists an isomorphism ϕ: Θ → Θ′ such that π′ ◦ ϕ = π. Observe that the
particular form of π is relevant, since we certainly want process morphisms to
be total and to map a single component of the process net to a single component
of N . Otherwise said, process morphisms are nothing but labellings of Θ with
an appropriate element of N . Moreover, as usual, in the case of marked nets,
we want to consider only processes whose source is the initial marking.

Inspired by the current trends in the development of the theory of computa-
tion, one would certainly like to describe the processes of a net N as an algebra
whose operations model a minimal set of combinators on processes which cap-
ture the essence of concurrency. Clearly, in the present case the core of such
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an algebra must consist of the operations of sequential and parallel composi-
tion of processes. The problem which arises immediately is that non-sequential
processes cannot be concatenated when multiplicities are present: in order to
support such an operation one must disambiguate the identity of all the tokens in
the multisets source and target of processes. In other words, one must recognize
that process concatenation has to do with tokens rather than with places. This
is the approach followed in [6], which led to the introduction of the concatenable
processes of N . These are, as already sketched above, non-sequential processes
enriched by total orderings of the minimal and maximal places carrying the same
label. Then, exploiting the additional information, it is easy to define an opera-
tion of concatenation of such processes, and thus to organize them as the arrows
of a category CP[N ]. In particular, since concatenable processes also admit an
operation of parallel composition, CP[N ] is a symmetric monoidal category. In
addition, [6] shows that CP[N ] can be axiomatized by means of an abstract
symmetric monoidal category P [N ] (see also [23]).

2 Unfolding Place/Transition Nets

In this section we sketch the basic notions concerning the unfolding of PT Petri
nets as defined in [12, 13]. In order to keep the exposition of the background
material as short as possible, we limit ourselves to the definitions of the object
components of the functors U [ ], F [ ], E [ ] and L[ ]. In particular, we shall not
introduce explicitly the categories involved. The reader interested in the details
is referred to [12, 28]. A complete survey of the topic is also given in [22].

As a first step, we define decorated occurrence nets, a type of occurrence nets
in which places are grouped into families. They allow a convenient treatment of
multiplicity issues in the unfolding of PT nets. We shall use [n] to denote the
segment {1, . . . , n} of ω.

Definition 2.1 (Decorated Occurrence Nets [12])
A decorated occurrence net is an occurrence net Θ such that:

i) SΘ is of the form
⋃

a∈AΘ
{a}×[na], for some set AΘ, where the set {a}×[na]

is called the family of a. We will use aF to denote the family of a regarded
as a multiset;

ii) ∀a ∈ AΘ, ∀x, y ∈ {a} × [na], •x = •y.

A family is thus a collection of finitely many places with the same pre-set,
and a decorated occurrence net is an occurrence net where each place belongs
to exactly one family. Families, and therefore decorated occurrence nets, are ca-
pable of describing relationships between places by grouping them together. We
will use families to relate places which are instances of the same place obtained
in a process of unfolding.

Next, we define an unfolding procedure which maps marked PT nets to dec-
orated occurrence nets.
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Figure 1: A net N , its unfolding U [N ], and FU [N ]

Definition 2.2 (PT Nets Unfoldings: U [ ] [12])
Let N =

(

∂0
N , ∂1

N : TN → S⊕
N , uN

)

be a marked net. We define the decorated

occurrence net U [N ] to be
(

∂0, ∂1: T → S⊕
)

, where T , S and ∂0 are generated
inductively by the following inference rules.

uN(b) = n
{(

∅, b
)}

× [n] ⊆ S

B =
{((

ǫj , bj

)

, ij

) ∣

∣

∣
j ∈ J

}

⊆ S, Co(B), t ∈ TN , ∂0
N (t) =

⊕

j∈J bj

(B, t) ∈ T and ∂0(B, t) =
⊕

B

x = (B, t) ∈ T, ∂1
N (t)(b) = n

{(

{x}, b
)}

× [n] ⊆ S

and for x ∈ T , ∂1(x) =
⊕

b,i

((

{x}, b
)

, i
)

.

Informally speaking, the definition above can be explained as follows, where
we use U [N ](n), n ∈ ω, to denote the n-th approximation of U [N ], i.e., the subnet
of U [N ] consisting of the elements at depth not greater than n. The net U [N ](0)

is obtained by exploding in families the initial marking of N , and U [N ](n+1) is
obtained, inductively, by generating a new transition for each possible subset
of concurrent places of U [N ](n) whose corresponding multiset of places of N

constitutes the source of some transition t of N ; the target of t is also exploded
in families which are added to U [N ](n+1). As a consequence, the transitions of
the n-th approximant net are instances of transitions of N , in the precise sense
that each of them corresponds to a unique occurrence of a transition of N in one
of its step sequences of length at most n.
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There is an obvious forgetful functor from decorated occurrence nets to oc-
currence nets which forgets about the structure of families. It allows us to drop
the additional structure of decorated occurrence nets and to bring the unfolding
of PT nets into Occ. Moreover, exploiting Winskel’s coreflections in [28], we
obtain an explanation of the causal behaviour of nets in PES and in Dom as
illustrated in the introduction.

Definition 2.3 (F [ ]: from DecOcc to Occ [12])
Given a decorated occurrence net Θ define F [Θ] to be the occurrence net un-
derlying Θ.

Figure 1 shows a simple example of unfolding of PT nets. To make explicit
the nature of the elements of U [N ] and FU [N ], in the picture we label them
with the corresponding element a, b, . . . , t3 of N . In particular, the places of the
unfolding labelled by a and b are respectively (∅, a) and (∅, b), the transitions
labelled by t0 and t2 are t̄0 = ({(∅, a)}, t0) and t̄2 = ({(∅, b)}, t2), and thus the
three instances of c are (({t̄0}, c), 1), (({t̄0}, c), 2) and (({t̄2}, c), 1). A family is
represented by enclosing its elements into an oval. The numbers which label
the outgoing arcs from t̄0 take into account the ordering of the elements in the
family ({t̄0}, c)

F ; since U [N ] is an occurrence net, no confusion is possible with
arc multiplicities. Families of cardinality one are not explicitly indicated. We
call U [N ] and FU [N ] respectively the unfolding of N in DecOcc and in Occ.
However, in the following we shall avoid explicit reference to DecOcc and Occ.

Prime event structures [15, 28] are the simplest event based model of con-
currency. They consist of a set of events, intended as indivisible quanta of
computation, which are related to each other by two binary relation: causality,
modelled by a partial order relation ≤, and conflict, modelled by an irreflexive,
symmetric, and hereditary relation #.

Definition 2.4 (Prime Event Structures)
A prime event structure is a structure E = (E, #,≤) consisting of a set of events
E partially ordered by ≤, and a symmetric, irreflexive relation # ⊆ E × E, the
conflict relation, such that

{e′ ∈ E | e′ ≤ e} is finite for each e ∈ E

e # e′ ≤ e′′ implies e # e′′ for each e, e′, e′′ ∈ E.

The computational intuition behind event structures is really simple: an
event e can occur when all its causes have occurred and no event that is in
conflict with the given event has already occurred. This is formalized by the
following notion of configuration.

Definition 2.5 (Configurations)
Given a prime event structure (E, #,≤), define its configurations to be those
subsets x ⊆ E which are

Conflict Free: ∀e1, e2 ∈ x, not(e1 # e2)

Left Closed: ∀e ∈ x ∀e′ ≤ e, e′ ∈ x
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Figure 2: The event structure EFU [N ] for the net in Figure 1

Let L(E) denote the set of configurations of the prime event structure E and
LF (E) the set of finite configurations of E.

The following definition recalls how to translate occurrence nets into prime
event structures. An example of this translation is shown in Figure 2, where,
using the standard graphical representation of event structures, ≤ is indicated by
(bottom-up) solid lines and # by a dotted line; we use superscripts to distinguish
between the three instances of t3 in FU [N ].

Definition 2.6 (E [ ]: from Occ to PES [28])
Let Θ be an occurrence net. Then, E [Θ] is the event structure (TΘ, 4, #), where
4 and # are the restrictions to the set of transitions of Θ of, respectively, the
flow ordering and the conflict relation implicitly defined by Θ.

Finitary prime algebraic domains or dI-domains—introduced by G. Berry
while studying sequentiality of functions [1]—are particular Scott’s domains
which are distributive and in which each finite element is preceded only by a
finite number of elements of the domain. Here we are interested in their “coher-
ent” version, i.e., in the version in which the underlying partial order is pairwise
complete.

Definition 2.7 (Finitary (Coherent) Prime Algebraic Domains)
Let (D,⊑) be a partial order. Recall that a set X ⊆ D is directed if all the pairs
x, y ∈ X have an upper bound in X , is compatible if there exists d ∈ D such
that x ⊑ d for all x ∈ X and is pairwise compatible if {x, y} is compatible for all
x, y ∈ X . We say that D is a (coherent) domain if it is pairwise complete, i.e.,
if for all pairwise compatible X ⊆ D the least upper bound

⊔

X of X exists.

A complete prime of D is an element p ∈ D such that, for any compatible X ⊆ D,
if p ⊑

⊔

X , then there exists x ∈ X such that p ⊑ x. We say that a domain D is
prime algebraic if for all d ∈ D we have d =

⊔

{p ⊑ d | p is a complete prime}.

Moreover, an element e ∈ D is finite if for any directed S ⊆ D, if e ⊑
⊔

S, then
there exists s ∈ S such that e ⊑ s. We say that D is finitary if for all finite
elements e ∈ D, |{d ∈ D | d ⊑ e}| ∈ ω.

Finitary prime algebraic domains can be equipped with a notion of morphism
in such a way that the category Dom so obtained is equivalent to PES (see [28]).
We conclude this section by recalling the object component of the equivalence
functor L[ ]: PES→ Dom. An example is provided by Figure 3.
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Figure 3: The Hasse diagram of the domain LEFU [N ] for the net in Figure 1

Proposition 2.8 (L[ ]: from PES to Dom [28])
Let E be a prime event structure. Then, L(E) = (L(E),⊆), i.e., the set of
configurations of E ordered by inclusion is a finitary (coherent) prime algebraic
domain.

3 Process vs. Unfolding Semantics for Nets

The semantics obtained via the unfolding yields an explanation of the behaviour
of nets in terms of event structures, that is, in terms of domains. Domains
can be unambiguously thought of as partial orderings of computations, where a
computation is represented by a configuration, which, in our context, is a “down-
ward” closed, conflict free set of occurrences of transitions. On the other hand,
processes are by definition left closed and conflict free (multi)sets of transitions.
Moreover, the processes from a given initial marking are naturally organized in
a preorder-like fashion via a comma category construction which formalizes the
usual notion of prefix ordering of processes. The question which therefore arises
spontaneously concerns the relationships between these two notions; this is the
question addressed in this section.

It is worth noticing that in the case of safe nets the question is readily
answered exploiting Winskel’s coreflection 〈→֒,U [ ]〉: Occ ⇀ Safe. In fact, by
definition an adjunction 〈F, G〉: C ⇀ D determines an isomorphism between
arrows of the kind F(c)→ d in D and arrows of the kind c→ G(d) in C. Then,
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in the case of safe nets, we have a one-to-one correspondence

π: Θ→ N ⇐⇒ π′: Θ→ U [N ]

for each safe net N and each occurrence net Θ. Therefore, since such corre-
spondence is easily seen to map processes to processes, in this special case, the
correspondence between process and unfolding semantics of N is very tidy: they
are the same notion in the precise sense that there is an isomorphism between
the processes of N and the processes of U [N ], i.e., the deterministic finite subnets
of the unfolding of N , i.e., the finite configurations of EU [N ].

In our context, however, we have that the unfolding of N is strictly more
concrete than the processes of N . For example, consider again the net N and its
unfolding FU [N ] shown in Figure 1. Clearly, there is a unique process of N in
which t0, t2 and a single instance of t3 caused by t0 has occurred. Nevertheless,
there are two deterministic subnets of FU [N ] which correspond to such process,
namely those obtained by choosing respectively the left and the right instance
of t3 below t0. It is worth noticing that such subnets are isomorphic and that
this is not a fortunate case, since it is easy to show that two finite deterministic
subnets of FU [N ] correspond to the same process of N if and only if they are
isomorphic via an isomorphism which sends instances of an element of N to
instances of the same element. More interestingly, the results of this paper
will prove that this is the exact relationship between the two semantics of N :
the unfolding contains several copies of the same process which, as illustrated
in [12, 13], are needed to provide a fully causal explanation of the behaviour
of N , i.e., to obtain an occurrence net whose transitions represent exactly the
instances of the transitions of N in all the possible causal contexts and which
can therefore account for concurrent multiple instances of the same element
of N , that is for autoconcurrency. More precisely, we shall see that the finite
deterministic subnets of the unfolding of N can be characterized by appropriately
decorating the processes of N , which shows directly that the difference between
process and unfolding semantics of N is due only to the replication of data
needed in the latter.

Of course, the appropriate decoration of processes is immediately suggested
by the notion of family in decorated occurrence nets: a decorated process is sim-
ply a process whose underlying process net is a decorated occurrence net. This
yields a process-oriented account of the unfolding construction. In addition,
we shall also identify an abstract symmetric strict monoidal category DP [N ]
whose arrows axiomatize the decorated concatenable processes of N , and which
therefore provides both the algebraic and the process-oriented account of the
unfolding construction. In particular, for each marked PT net (N, uN ) we have
LFEFU [(N, uN )] ∼= 〈uN↓DP[N ]〉, where the role of the comma category con-
struction is to consider only the decorated concatenable processes from the ini-
tial marking uN . Therefore, decorated (deterministic) occurrence nets, which at
first seem to be just a convenient technical solution to establish the adjunction
from PT nets to occurrence nets, provide both the process and the algebraic
counterpart of the unfolding semantics.
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The following proposition remarks the intuitive relationship between finite
configurations and processes in the unfolding semantics.

Proposition 3.1

Let N be a marked net. There is an isomorphism between the set of finite
configurations of EFU [N ] and the set of (marked) processes of FU [N ].

Our next task is to characterize the processes of FU [N ] in terms of processes
of N . We shall do it by means of the following notion of decorated process.

Definition 3.2 ( f -indexed orderings)
Given sets A and B together with a function f : A → B, an f -indexed ordering
of A is a family {ℓb | b ∈ B} of bijections ℓb: f

−1(b) → {1, . . . , |f−1(b)|}, with
f−1(b) being as usual the set {a ∈ A | f(a) = b}.

Therefore, an f -indexed ordering of A is a family of total orderings, one for
each of the partitions of A induced by f .

Definition 3.3 (Decorated Processes)
Let N be a marked net. A decorated process of N is a triple DP = (π, ℓ, τ)

• π: Θ→ N is a (marked) process of N ;

• ℓ is a π-indexed ordering of min(Θ), the minimal (wrt. 4) places of Θ;

• τ is a family {τ(t)} indexed by the transitions t of Θ, where each τ(t) is
a π-indexed ordering of the post-set of t in Θ.

The decorated processes (π: Θ→ N, ℓ, τ) and (π′: Θ′ → N, ℓ′, τ ′) are isomorphic,
and then identified, if their underlying processes are isomorphic via an isomor-
phism ϕ which respects all the orderings, i.e., ℓ′π′(ϕ(a))(ϕ(a)) = ℓπ(a)(a) for all

a ∈ min(Θ), and τ ′(ϕ(t))π′(ϕ(a))(ϕ(a)) = τ(t)π(a)(a) for all t ∈ TΘ and for all
a ∈ t•.

We say that (π: Θ → N, ℓ, τ) ≤ (π′: Θ′ → N, ℓ′, τ ′) if there exists ϕ: Θ → Θ′

which preserves all the orderings and such that π = π′ ◦ ϕ. Since we identify
isomorphic processes, the set of decorated processes is partially ordered by ≤.
We shall write DP [N ] to indicate such ordering.

Figure 4 shows the two decorated processes of the net N in Figure 1 cor-
responding to the (unique) process of N in which t0, t2 and an instance of t3
caused by t0 have occurred. In the pictures, we represent a process π: Θ → N

by drawing Θ and labelling its element x by π(x). Observe that Figure 4 also
gives a hint about the announced correspondence.

Proposition 3.4

The set of decorated processes of N is isomorphic to the set of (marked) processes
of FU [N ].
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Figure 4: Two decorated processes of the net in Figure 1

Since FU [N ] is obtained from a decorated occurrence net via a forgetful
functor, a process π of FU [N ] still contains information about the families of
U [N ]. Informally speaking, the proof of the previous proposition consists of
showing that it is possible to move such information from π to ℓ and τ of a
decorated process of N and back in π from ℓ and τ , so obtaining an isomorphism.
The correspondence above can be easily lifted to the partial orders of decorated
processes and finite configurations of EFU [N ].

Proposition 3.5

DP [N ] is isomorphic to LF EFU [N ].

Exploiting further the idea of decorated processes, the same conceptual step
which led from non-sequential processes to concatenable processes suggests the
following definition.

Definition 3.6 (Decorated Concatenable Processes)
A decorated concatenable process of the (unmarked) net N , is a quadruple
(π, ℓ, τ, L) where π is a process of N , ℓ and L are, respectively, π-indexed or-
derings of min(Θ) and max(Θ), i.e., the minimal and the maximal places of Θ,
and τ is a family {τ(t)} indexed by the transitions t of Θ, where each τ(t) is a
π-indexed ordering of the post-set of t in Θ.

An isomorphism of decorated concatenable processes is an isomorphism of the
underlying processes which, in addition, preserves all the orderings given by ℓ,
τ and L.

So, a decorated concatenable process (π, ℓ, τ, L) is a concatenable process
(π, ℓ, L) where the post-sets of all transitions are π-indexed ordered. Observe
that (π, ℓ, τ) is different from a decorated process since π is unmarked. It follows
from the definitions that a place in max(Θ) has in every case a double ordering:
derived from L and ℓ if it is also minimal, and derived from L and τ otherwise.
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Figure 5: An example of the algebra of decorated concatenable processes

It is clearly possible to define an operation of concatenation of decorated
concatenable processes. We can associate a source and a target in S⊕

N to any
concatenable process DCP , namely by taking the image through π of, respec-
tively, min(Θ) and max(Θ), where Θ is the underlying process net of DCP .
Then, the concatenation of DCP0: u → v and DCP1: v → w is defined in the
obvious way exploiting the informations given by the labellings in order to merge
the maximal places of the process nets underlying DCP0 with the minimal places
of the process net underlying DCP1. (See also Figure 5, where the elements of
the nets are labelled according to π, ℓ, and L, τ(t) is represented by decorating
the arcs outgoing from t and all the trivial orderings are omitted.) Therefore,
we can consider the category DCP[N ] whose objects are the finite multisets on
SN and whose arrows are the decorated concatenable processes.

Proposition 3.7

Under the above defined operation of sequential composition, DCP [N ] is a cat-
egory with identities those decorated concatenable processes consisting only of
places, which therefore are both minimal and maximal, and such that ℓ = L.

Decorated concatenable processes admit also a tensor operation ⊗ which
represents the parallel composition of processes. Given DCP0: u → v and
DCP1: u

′ → v′, DCP0 ⊗ DCP1: u ⊕ u′ → v ⊕ v′ is the decorated concaten-
able process which may be graphically represented by putting side by side, from
left to right, the graphical representations of DCP0 and DCP1 and reorganizing
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the labellings appropriately as shown in Figure 5. It is easy to see that the
concatenable processes consisting only of places are the symmetries [10] which
make DCP[N ] into a symmetric strict monoidal category.

Proposition 3.8

DCP[N ] is a symmetric strict monoidal category.

Recalling that decorated concatenable processes are a refinement of con-
catenable processes and that the concatenable processes of N correspond to the
arrows of a category P [N ], we are led to the following definition of the symmet-
ric monoidal category DP [N ] which captures the algebraic essence of decorated
(concatenable) processes, and thus of the unfolding construction. It is worth
remarking that the definition of DP [N ] can be obtained simply by dropping
one axiom from the definition of P [N ]. This shows that the difference between
processes and decorated processes is simply axiomatizable in terms of monoidal
categories.

Definition 3.9 (The category DP [N ])
Let N be a PT net. Then DP[N ] is the monoidal quotient of the free symmetric
strict monoidal category on N modulo the axioms

ca,b = ida⊕b if a, b ∈ SN and a 6= b

s; t = t if t ∈ TN and s is a symmetry.

where c is the symmetry natural isomorphism. Explicitly, the category DP [N ]
is the category whose objects are the elements of S⊕

N and whose arrows are
generated by the inference rules

u ∈ S⊕
N

idu: u→ u in DP [N ]

u, v in S⊕
N

cu,v: u⊕ v → u⊕ v in DP [N ]
t: u→ v in TN

t: u→ v in DP [N ]

α: u→ v and β: u′ → v′ in DP [N ]
α⊗ β: u⊕ u′ → v ⊕ v′ in DP [N ]

α: u→ v and β: v → w in DP [N ]
α; β: u→ w in DP [N ]

modulo the axioms expressing that DP [N ] is a strict monoidal category, namely,

α; idv = α = idu; α and (α; β); δ = α; (β; δ),

(α⊗ β)⊗ δ = α⊗ (β ⊗ δ) and id0 ⊗ α = α = α⊗ id0, (1)

idu ⊗ idv = idu⊕v and (α⊗ α′); (β ⊗ β′) = (α; β) ⊗ (α′; β′),

the latter whenever the lefthand term is defined, the following axioms expressing
that DP [N ] is symmetric with symmetry isomorphism c

cu,v⊕w = (cu,v ⊗ idw); (idv ⊗ cu,w),

cu,u′ ; (β ⊗ α) = (α⊗ β); cv,v′ for α: u→ v, β: u′ → v′, (2)

cu,v; cv,u = idu⊕v,
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and the following axioms

ca,b = ida⊕b if a, b ∈ SN and a 6= b

(idu ⊗ ca,a ⊗ idv); t = t if t ∈ TN . (3)

