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Abstract

Rippling is a special type of rewriting developed for inductive theorem proving
 Bundy
et� al� have shown that rippling terminates by providing a well�founded order for the
annotated rewrite rules used by rippling
 Here� we simplify and generalize this order�
thereby enlarging the class of rewrite rules that can be used
 In addition� we extend
the power of rippling by proposing new domain dependent orders
 These extensions
elegantly combine rippling with more conventional term rewriting
 Such combinations
o�er the �exibility and uniformity of conventional rewriting with the highly goal di�
rected nature of rippling
 Finally� we show how our orders simplify implementation of
provers based on rippling




� Introduction

Rippling is a form of goal directed rewriting developed at Edinburgh �	� �� and in
parallel in Karlsruhe ���� ��� for inductive theorem proving
 In inductive proof� the
induction conclusion typically di�ers from the induction hypothesis by the addi�
tion of some constructors or destructors
 Rippling uses special annotations� called
wavefronts� to mark these di�erences
 They are then removed by annotated rewrite
rules� called wave�rules
 Rippling has several attractive properties
 First� it is highly
goal directed� attempting to remove just the di�erences between the conclusion and
hypothesis� leaving the common structure preserved
 And second� it terminates yet
allows rules like associativity to be used both ways


The contributions of this paper are to simplify� improve� and generalize the
speci�cation of wave�rules and their associated termination orderings
 Wave�rules
have previously been presented via complex schematic de�nitions that intertwine
the properties of structure preservation and the reduction of a well�founded measure
�see ��� and x��
 As these properties may be established independently� our de�nition
of wave�rules separates these two concerns
 Our main focus is on new measures

We present a family of measures that� despite their simplicity� admit strictly more
wave�rules than the considerably more complex speci�cation given in ���


This work has several practical applications
 By allowing rippling to be com�
bined with new termination orderings� the power of rippling can be greatly extended

Although rippling has been designed primarily to prove inductive theorems it has
recently been applied to other problem domains
 We show that in rippling� as in
conventional rewriting� the ordering used should be domain dependent
 We pro�
vide several new orderings for applying rippling to new domains within induction
�e
g
 domains involving mutually recursive functions� and outside of induction �e
g

equational problem solving�
 In doing so� we show for the �rst time how rippling
can be combined with conventional rewriting


Another practical contribution is that our work greatly simpli�es the implemen�
tation of systems based on rippling
 Systems like Clam �
� require a procedure�
called a wave�rule parser� to annotate rewrite rules
 Clam�s parser is based upon
the complex de�nition of wave�rules in ��� and as a result is itself extremely complex
and faulty
 We show how� given a simple modular order� we can build simple mod�
ular wave�rule parsers
 We have implemented such parsers and they have pleasant
properties that current implementations lack �e
g
 notions of correctness and com�
pleteness�� our work hence leads to a simpler and more �exible mechanization of
rippling


The paper is organized as follows
 In x� we give a brief overview of rippling

In x� we de�ne an order on a simple kind of annotated term and use this in x

to build orderings on general annotated terms
 Based on this we show in x	 how
rewrite rules may be automatically annotated
 In x� we describe how new orders
increase the power and applicability of rippling
 In x� we compare this work to
previous work in this area and discuss some practical experience
 Finally we draw
conclusions


� Background

We provide a brief overview of rippling
 For a complete account please see ���

Rippling arose out of an analysis of inductive proofs
 For example� if we wish to

prove P �x� for all natural numbers� we assume P �n� and attempt to show P �s�n��

The hypothesis and the conclusion are identical except for the successor function
s��� applied to the induction variable n
 Rippling marks this di�erence by the

annotation� P � s�n� �
 Deleting everything in the box that is not underlined gives

�



the skeleton� which is preserved during rewriting
 The boxed but not underlined
term parts are wavefronts� which are removed by rippling


Formally� a wavefront is a term with at least one proper subterm deleted
 We
represent this by marking a term with annotation where wavefronts are enclosed in
boxes and the deleted subterms� called waveholes� are underlined
 Schematically� a

wavefront looks like ����� ���� �n� � where n � � and �i may be similarly annotated


The part of the term not in the wavefront is called the skeleton
 Formally� the
skeleton is a non�empty set of terms de�ned as follows


De�nition � �Skeleton�

�� skel�t� � ftg for t a constant or variable

�� skel�f�t�� ���� tn�� � ff�s�� ���� sn�j�i� si � skel�ti�g

�� skel� f�t�� ���� tn� � � skel�t�� � ���� skel�tn� for the ti in waveholes�

We call a term simply annotated when all its wavefronts contain only a single wave�
hole and generally annotated otherwise
 In the simply annotated case� the skeleton
function returns a singleton set whose member we call the skeleton
 E
g
 the skele�

ton of f� s�a� � s�b� � is f�a� b�


We de�ne wave�rules to be rewrite rules between annotated terms that meet
two requirements� they are skeleton preserving and measure decreasing
 This is
a simpler and more general approach to de�ning wave�rules than that given in
��� where these requirements were intertwined into the syntactic speci�cation of a
wave�rule
� Skeleton preservation in the simply�annotated case means that both the
LHS �left�hand side� and RHS �right�hand side� of the wave�rule have an identical
skeleton
 In the multi�hole case we demand that some of the skeletons on the LHS
are preserved on the RHS and no new skeletons are introduced� i
e
 skel�LHS� �
skel�RHS�


Wavefronts in wave�rules are also oriented
 This is achieved by marking the
wavefront with an arrow indicating if the wavefront should move up through the
skeleton term tree or down towards the leaves
 Oriented wavefronts dictate a mea�
sure on terms that rippling decreases
 The focus of this paper is on these measures


Below are some examples of wave�rules �s is successor and �� is in�x append�


s�U �
� � V � �U � V � � V

�

���

s�U �
� � s�V �

� � U � V ���

U � V
� �W � U �W � V �W

�
���

� U �� V
�
� �� W � U �� � V �� W

�
� �
�

U �� � V �� W
�
� � �U �� V � �� W

�

�	�

U � V
�
� W � Z

� � U � W 	 V � Z
�

���

��� and ��� are typical of wave�rules based on a recursive de�nitions
 The remainder
come from lemmas
 Methods for turning de�nitions and lemmas into wave�rules is
the subject of x	
 Note that annotation in the wave�rules must match annotation
in the term being rewritten
 This allows use of rules like associativity of append�
�
� and �	�� in both directions� these would loop in conventional rewriting
 Note
also that in ��� the skeletons of the RHS are a strict subset of those of the LHS


�This generalization is� however� brie�y discussed in their further work section�

�



As a simple example of rippling� consider proving the associativity of multipli�
cation using structural induction
 In the step�case� the induction hypothesis is

�x� y� � z � x� �y � z�

and the induction conclusion is

� s�x�
� � y� � z � s�x�

� � �y � z��

The wavefronts in the induction conclusion mark the di�erences with the induction
hypothesis
 Rippling on both sides of the induction conclusion using ��� yields ���
and then with ��� on the LHS gives ���


� x� y � y
�
� � z � �x� �y � z�� � y � z

�

���

��x� y� � z� � y � z
�

� �x� �y � z�� � y � z
�

���

As the wavefronts are now at the top of each term� we have successfully rippled�
out both sides of the equality
 We can complete the proof by simplifying with the
induction hypothesis


The example illustrates how rippling preserves skeletons during rewriting
 Pro�
vided rippling does not get blocked �no wave�rule applies yet we are not completely
rippled�out�� we are guaranteed to be able to simplify with the induction hypothesis
�called fertilization in ����
 This explains the highly goal directed nature of rippling


We can also ripple wavefronts towards the position of universally quanti�ed
variables in the induction hypothesis
 Such positions are called sinks because wave�
fronts can be absorbed there� when we appeal to the induction hypothesis� univer�
sally quanti�ed variables will be matched with the content of the sinks
 Rippling
towards sinks at the leaves of terms is called rippling�in
 Wavefronts are oriented
with arrows pointing out �upwards� or in �downwards� indicating if they are moving
towards the root or leaves
 Transverse wave�rules like �
� are used to turn outward
directed wavefronts inwards


� Ordering Simple Wave�Rules

In this section we consider only simply annotated terms �whose wavefronts have a
single wavehole�
 In the next section we generalize to orders for generally annotated
terms with multiple waveholes
 We begin with motivation� explaining generally the
kinds of orders we wish to de�ne
 Afterwards� we propose several concrete measures
that are similar� though simpler� to those given by Bundy et� al� in ���
 They are
able to order all the wave�rules given in ��� and in addition allow rule orientations
not possible using the measure given there �see x��


We consider annotated terms as decorated trees where the tree is the skeleton
and the wavefronts are boxes decorating the nodes
 See� for example� the �rst tree

in Fig
 � which represents the term s�U �
� � s�V �

�


 Our orders are based on

assigning measures to annotation in these trees
 We can de�ne progressively simpler
orders by simplifying these annotated trees to capture the notion of progress during
rippling that we wish to measure


To begin with� since rippling is skeleton preserving� we needn�t account for the
contents of the skeleton in our orderings
 That is� we can abstract away function
symbols in the skeleton� for example� mapping each function to a variadic function
constant ���
 This gives� for example� the second tree in Fig
 �
 In x�
�� we return

�
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Figure �� De�ning a measure on annotated terms


to this abstraction and examine termination orderings that do allow the skeleton to
be changed during rewriting


A further abstraction is to ignore the names of function symbols within wave�
fronts and assign some kind of numeric weight to wave�fronts
 For example� we
may tally up the values associated with each function symbol as in a Knuth�Bendix
ordering
 The simplest kinds of weights that we may assign to wave�fronts measure
their width and their size
 Width is the number of nested function symbols between
the root of the wavefront and the wavehole
 Size is the number of function symbols
and constants in a wavefront
 For simplicity� we will consider just the width unless
otherwise stated
 This gives� for example� the third tree in Fig
 �
 Of course� there
are problem domains where we want our measure to re�ect more of the structure
of wave�fronts
 x�
� contains an example of this showing how the actual contents
may be compared using a conventional term ordering


Finally� a very simple notion of progress during rippling is simply that wave�
fronts move up or down through the skeleton tree
 Under this view� the tree struc�
ture may be ignored� it is not important which branch a wave�front is on� only its
height in the skeleton tree
 Under this notion of progress� we can apply an abstrac�
tion that maps the tree onto a list� level by level
 For instance� we can use the sum
of the weights at a given depth
 Applying this abstraction gives the �nal tree in
Fig
 �
 Again� note that depths are relative to the skeleton and not depth in the
erased term tree


To make this more formal and concrete� we introduce some de�nitions
 A posi�
tion is simply a path address �written �Dewey decimal style�� in the term tree of the
skeleton and the subterm of t at position p is denoted by t�p
 If s is a subterm of t
at position p� its depth is the length of p
 The height of t� written jtj� is the maximal
depth of any subterm in t
 For an annotated term t� the out�weight of a position p
is the sum of the weights of the �possibly nested� outwards oriented wavefronts at
p
 The in�weight is de�ned identically except for inward directed wavefronts
 We
now de�ne a measure on terms corresponding to the �nal tree in Fig
 � based on
weights of annotation relative to their depths


De�nition � �Out�In Measure� The out�measure� MO�t� �in�measure� MI�t�	
of an annotated term t is a list whose i�th element is the sum of out�weights �in�
weights	 for all term positions in t at depth i�

For example� in the following palindrome function over lists ����� is in�x cons�

palin� H �� T
�
� Acc� � H �� palin�T� H �� Acc�

�

�

�

���

and the skeleton of both sides is palin�T�Acc� and the out�measure of the LHS is
����� and the RHS is �����
 The in�measures are ����� and ����� respectively


We now de�ne a well�founded ordering on these measures which re�ects the
progress that we want rippling to make during rewriting
 Consider� a simple wave�






rule like ����

s�U �
� � V � �U � V � � V

�

�

The LHS out�measure is ��� ��� and the RHS is ��� ��
 Rippling has progressed here
as the one out�oriented wavefront has moved up the term
 In general� rippling
progresses if one out�oriented wavefront moves up or disappears� while nothing
deeper moves downwards
 If the out�measure on a term before rippling is �l�� ���� lk�
and after �r�� ���� rk� then there must be some depth j where lj � rj and for all i � j
we have li � ri
 This is simply the lexicographic order on the reverse of the two lists
�compared with � on the natural numbers�
� Progress for in�oriented wavefronts
is similar and re�ects that these wavefronts should move towards leaves� that is�
we use the lexicographic order on the in�measures
 Of course� both outward and
inward oriented wavefronts may occur in the same rule
 For example� consider ���

As in ���� we de�ne a composite ordering on the out and in measures
 We order
the out measure before the in measure since this enables us to ripple wavefronts
out and either to reach the top of the term� or at some point to turn the wavefront
down and to ripple it in towards the leaves


De�nition � �Composite Ordering� t 
 s i
 hMO�t��MI�t�i �o hMO�s��MI�s�i
where �o is the lexicographic order on pairs whose �rst components are compared
with �revlex and the second with �lex� the reversed and unreversed lexicographic
order on lists of equal length�

Given the well�foundedness of � on the natural numbers and that lexicographic
combinations of well�founded orders are well�founded we can conclude the following


Lemma � The composite ordering is well�founded�

We lack space here to discuss implementations of rippling
 Two di�erent imple�
mentations are considered in ��� and ����
 For both calculi� 
 �and 
� of the next
section� is monotonic and stable over the substitutions produced during rippling

It follows from standard techniques that if all wave�rules are oriented so that l 
 r
then rippling terminates ���


� Ordering Multi�Wave�Rules

We now generalize our order for simply annotated terms to those with generalized
annotation� that is� multiple waveholes in a single wavefront
 Wave�rules involving
such terms are called multi�wave�rules in ��� and we have already seen an example
of this in ���
 The binomial equation is another example


binom� s�X�
�

� s�Y �
�

� � binom�X� s�Y �
�

� � binom�X�Y �

�

����

We de�ne orders for generally annotated terms in a uniform way from the pre�
vious ordering by reducing generally annotated terms to sets of simply annotated
terms and extending 
 to such sets
 This reduction is accomplished by considering
ways that general annotation can be weakened to simple annotation by �absorbing�
waveholes
 Weakening a multi�wave term like ���� erases some of the waveholes
�underlining� though always leaving at least one wavehole
 A wavefront is maxi�
mally weak when it has exactly one wavehole
 A term is maximally weak when all

�Note that these lists are the same length as the skeletons of both sides are identical� however�

when we generalize the measure to multi�holed waves� the skeletons may have di�erent depths and

we pad with trailing zeros where necessary�

	



its wavefronts are maximally weak
 Maximally weak terms are simply annotated
and this allows us to use the previously de�ned measure 
 on these terms


Returning to the binomial example� ���� has only the following two weakenings


binom� s�X�
�

� s�Y �
�

� � binom�X� s�Y �
�

� � binom�X�Y �

�

����

binom� s�X�
�

� s�Y �
�

� � binom�X� s�Y �� � binom�X�Y �
�

����

Both of these are maximally weak as each wavefront has a single hole

Let weakenings�s� be the set of maximal weakenings of a term s
 We now de�ne

an ordering on generally annotated terms l and r


De�nition 	 �General ordering� l 
� r i
 weakenings�s� 

 weakenings�t�
where 

 is the multiset ordering over the order 
 on simply annotated terms�

This order is sensible as all the elements of the weakening sets are simply annotated
and can be compared with 

 Also observe that if l and r are simply annotated
then their weakenings are flg and frg and l 
� r agrees with l 
 r
 In general� we
will drop the superscript on 
� and use context �e
g
� at least one argument has
multiple holes� to disambiguate


As the multi�set extension of a well�founded ordering is well�founded ���� we
immediately have the following lemma


Lemma � 
� is well�founded�

As an example� consider ����
 The LHS weakenings are

fbinom� s�X�
�

� s�Y �
�

�g �

The RHS weakenings are

f binom�X� s�Y �
�

� � binom�X�Y �

�

� binom�X � s�Y �� � binom�X�Y �
�g �

The sole member of the �rst set is 
�greater than both members of the second set

This equation is measure decreasing and hence a wave�rule when used left to right


� Parsing

These orders are simple and admit simple mechanization
 We begin with simply
annotated terms and then sketch the generalization to multi�waves
 We have im�
plemented the routines we describe and in x� we report on practical experience


A wave�rule l � r must satisfy two properties� the preservation of the skeleton�
and a reduction of the measure
 We achieve these separately
 An annotation phase
�rst annotates l and r with unoriented wavefronts so their skeletons are identical�
this guarantees that rippling is skeleton preserving
 An orientation phase then
orients the wavefronts so that l 
 r
 We sum this up by the slogan

WAVE�RULE � ANNOTATION � ORIENTATION � ����

�



��� Annotation

To annotate terms we can use the ground di
erence uni�cation algorithm given
in ���
 Since parsing is an o��line computation �performed once before theorem
proving�� it is also reasonable to �nd skeleton preserving annotation via generate�
and�test� generate candidate annotations and test if the resulting terms have the
same skeleton
 Consider� for example� annotating the recursive de�nition of the
palindrome function
 There are four possible skeletons� palin�T�Acc�� T � Acc� and
H
 The �rst of these corresponds to the annotation

palin� H �� T �Acc�� H �� palin�T� H �� Acc� � � ��
�

The remaining annotations are trivial in that both sides are completely within
wavefronts except for some subterm at the leaves
 For example�

palin�H �� T�Acc� � H �� palin�T�H �� Acc�� �

Such trivial wave�rules can usually be ignored as they they make no progress moving
wavefronts �although they can be used for wavefront normalization� see x�
��


��� Orientation

Given annotated� but unoriented rules� we must now orient them by placing arrows
on the wavefronts
 We do this by picking an orientation for wavefronts on the LHS
of the wave�rule and �nding an orientation on the RHS such that l 
 r
 In Clam
the wave�rules used are oriented with wavefronts on the LHS exclusively out or in

Other combinations are� of course� possible
 In general the number of wavefronts�
n in the LHS is very small� typically one or two in ���� hence� it is not much extra
e�ort to consider all �n orientations and for each of these generate an orientation
for the RHS
� In practice this is manageable� see x�


For each orientation of l we must orient r
 If l contains at least one outward ori�
ented wavefront there will always be a measure decreasing orientation of r� namely
with all wavefronts oriented in
 However� orienting wavefronts inwards prohibits
later rippling out whilst orienting outwards does not
 If rippling�out blocks� we can

always redirect wave�rules inwards with the rewrite rule
 F �X�
� � F �X�

�


 This

rule is structure preserving and measure decreasing
 Hence� we orient r�s annota�
tion so that it is measure decreasing and 
�maximal� that is� for all orientations ro�
if l 
 ro then r � ro �� is the union of the identity relation with 
�


One can �nd a maximal orientation using generate and test� but it is possible
to do much better
 Below we sketch an algorithm� linear in jrj
 Its input is two
annotated terms l and r where l is oriented and r unoriented
 The output is r
oriented and 
�maximal
 In what follows� suppose jlj �and hence jrj� equals k
 Let
t�i be the sum of out�weights at depth i� t�i be the sum of in�weights at depth i�
and flip�t� d� n� be the operation that non�deterministically �ips down n arrows in
t at depth d �there may be multiple choices corresponding to di�erent branches or
multiple wavefronts at the same position�
 We assume below that l has at least
one wavefront oriented up
 If this is not the case then all of r�s wavefronts must
be oriented down and this is a maximal orientation i� l 
 r
 Otherwise orientation
proceeds as follows
 We �rst orient all the wavefronts in r upwards and then execute
the �rst of the following statements that succeeds


