Skip to main content

Detecting non-provable goals

  • Conference paper
  • First Online:
Automated Deduction — CADE-12 (CADE 1994)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 814))

Included in the following conference series:

Abstract

In this paper we present a method to detect non-provable goals. The general idea, adopted from cycle unification, is to determine in advance how terms may be modified during a derivation. Since a complete predetermination is obviously not possible, we analyze how terms may be changed by, roughly speaking, adding and deleting function symbols. Such changes of a term are encoded by an efficiently decidable clause set. The satisfiability of such a set ensures that the goal containing the term under consideration cannot contribute to a successful derivation.

This research was supported by the Deutsche Forschungsgemeinschaft (DFG) within project KONNEKTIONSBEWEISER under grant no. Bi 228/6-2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Bibel. Automated Theorem Proving. Vieweg Verlag, 1987. Second edition.

    Google Scholar 

  2. W. Bibel. Perspectives on automated deduction. In Automated Reasoning: Essays in Honor of Woody Bledsoe, pages 77–104. Kluwer Academic, Utrecht, 1991.

    Google Scholar 

  3. W. Bibel. Deduction: Automated Logic. Academic Press, London, 1993.

    Google Scholar 

  4. W. Bibel, S. Hölldobler, and J. Würtz. Cycle unification. Proceedings of the Conference on Automated Deduction, pages 94–108. Springer, Berlin, 1992.

    Google Scholar 

  5. R. N. Bol, K. R. Apt, and J. W. Klop. An analysis of loop checking mechanisms for logic programming. Theoretical Computer Science, 86:35–79, 1991.

    Google Scholar 

  6. S. Brüning. Detecting Non-Provable Goals. Technical report, FG Intellektik, FB Informatik, TH Darmstadt, 1993.

    Google Scholar 

  7. S. Brüning. Search Space Pruning by Checking Dynamic Term Growth. Proceedings of the International Conference on Logic Programming and Automated Reasoning, pages 52–63. Springer, 1993.

    Google Scholar 

  8. E. Eder. Properties of substitutions and unifications. Journal of Symbolic Computation, 1:31–46, 1985.

    Google Scholar 

  9. C. Fermüller, A. Leitsch, T. Tammet, and N. Zamov. Resolution Methods for the Decision Problem. LNAI 679. Springer, 1993.

    Google Scholar 

  10. P. Hanschke and J. Würtz. Satisfiability of the smallest binary program. Information Processing Letters, 45(5):237–241, April 1993.

    Google Scholar 

  11. G. Janssens and M. Bruynooghe. Deriving Descriptions of Possible Values of Program Variables by Means of Abstract Interpretation. Journal of Logic Programming, 13:205–258, 1992.

    Google Scholar 

  12. R. Letz, J. Schumann, S. Bayerl, and W. Bibel. SETHEO — A High-Performance Theorem Prover for First-Order Logic. Journal of Automated Reasoning, 8:183–212, 1992.

    Google Scholar 

  13. J. W. Lloyd. Foundations of Logic Programming. Springer, second edition, 1987.

    Google Scholar 

  14. D. W. Loveland. Mechanical theorem proving by model elimination. Journal of the ACM, 15:236–251, 1986.

    Google Scholar 

  15. D. A. Plaisted. Theorem Proving with Abstraction. Artificial Intelligence, 16:47–108, 1981.

    Google Scholar 

  16. J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal of the ACM, 12(1):23–41, 1965.

    Google Scholar 

  17. B. Selman and H. Kautz. Knowlede Compilation Using Horn Approximations. In Proceedings of the AAAI National Conference on Artificial Intelligence, 1991.

    Google Scholar 

  18. D. E. Smith, M. R. Genesereth, and M. L. Ginsberg. Controlling recursive inference. Artificial Intelligence, 30:343–389, 1986.

    Google Scholar 

  19. M. E. Stickel. A Prolog technology theorem prover. 10th International Conference on Automated Deduction, pages 673–674, Springer, 1990.

    Google Scholar 

  20. G. Sutcliffe. Linear-Input Subset Analysis. Proceedings of the Conference on Automated Deduction, pages 268–280. Springer, 1992.

    Google Scholar 

  21. D. A. de Waal and J. Gallagher. Logic program specialisation with deletion of useless clauses (poster abstract). Proceedings of the 1993 Logic programming Syposium, page 632, MIT Press,1993.

    Google Scholar 

  22. E. Yardeni and E. Shapiro. A Type System for Logic Programs. Journal of Logic Programming, 10:125–153, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alan Bundy

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brüning, S. (1994). Detecting non-provable goals. In: Bundy, A. (eds) Automated Deduction — CADE-12. CADE 1994. Lecture Notes in Computer Science, vol 814. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58156-1_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-58156-1_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58156-7

  • Online ISBN: 978-3-540-48467-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics