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A b s t r a c t .  A hybrid system is modeled with a finite set of locations and 
a differential inclusion associated with each location. We discuss a sub- 
class of hybrid systems with constant rectangular differential inclusions. 
The continuous state of the system is x E JR'* with zi evolving with 
differential inclusion xi E [Li, Ui] where Li, Ui are integers (i.e., the slope 
of trajectory of zi could be changing, but is restricted to remain within 
[Li, Ui]). A transition from one location to another can be made provided 
the state satisfies the enabling condition for the transition. The state can 
also be initialized to a new value during the transition. The differential 
inclusion for zi can be changed when zi is an integer or when zi is 
initialized to a new value. We show that the verification problem for this 
class of hybrid systems is decidable. With this approach, systems with 
unsynchronized and drifting docks can be modeled, a general differential 
equation can be abstracted by breaking the state space into regions with 
constant differential inclusions, and many previously presented hybrid 
system examples can be verified. 

1 I n t r o d u c t i o n  

Hybrid sys tems  are modeled as a u t o m a t a  with a finite set of  locations and con- 
t inuous s ta te  x E IR '~. There  is a differential inclusion at each locat ion and the 
edges be tween locations have enabling conditions [1, 12, 13, 16]. The  hybrid  
sys tem s tar t s  in a specified locat ion with an initial condit ion x0 E ]R n. The  con- 
t inuous t r a j ec to ry  evolves according to the differential inclusion associated with 
tha t  locat ion.  At  some t ime t, x(t) satisfies the enabling condit ion for a transi- 
tion and a j u m p  is made  to a new location. The  state  x could be initialized to a 
new value dur ing the jump.  At  the new location, x begins evolving according to 
the differential inclusion associated with tha t  location. After some time, another  
t ransi t ion is made,  and so on. 

In this paper ,  we s tudy  hybr id  systems with cons tant  differential inclusions 
of  the form ILl,  U1] • - ' - •  [Ln, Un] where L~, U~ are integers. The  continuous 
state  of  the sys tem,  z E ]l:t n, evolves according to xl E ILl, Ui], i = 1 , . . - ,  n (i.e., 
the slope o f  t r a j ec to ry  xi could be changing but  is restr icted to  remain within 
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[Li, Ui]). These are also called Bounded-Rate Automata in [4]. A transition from 
one location to another can be made provided the state satisfies the enabling 
condition for the transition. A transition to a new location with different dif- 
ferential inclusion can be made only when xi is an integer value or when zi is 
initialized. During the transition, the state can be initialized to a new value. We 
show that  under these conditions, interesting verification problems for the hybrid 
system are decidable. In particular, we show that the languages generated by 
our hybrid automata  are regular. Our model does not include integration graphs 
[I0], since we permit the differential inclusion for zi to change only when xi is 
initialized, or when xi is an integer. 

Systems with clocks [6, 2, 3, 9, 8, 15], where ~i = 1, are special cases of the 
hybrid systems we consider. With our approach, systems with unsynchronized 
or drifting clocks can be modeled, systems with differential equations can be 
abstracted by breaking the state space into regions with constant differential 
inclusions [16], and it follows that for many hybrid system examples [1, 13], 
there is a decision procedure that  will terminate. 

In Sect. 2, we introduce the sub-class of hybrid systems. In Sect. 3, we present 
the decidability results. 

2 H y b r i d  A u t o m a t a  

2.1 P r e l i m i n a r i e s  

N o t a t i o n  IR is the set of reals and 71 is the set  of integers. IR + is the set of 
non-negative reals and 71+ is the set of non:negative integers. For X C 71, define 
X A  = {kAIk  E X } .  For an interval In, b], where a, b E 71 and ;~ E 71+, define 
[a, b]z~ = {a, a -t- A , . . . ,  b}. For z E IK, define [xJ ~ -- kA where k is the largest 
integer for which kz~ _< x. In this paper, we always take the floor with respect 
to A, so we write [xJ instead of [xJ a .  

D i f f e r e n t i a l  I n c l u s i o n  A differential equation is ~ = f ( z )  where x E ]R" and 
f : IR n ~ lRn. A solution to the differential equation with initial condition 
x0 E IK n is an~r differentiable function r where r : IR + --* IW' such that  
r = x0 and r = f(C(t)). 
A differential inclusion is written as ~ E f (x )  where x E IW ~ and f is a set- 
valued map from lit'* to IR '~ (i.e., f ( z )  C IW~). A solution to the differential 
inclusion with initial condition z0 E lK n is any differentiable function r where 
r : IR + ---* IRn such that  r = x0 and/b(t) E f(r  

A differential equation with a given initial condition has a unique solution (under 
Lipshitz conditions), whereas a differential inclusion has a family of solutions. 

In this paper we consider constant differential inclusions a~ E fl, fl = ILl,//1] • 
-." • [Ln, Un] where Li, Ui E 71 (i.e., ~i e [Li, Ui]). We define B to be the set of 
all such constant differential inclusions. 
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Enabling Conditions Enabling conditions will be associated with edges be- 
tween locations in the hybrid automaton. Similar to [2],we define �9 inductively 
to be the set of all enabling conditions: 

6 :"" #gi <___ CIZi ~> C]61 A 62161 V 62 where c E 7/. 

Enabling conditions are closed subsets of fit '~. 

Setting the Initial State During a transition, some components of the state 
may be initialized to a new value. We associate an initialization relation A= 
(Ax,---, An) with an edge where Ai= [li, ui] or Ai = i d, and li, ui E YT. When Ai= 
id (the identity relation), the value of xi does not change during the transiton. 
But for Ai= [/~, ui], xi is initialized non-deterministically to a value in I/i, ui]. 
For z E IR '~, define 

A[z] = {z' E ll~n[z~ = zi for Ai= id, and x~ E [li, ui] for Ai= [li,ui]}. 

We define S to be the set of all initialization relations. 

2.2 S y n t a x  

A hybrid automaton H = (L, ,U, D,Z,  r where L is a finite set of locations, ,U 
is a finite set of events, D : L ~ B associates a differential inclusion with each 
location, ZC L is a set of initial locations, and r C L x L • ,U • �9 x ,9 are the 
edge labels ( (l, l ~, #, 6, A) E r labels edge (l, 1 ~) with event #, enabling condition 
6, and initialization relation A). We further require that the differential inclusion 
for xi is changed only when zl is initialized. That  is, for edge label (l, l', c, 6, A), 
d = D(l),  d ~ = D(l'),  di = d~ when Ai = id. 

Fig. 1 is an example of the kind of hybrid automaton we consider in this 
paper. Note that  the differential inclusion for y is changed when making the 
transition from location C to location D because y is equal to - 4  at the tran- 
sition. That  is the same as checking y is equal to -4 ,  followed by initializing y 
to -4 .  However, the differential inclusion for x cannot change when going from 
location C to location D. 

2.3 S e m a n t i c s  

The hybrid automaton starts at an initial location with state x = 0. At location 
l, the state x moves according to the differential inclusion D(l).  It can make 
a transition from location I to location l '  with edge label (l, l', #, 6, A) provided 
x E 6. After the transition, the state is x ~ E )k[~] and the new differential inclusion 
is D(l') .  

The state trajectory x moves in two phase steps [14]. In the first phase, 
time progresses and z changes continuously. In the second phase, a sequence of 
transitions is made instantaneously (Fig. 2). Formally, z is a multiple-valued 
function. It is defined on [O, To],[T~,T1], [T; ,T2] . . .  with T l = ~ .  For T[ < 7]+1, 
x is differentiable on [T/,~+I].  A transition is made at time Ti, with the state 
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(a, (x<-O) (y-l)) 

B 

dx e [z, 3] 
dt 

dye [1 ,2]  
d t  

( a , ( x - 4 ) ( y < - - 3 ) )  

(b, ( x - - 2 ) ( y < - 2 ) )  

C 
dx e [ - 4 , - 2 ]  
dt  
dy q~- e [-3,-2] 

(b, (y--4)) 
I D 

. dx ~ [-4,-2] 

dt 

d-!-Y S [1,2] 
dt 

(a, (x<-2) (y->-5)) 

(b, (y'-3) ] 

' ( I ' dx E [-4,-2] (a, (x->0) (y<--6)) dx S [-4,-2] 
dt -- I Initialize v[ dt 
dY 8 [-3,-2] Y 8 [-5,-6] dY E [2,3] 
dt dt 

Fig. 1. Hybrid Automata with Rectangular Differentia] Inclusions 

X 

4.8 10 t 

Fig. 2. Sample Trajectory 
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being z ( ~ )  before the transition, and z(Tl)  after the transition. In Fig. 2, z is 
defined on [0,4.8], [4.8,4.8], [4.8, 10], and it makes two successive transitions at 
time 4,8. 

We associate a language s with our hybrid automaton.  Given ~ E S ~, 
we say ~ E s provided there is a sequence of edges < /0,11, ~0, 60, Ao > 
< 11,12,~1,61,~1 > "'" where I0 E 2: and < D(10),60,Ao > <  D(11),61,~1 > -.- 
is consistent. We say < D(lo),6o, Ao > <  D(11),61, A1 > . . .  is consistent when 
there is a t rajectory z for which this sequence of transitions is feasible. 

D e f i n i t i o n  1. A sequence < D(lo), 6o, Ao > <  D(ll), 61, A1 > . . .  is continuous- 
time consistent provided there is a multiple-valued function 2 : IR + ---* IR'* and 
a sequence of intervals [0, To], [T~, T1], [T~, T2] �9 .. with T[ = ~ such that  
1) x(0)  = 0 
2) e 
3)  (Tl) e 
4) For T~' < Ti+l, k(t) E D(li) for t E [T[,Ti+I] 

We similarly define the hybrid system which operates in discrete time according 
to a difference equation. Define 

1 
-~ = LCM{L~,U~IDi(I) = [L~,Ui] for 1E L and 1 < i < n} 

where L C M  is the least common multiple of the set. For the example in Fig. 1, 
1__ = L C M { 1 , 2 , 3 , 4 }  = 12. z~ 

D e f i n i t i o n  2. A sequence < D(lo), 6o, A0 > <  D(ll), ~1, )tl > . . .  is discrete-time 
consistent provided there is a multiple-valued function x : (T]+AI) ~ (7].4) ~ and 
a sequence of intervals [0, To], [T~, T1], [T~, T2] �9 .. where Ti E (7/+AI) and Ti ~ = T~ 
such that  
1) z(0) = 0 
2) 
3) x(TL) E (Ai[z(~))])A (i.e., for (hl)/ = [a,b],xj(T,!) E [a,b]a, and for (Ai)j = 
id, z/(T[)  = xj(Ti) ) 
4) For T[ < T/+I, z j ( ( n + l ) A ) - - z j ( n A )  e D(ll)j A for T[ < nA, ( n + l ) A  < Ti+l 

We call Hc the hybrid system which operates in continuous time and HD the 
system which operates in discrete time. For a E s there is a sequence 
< D(lo), 6o, Ao > <  D(/1), 6~, A~ > . . .  which is continuous-time consistent. Sim- 
ilarly for ~r E E(HD),  there is a sequence < D(/0), 60, A0 > <  D(I1), 61, )~ > . . .  
which is discrete-time consistent. 

3 D e c i d a b i l i t y  R e s u l t s  

Our main result is that  s  is a regular language. To prove this, we follow an 
approach similar to [8, 15]. We first show that s  = f-.(HD) and then prove 
that  f-.(HD) is regular. 
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We show s = f-.(HD) by proving a sequence p = <  D(lo),6o, Ao > <  
D(ll) ,  61, A1 > . . .  is discrete time-consistent iff it is continuous-time consis- 
tent. A discrete-time consistent sequence p has a discrete trajectory zd. The 
continuous trajectory ze obtained by linear interpolation from Zd also satisfies 
the constraints of p. Therefore, every discrete-time consistent sequence is also 
continuous-time consistent. The converse, that  a continuous-time consistent se- 
quence is also discrete-time consistent, is more difficult to prove. Lemma 3 states 
that  a sequence p with continuous trajectory will also have a piece-wise linear 
trajectory satisfying it (Fig. 3). Lemma 4 shows that  continuous trajectory zi 
on [tj, tj+x] with integer end points can be made into a trajectory on [LtiJ, Ltj+xJ] 
with same integer end points (Fig. 4). In Lemma 5 and Lemma 6, we show that  
for a sequence p and a continuous trajectory satisfying it at To < T1 < T2.. . ,  
there is another continuous trajectory which satisfies it at LT0], LTlJ, [T2], . . . .  
In Lemma 7, we finally show that  there is a discrete trajectory Zd which also 
satisfies p. 

xj 

I I l 
TO T1 T 2 t ime 

Fig. 3. Mean-Value Theorem 

L e m m a 3 .  I f  a sequence ,o = <  D(lo),6o,Ao > <  O(ll),61,)tl  > . . .  h a s  a c o n -  

t i n u o u s  trajectory, then it also has a piecewise linear trajectory (Fig. 3}. 

Proof: Suppose z satisfies p at To < 7"i _< T2. . . , then form z ~ by linear interpo- 
lation between points z(0), z(To), z(T1) , . . . .  From the Mean-Value theorem, it 
follows z / satisfies p. 

L e m m a 4 .  Given a differentiable function zi on [tj,tj+l] with ~i 6 [L, U] and 
�9 ~(tj) = ~ ,~ , ( t i+x)  = l wher~ k, l  e z .  We define ~ on [Lt~/, Lt~+lJ] by hn~ar 
interpolation between z~(ltjJ) = k and z~(Ltj+lJ)= l (Fig. 4). Then J:~ 6 [L, U]. 
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k+1 

k 

x! x 

II , I 
LtJt, t ,+ ,  

Fig. 4. Discretized Times for Trajectory with Integer End-Points 

Proof: Since 

for U > 0, we get 

�9 , ( t ~ + ~ )  - ~ , ( t j )  

U 

L < z i ( t j + x ) -  z i ( t j )  < U 
tj+l -- tj -- 

l - k  

U 
_ m A  <_ Lti+~J - [ t j j  

where m e 2~. Since ~ ( [ t j+ l J )  = z i ( t j+,)  and x~(Lt jJ  ) = ~ , ( t j ) ,  we  ge t  

x ~ ( L t ~ + l J )  - ~ ( L t j J )  < u 

L t j+ l j  - LtjJ - 

Similar proof holds when U _< 0. Similarly 

L < x ~ ( [ t j + l J )  - x~ ( [ t i J  ) 
- L t j+ l j  - LtjJ 

r , e m m a 5 .  Given a differentiable function zi on [b,c] with ~i E [L,U], there is 
' " [ L , U ] s u c h t h a t f o r j ,  k E T l ,  j < x i ( t ) < k  a function x~ on [LbJ, [cJ] with x~ e 

implies j < z~([tJ) _< k (Fig. 5). 

Proof: We look at the integer crossing points of xi (Fig. 5). Using consecutive 
integer crossing points t l , t2,  from Lemma 4, we obtain x~ on [[tlJ, [t2J] where 
~ E [L,U]. F o r t  E [tl,t2] and j , k  E 71, j < zi( t )  <_ k implies j < x~([tJ) < k. 
In case xi(b) is not an integer, we extend zi to a < b (keeping zi E [L, U]) so 
that  zi(a) is an integer and then reason as above. Similar reasoning applies if 
xi(c) is not an integer. After obtaining z~, we restrict it to [[bJ, [cJ]. 



k+l 

X t 

k-1 

I . I I I 
b Lt#  Lt j 

Fig. 5. Creating a Trajectory with Discretized Times 
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L e m m a 6 .  I f  a trajectory z sat is f ies  p at t imes  T o , T I , T 2 , . . . ,  then there is a 

t ra jec tory  z '  which sat is f ies  p at t i m e s / T 0 J , / T I ] ,  [T~J,... .  

Proof: Given zi on [O,T~][T~I ,T~2] , . . .  where Tk~ are times at which zi is ini- 
tialized and xi is continuous on interval [T~, Tkj+~] with zi E [Lj, Ui] (zi maybe 
discontinuous because it could get initialized to a new value at Tk,). The x} on 
[0, [T~,J][LTk~J, LT~J], . . .  from Lemma 5 satisfies p at times [T0J, LTlJ, [T2J, �9 ... 

' satisfies p at LT0J [TIJ [T2J,.. we get x' satisfies p. Since for i = 1, . . . , n, x i , , ., 

L e m m a  7. I f  a con t inuous  t ra jec tory  z sat is f ies  p at t imes  lToJ, LTd, [T~J,..- 
then the discrete trajectory  Xd where ( Z d ) i ( k . A )  - -  lz~(kLa)J also satisf ies p at 

t imes LToJ, [T d , LT~J . . . .  

Proof: Xd satisfies the enabling conditions since k < zi(LT~J) < I implies k < 
L~,(LT)J)J < I for k, t �9 7]. Furthermore (3:d)i also satisfies the difference inclu- 
sion constraints because 

L < x i ( ( k  + 1)zS) - xi(kA) 
- z~  < u  

implies 
L < L~((k § 1)n)J - L~(k~)J < u 

T h e o r e m 8 ,  s  = s 
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Proof: cr E s  (~' E s  provided there is asequence p = <  D(/0), 60, )% > <  
D(I1), 61,A1 > . . .  which is discrete-time (continuous-time) consistent. As dis- 
cussed at beginning of Sect. 3, every discrete-time consistent sequence is continuous- 
t ime consistent. From Lemma 3 - Lemma 7, every continuous-time consistent 
sequence is also discrete-time consistent. Thus ~, E s  iff ~ E s  

T h e o r e m 9 .  s  is a regular language. 

Proof: We will construct a finite state automaton which generates s  Let 
Mj be the largest integer with which xj is compared or initialized, and m j, the 
smallest such integer. Define /~ = {<} U {mi , rn  j + A , . . . , M j }  U {>}, F = 
/'1 • --- • F,~, and the finite set of states Q = L • F. The finite state automaton 
HD = (Q, 27,---,) where the transition relation ---*C Q • 27 • Q is defined as: 
�9 ( l ,v)  _L, ( l ,v ' )  where ~ = " < "  when vj = " < "  or vj + w < mj for some 
w E D(1)jzh; v~ =">"  when vj = " > "  or vj + w > Mj for some w e D(1)jA; 
v~ e { m j , m j  + A , . . . , M j }  when vJ - vj e D(I ) jA .  

�9 (l, v) -~ (i', v') provided (l, l', a, 6, A) ~ r v e 6, and v' e (h i [v~'])a. 
J 

The first par t  of the definition represents passage of A time and the second 
is an instantaneous transition. 

It  is not necessary to keep track of xj when it exceeds Mj. This is clear when 
zj  6 [Lj, Uj] where Lj, Uj > 0 because once ~:j exceeds Mj,  it can become less 
than Mj only by  being initialized. But it remains true even when Lj < 0 and 
Uj > 0 because any t rajectory which exceeds M~ and then falls below it can be 
replaced by another  which stays at Mj. Similar reasoning applies to mj .  

T h e o r e m  10. s  is a regular language 

Proof: From Theorem 8 and Theorem 9. 
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