It is worthwhile to remark that in the definition above axioms (1) and (2)
define F(N), the free symmetric strict monoidal category on N . Observe that,
exploiting the coherence axiom, i.e., the first of (2), a symmetry in F(N) can
always be written as a composition of symmetries of the kind (idu ⊗ ca,b ⊗ idv)
for a, b ∈ SN . Then, since we have ca,b = ida⊕b if a 6= b, the axiom s; t = t takes
the particular form stated in (3).

For DP [N ] and DCP [N ] we have the following result which matches the
analogous one for concatenable processes [6].

Proposition 3.10

DCP[N ] and DP [N ] are isomorphic.

Proof. (Sketch.) Consider the following mapping F from the arrows of DP [N ] to
decorated concatenable processes.

• A transition t of N is mapped to the decorated concatenable processes with a
unique transition and two layers of places: the minimal, in one-to-one corre-
spondence with ∂0

N(t), and the maximal, in one-to-one correspondence with
∂1

N(t). The decoration, of course, consists in taking τ (t) = L.

• A symmetry cu,v, for u = n1a1 ⊕ · · · ⊕ nkak and v = m1b1 ⊕ · · · ⊕ mhbh is
mapped to the concatenable process having as many places as elements in the
multiset u ⊕ v mapped by π to the corresponding places of N and such that
Lai

(x) = v(ai) + ℓai
(x) and ℓbi

(x) = Lbi
(x) − u(bi).

• F is extended inductively to a generic term α of DP [N ], i.e., α0⊗α1 is mapped
to F(α0) ⊗ F(α1) and α0 ; α1 to F(α0); F(α1).

Then, defining F to be the identity on the objects gives the required isomorphism

F:DP [N ] ∼= DCP[N ]. X

We conclude the section by getting back to the diagram discussed in the
introduction. We recall the following simple notion from category theory.

Definition 3.11 (Comma Categories)
Let C be a category and c an object of C. Then, the comma category 〈c↓C〉,
also called the category of elements under c, is the category whose objects are
the arrows f : c→ c′ of C and whose arrows h: (f : c→ c′)→ (g: c→ c′′) are the
commutative diagrams

c

c′ c′′

f
������� g

�������
h

//

Identities and arrow composition are inherited in the obvious way from C.
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Figure 6: Some of the arrows with source a⊕ b in DP [N ] for the net of Figure 1

The next proposition essentially shows that the canonical partial order as-
sociated to 〈uN↓N〉 is DP [(N, uN )], and concludes our exposition. The proof
follows easily from Proposition 3.10, and the intuition behind it can be grasped
from Figure 6, where the self-looping arrows represent the non-identity symme-
tries. We warn the reader that not all the symmetries are shown in the picture;
this is the meaning of the double arrows which stand for several of them.

Proposition 3.12

For any marked PT net (N, uN ),

〈uN↓DP[N ]〉 ∼= DP [(N, uN)] ∼= LFEFU [(N, uN )].

Observe that the second equivalence above is actually an isomorphism, as
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shown by Proposition 3.5.

Conclusions

In this paper we have shown how the unfolding semantics given in [12, 13] can
be reconciled with a process-oriented semantics. Moreover, we have seen that
the algebraic structure of the processes of a net can be faithfully expressed by a
symmetric monoidal category. The key of these formal achievements is the notion
of decorated occurrence net. Although DecOcc arose from the need of factorizing
the involved adjunction from PTNets to Occ, and, thus, decorated occurrence
nets might at first seem to be just a convenient technical solution, we have
shown that in fact useful insights on the semantics of nets are suggested by the
present unfolding construction and the associated notion of decorated occurrence
net. In fact, decorated deterministic occurrence nets, suitably axiomatized as
arrows of the symmetric monoidal category DP [N ], provide both the process-
oriented and the algebraic counterpart of the unfolding semantics. Moreover,
they can be characterized as the minimal refinement of Goltz-Reisig processes
which guarantees the identity of all tokens, i.e., as the minimal refinement of
occurrence nets which guarantees the existence of an unfolding for PT nets. In
fact, in order to achieve this it is necessary to disambiguate both the tokens in
the same place of the initial marking and the tokens which are multiple instances
of the same place, and, therefore, to introduce the notion of families.
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