�
 choose the maximum i such that l�i � r�i and �j � fi� ���kg�flip�r� j� r�j 
 l�j �

�This requires of course an implementation that e�ciently indexes wave�rules so that extra

wave�rules do not degrade the performance of rippling�

�



�
 �i � f���kg�flip�r� i� r�i 
 l�i � and succeed if MI�l� �lex MI�r�

�
 choose the minimum i such that l�i �� �� flip�r� i� r�i 
 l�i 
 �� and �j � fi �
���kg�flip�r� j� r�j 
 l�j�

Each of the three statements can be executed in linear time
 Note that the �rst
two may fail �there does not exist a maximum i in the �rst case� or in the second
the test MI�l� �lex MI�r� fails� but the third case will always succeed


Lemma � The orientation algorithm computes all 
�maximal r where l 
 r�

Proof �sketch�
 If the �rst statement succeeds then �j � fi � ���kg�l�j � r�j and

l�i � r�i so MO�l� �revlex MO�r� and r is maximal
 Otherwise� �i�l�i � r�i so we
�ip arrows down to equate out�orders and test MI�l� �lex MI�r�
 If this succeeds�
we have a maximal r
 Otherwise we still have �i�l�i � r�i but �ipping arrows in
r to equate out�orders is insu�cient as r then has a larger in�order
 However� by
assumption� l has at least one outward wavefront with a least depth i� so we can
�ip enough arrows at this depth so ri � li 
 �
 Thus l 
 r and r is maximal
 �

This parser for simply annotated terms is correct �it only returns wave�rules�
and complete �it returns all maximal wave�rules under the orderings we de�ne�

As an example� consider ��� with the LHS oriented all out
 We begin by orienting
both wavefronts in the RHS out
 The two sides thus have the measures h��� ��� ��� ��i
and h��� ��� ��� ��i respectively
 Hence step � fails
 Moreover� if we equate the out�
measures by turning down the annotation at depth �� this gives the RHS a measure
of h��� ��� ��� ��i so step � fails
 Finally we succeed in step � by turning down the
arrow at depth � giving the RHS a measure of h��� ��� ��� ��i
 The resulting oriented
annotation is given in ���


��� Multi�waves and sinks

The above ideas generalize easily to multi�wave�rules
 For reasons of space we
only sketch this
 We generate skeleton preserving annotations analogous to the
single�hole case but allow multi�holed wavefronts
 Usually both sides are simply
annotated and we may use the above orientation algorithm
 Alternatively� after
�xing an orientation for the LHS of the wave�rule we may orient the RHS by cycling
through possible orientations
 For each orientation we compare the weakenings of
the two sides under the multi�set ordering over our measure and we pick the RHS
orientation with the greatest measure
 There are various ways the e�ciency of this
can be enhanced
 E
g
 we need only compute weakenings of each side once� with
�orientation variables� we may propagate the di�erent orientations we select for the
RHS to orientations on the weakening set before comparison under the multi�set
measure


One kind of annotation we haven�t yet discussed in our measures is sinks �see x��

This is deliberate as we can safely ignore sinks in both the measure and the parser

Sinks only serve to decrease the applicability of wave�rules by creating additional
preconditions� that is� we only ripple inwards if there is a sink underneath the
wavefront
 But if rippling terminates without such a precondition� it terminates
with it as well
 Sinks �and also recent additions to rippling such as colours ��	��
can be seen as not e�ecting the termination of rippling but rather the utility of
rippling
 That is� they increase the chance that we will be able to fertilize with the
hypothesis successfully


�



� Extensions to Rippling

By introducing new termination orders for rippling� we can combine rippling with
conventional term rewriting
 Such extensions greatly extend the power and appli�
cability of rippling both within and outwith induction
 In addition� by design� our
orderings are not dependent upon rippling preserving skeletons
 This allows us to
use rippling in new domains involving� for example� mutual recursion or de�nition
unfolding where the skeleton needs to be modi�ed� such applications were previously
outside the scope of rippling
 We feel that these extensions o�er the promise of the
�best of both worlds�� that is� the highly goal directed nature of rippling combined
with the �exibility and uniformity of conventional rewriting
 To test these ideas�
we have implemented an Annotated Rewrite System� a simple PROLOG program
which manipulates annotated terms� and in which we can mix conventional term
rewriting and rippling
 All the examples below have been proven by this system


��� Unblocking

Rippling can sometimes become blocked
 Usually the blockage occurs due to the
lack of a wave�rule to move the di�erences out of the way� in such a situation
the wave�rule may be speculated automatically using techniques presented in ����

However� sometimes the proof becomes blocked because a wavefront needs to be
rewritten so that it matches either a wave�rule �to allow further rippling� or a sink
�to allow fertilization�
 This is best illustrated by an example


Consider the following theorem� where rev is naive reverse� qrev is tail�recursive
reverse using an accumulator� �� is in�x append� and �� in�x cons


�L�M� qrev�L�M � � rev�L� �� M ��	�

To prove this theorem� we perform an induction on L
 The induction hypothesis is

qrev�l�M � � rev�l� �� M

and the induction conclusion is

qrev� h �� l
�

� bmc� � rev� h �� l
�

� �� bmc � ����

where m is a skolem constant which sits in a sink� annotated with �b c�

We will use wave�rules taken from the recursive de�nition of qrev� and rev


rev� H �� T
�
� � rev�T � �� �H �� nil�

�

����

qrev� H �� T
�
� L� � qrev�T� H �� L

�
� ����

On the LHS� we ripple with ���� to give

qrev�l�

�
h ��m

�
�
� � rev� h �� l

�
� �� bmc �

On the RHS� we ripple with ���� and then �
�� the associativity of �� to get

qrev�l�

�
h �� m

�
�
� � rev�l� �� �

�
�h �� nil� �� m

�
�
�� ����

Unfortunately� the proof is now blocked
 We can neither further ripple nor fertil�
ize with the induction hypothesis
 The problem is that we need to simplify the
wavefront on the righthand side
 Clam currently uses an ad�hoc method to try to

�



perform wavefront simpli�cation when rippling becomes blocked
 In this case ����
is rewritten to

qrev�l�

�
h ��m

�
�
� � rev�l� �� �

�
h ��m

�
�
� �

Fertilization with the induction hypothesis can now occur

In general� unblocking steps are not sanctioned under the measure proposed ear�

lier� or that given in ���� their uncontrolled application during rippling can lead to
non�termination
 But we can easily create new orders where unblocking steps are
measure decreasing
 These new orders allows us to combine rippling with conven�
tional rewriting of wavefronts in an elegant and powerful way
 Namely� unblocking
rules will be measure decreasing wave�rules accepted by the parser and applied like
other wave�rules


We de�ne an unblocking ordering by giving �as before� an ordering on simply
annotated terms� which can then be lifted to an order on multi�wave terms
 To order
simply annotated terms� we take the lexicographic order of the simple wave�rule
measure proposed above �using size of the wavefront as the notion of weight� paired
with �wf � an order on the contents of wavefronts
 As a simply annotated term may
still contain multiple wavefronts� this second order is lifted to a measure on sets
of wavefronts by taking its multi�set extension
 The �rst part of the lexicographic
ordering will ensure that anything which is normally measure decreasing remains
measure decreasing and the second part will allow us to orient rules that only
manipulate wavefronts
 This combination provides a termination ordering that
allows us to use rippling to move wavefronts about the skeleton and conventional
rewriting to manipulate the contents of these wavefronts


For the reverse example� the normalization ordering is very simple� we use the
following wave�rules


nil �� L
� � L ����

�H �� T � �� L
� � H �� �T �� L�

�

����

The �rst is already parsed as a wave�rule using our standard measures� but we need
to add the second
 This rule doesn�t change the size of the wavefront or its position
but only its form
 Hence we want this to be decreasing under some normalization
ordering
 There are many such orderings� here we take �wf to be the recursive
path ordering ��� on the terms in the wavefront where �� has a higher precedence
than �� and all other function symbols have an equivalent but lower priority
 The
measure of the LHS of ���� is now greater than that of the RHS as its wavefront is
�H �� T � �� � which is greater than H �� �T �� �� in the recursive path ordering
�to convert wavefronts into well formed terms� waveholes are marked with the new
symbol ��


Unblocking steps which simplify wavefronts are useful in many proofs enabling
both immediate fertilization �as in this example� and continued rippling
 Wavefronts
can even be unblocked using a di�erent set of rules to that used for rippling


��� Mutual Recursion and Skeleton Simpli�cation

Rippling can also become blocked because the skeleton �and not a wavefront� needs
to be rewritten
 This happens in proofs involving mutually recursive functions�
de�nition unfolding� and other kinds of rewriting of the skeleton
 Consider

�x� even�s�s���� � x�

��



where even has the following wave�rules


even� s�U �
�

� � odd�U � ����

odd� s�U �
�

� � even�U � ����

Note that ���� and ���� are not wave�rules in the conventional sense since they
are not skeleton preserving
 However� they do decrease the annotation measure

Rules ���� and ���� can be viewed as a more general type of wave�rule of the
form LHS � RHS which satisfy the constraint skeleton�LHS� � skeleton�RHS�
where � is some equivalence relation
 In this case� the equivalence relation includes
the granularity relation in which even�x� and odd�x� are in the same equivalence
class
 Rippling with this more general class of wave�rules still gives us a guarantee of
termination
 However weakening the structure preservation requirement can reduce
the utility of rippling since now we are only guaranteed to rewrite the conclusion
into a member of the equivalence class of the hypothesis


To prove the theorem� we will also need the following wave�rules


s�U �
�

� V � s�U � V �
�

��
�

U � s�V �
� � s�U � V �

�

��	�

The theorem can be proved without ��	� but this requires a nested induction and
generalization� complications which need not concern us here


The proof begins with induction on x
 The induction hypothesis is

even�s�s���� � n�

and the induction conclusion is

even�s�s���� � s�n�
�

�� ����

Unfortunately rippling is immediately blocked
 To continue the proof� we simplify
the skeleton of the induction conclusion by exhaustively rewriting ���� using the
unannotated version of ��� and the following rules


�� V � � ����

� � V � V ����

This gives

even� s�n�
�

� s�n�
�

�� ����

Note that the skeleton was changed by this rewriting
 The induction hypothesis can�
however� be rewritten using the same rules so that it matches the skeleton of ����

Of course� arbitrary rewriting of the skeleton may not preserve the termination of
rippling
 To justify these unblocking steps we therefore introduce a new termination
order which combines lexicographically a measure on the skeleton with the measure
on annotations
� We then admit rewrite rules provided their application decreases
this combined measure
 This new order allows us to combine rippling with conven�
tional rewriting of the skeleton in an elegant and powerful way
 In this case� the

�With more complex theorems� the height of the skeleton may increase� the addition of the

height of the skeleton to the order ensures termination in such situations�

��



recursive path order on skeletons �with precedence � � � � s � �� is again ade�
quate
 Note that though termination is guaranteed� again skeleton preservation has
been weakened
 Since the skeleton can be changed during rippling� we are no longer
able to guarantee that we can fertilize at the end of rippling
 However� provided
the skeleton is rewritten identically in both the hypotheses and the conclusion� we
will still be able to fertilize


To return to the proof� rippling ���� with ��
� gives

even� s�n� s�n�
�

�

�

��

Then with ��	� gives

even� s�s�n � n��
�

��

We now ripple with the mutually recursive de�nition of even� �����

odd� s�n � n�
�

��

Note that this step also changes the skeleton
 However� as the measure decreases
and as the skeleton stays in the same equivalence class� such rewriting is permitted

Finally rippling with ���� gives

even�n � n��

This matches the �rewritten� induction hypothesis and so completes the proof

The power of rippling is greatly enhanced by its combination with traditional

rewriting
 For example� proofs involvingmutually recursive functions� or other kinds
of skeleton simpli�cation �e
g
� de�nition unfolding� were not previously possible
with rippling
 The use of conventional term rewriting to simplify the skeleton is a
natural dual to the use of conventional rewriting to simplify wavefronts� indeed they
are orthogonal and can be combined to allow even more sophisticated rewriting


��� Other Applications

Rippling has found several novel uses of outside of induction
 For example� it has
been used to sum series ��
�� to prove limit theorems ��	�� and guide equational
reasoning ����
 However� new domains� especially non�inductive ones� require new
orderings to guide proof
 For example� consider the PRESS system ���
� To solve
algebraic equations� PRESS uses a set of methods which apply rewrite rules
 The
three main methods are� isolation� collection� and attraction
 Below are examples
of rewrite rules used by each of these methods


ATTRACTION � log�U � � log�V �
� � log�U � V �

�

COLLECTION � U � U
� � U�

�

ISOLATION � U�
�

� V � U � �pV
�

PRESS uses preconditions and not annotation to determine rewrite rule appli�
cability
 Attraction must bring occurrences of unknowns closer together
 Collection
must reduce the number of occurrences of unknowns
 Finally� isolation must make
progress towards isolating unknowns on the LHS of the equation
 These require�
ments can easily be captured by annotation and PRESS can thus be implemented

�Due to space constraints� we only sketch this application� The idea of reconstructing PRESS

with rippling was 	rst suggested by Nick Free and Alan Bundy�

��



by rippling
 The above wave�rules suggest how this would work
 PRESS wave�
rules are structure preserving� where the preserved structure is the unknowns
 The
ordering de�ned on these rules re�ects the well�founded progress achieved by the
PRESS methods
 Namely� we lexicographically combine orderings on the number
of waveholes for collection� their distance �shortest path between waveholes in term
tree� for attraction� and our width measure on annotation weight for isolation


� Related Work and Experience

The measures and orders we give are considerably simpler than those in ���
 There�
the properties of structure preservation and the reduction of a measure are inter�
twined
 Bundy et al� describe wave�rules schematically and show that any in�
stance of these schemata is skeleton preserving and measure decreasing under an
appropriately de�ned measure
 Mixing these two properties makes the de�nition of
wave�rules very complex
 For example� the simplest kind of wave�rule proposed are
so�called longitudinal wave�rules �which ripple�out� de�ned as rules of the form�

	� ����
�

�
� ��� �p�

�
�
�

� ��� �n��
�

n� ��� �
pn
n �

�

� � 
�	���

�
� ��� ��

n�� ��� 	��
k
�
� ��� �k

n��
�

that satisfy a number of side conditions
 These include� each �j
i is either an

unrippled wavefront� �i��
�

i � � � � � �
pi
i � � or is one of the waveholes� �li� for each j� at

least one �j
i must be a wavehole
 	� the �is� and 
 are terms with distinguished

arguments� 
 may be empty� but the �is and 	 must not be
 There are other
schemata for traverse wave�rules and creational wave�rules�
 These schemata are
combined in a general format� so complex that in ��� it takes four lines to print
 It
is notationally involved although not conceptually di�cult to demonstrate that any
instance of these schemata is a wave�rule under our size and width measures


Consider the longitudinal schema given above
 It is clear that evey skeleton
on the RHS is a skeleton of the LHS because of the constraint on the �i

j 
 What
is trickier to see is that it is measure decreasing
 Under our order this is the
case if LHS 
� RHS
 We can show something stronger� namely� for every r �
weakenings�RHS�� �l � weakenings�LHS�� l 
 r
 To see this observe that any such
r must be a maximal weakening of

r� � 
�	���

�
� � � � � ��

n�� � � � � 	��
j
�
� � � � � �j

n�� ���	��
k
�
� � � � � �k

n��
�

for some j � f���kg
 Corresponding to r� is an l� which is a weakening of the LHS
where l� � 	�t�� ���� tn� and the ti correspond to the ith subterm of 	��j

�
� � � � � �j

n�

in r�� if �j
i is an unrippled wavefront then ti � �j

i � �i���i � � � � � �
pi
i � � and alterna�

tively if �j
i a wavehole �li then ti � �i���i � � � � � �

l
i� � � � � �

pi
i � 
 Now r is a maximal

weakening of r� so there is a series of weakening steps from r to r�
 Each of these
weakenings occurs in a �j

i and we can perform the identical weakening steps in the
corresponding ti in l� leading to a maximal weakening l
 As l and r are maximally
weak they may be compared under 

 Their only di�erences are that r has an
additional wavefront at its root and is missing a wavefront at each �j

i correspond�

ing to a wavehole
 The depth of �j
i is greater than the root and at this depth the

�Creational wave�rules are used to move wavefronts between terms during induction proofs by

destructor induction� They complicate rippling in a rather specialized and uninteresting way� Our

measures could be easily generalized to include such creational rules�

��



out�measure of l is greater than r �under any of the weights de�ned in x�� and at
all greater depths they are identical
 Hence l 
 r


Similar arguments hold for the other schemata given in ��� and from this we
can conclude that wave�rules acceptable under their de�nition are acceptable under
ours
 Moreover it is easy to construct simple examples that are wave�rules under
our formalism but not theirs� for example� the following two rules are measure
decreasing but are not instances of their schema


rot� s�X�
�

� H �� T
�
� Acc�� rot�X�T� H �� Acc

�
�

� �X
� � X

Aside from being more powerful� there are additional advantages to the approach
taken here
 Our notion of wave�rules and measures are signi�cantly simpler and
therefore easier to understand
 As a result� they are easier to implement
 The
de�nition of wave�rules given in ��� is not what is recognized by the Clam wave�
rule parser as it returns invalid wave�rules under either our de�nition or that of ���
and misses many valid ones
 For example� Clam�s current parser fails to �nd even
wave�rules as simple as the following


divides� X � Y
�

� Y � � s�divides�X�Y ��
�

We have therefore implemented the parser described in x	
 The parser is sim�
ple� just a couple of pages of Prolog� yet allows new orderings based on di�erent
annotation measures to be easily incorporated
 Although parsing is in the worst
case exponential in the size of the rewrite rule� the parser typically takes under 	
seconds to return a complete set of maximal wave�rules �which seems reasonable for
an o��line procedure�
 The parser is part of our annotated rewrite system and will
be shortly integrated into the Clam theorem prover


	 Conclusions

An ordering for proving the termination of rippling along with a schematic de�
scription of wave�rules was �rst given in ���
 We have simpli�ed� generalized and
improved both this termination ordering� and the description of wave�rules
 In
addition� we have shown that di�erent termination orderings for rippling can be
pro�tably used within and outwith induction
 Such new orderings can combine the
highly goal directed features of rippling with the �exibility and uniformity of more
conventional term rewriting
 We have� for example� given two new orderings which
allow unblocking� de�nition unfolding� and mutual recursion to be added to rip�
pling in a principled �and terminating� fashion� such extensions greatly extend the
power of the rippling heuristic
 To support these extensions� we have implemented
a simple Annotated Rewrite System which annotates and orients rewrite rules� and
with which we can rewrite annotated terms
 We have used this system to perform
experiments combining rippling and conventional term rewriting
 We con�dently
expect that this combination of rippling and term rewriting has an important r ole
to play in many areas of theorem proving and automated reasoning
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