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Abstract  

An important method for testing large and complex protocols repeatedly generates and 
tests a part of the reachable state space by following a random walk; the main advantage of 
this method is that it has minimal memory requirements. We use the coupling technique from 
Markov chain theory to show that short trajectories of the random walk sample accurately the 
reachable state space of a nontrivial family of protocols, namely, the symmetric dyadic flip-flops. 
This is the first evidence that the random walk method is amenable to rigorous treatment. 

Following West's original reasoning, efficient sampling of the reachable state space by random 
walk suffices to ensure effectiveness of testing. Is, however, efficient sampling of the random 
walk necessary for the effectiveness of the random walk method? In the context of Markov 
chain theory, "small cover time" can be thought of as a simpler justification for the effectiveness 
of testing by random walk; all symmetric (reversible) protocols possess the small cover time 
property. 

Thus the conclusions of our work are that (i)the random walk method can be understood in 
the context of known Markov chain theory, and (ii)symmetry (reversibility) is a general protocol 
style that supports testing by random simulation. 

1 Introduction 

Testing complex protocols for conformance with their specifications is an ever-lncreasing techno- 
logical challenge --see Holzmann's book for a detailed exposition [13]. According to Holzmann, 
traditional testing techniques based on full or controlled partial state exploration become very com- 
plex (perhaps prohibitively so) when the reachable state space becomes larger than, say, 10 s [13] [4] 
[17]. For larger protocols, an alternative testing method is what could be called the random walk 
method (a.k.a. random partial state exploration, or random simulation) [13] [19] [18]: Beginning 
at the starting protocol state, a random applicable action of the protocol is chosen and applied, 
another random step is repeated at the resulting state, and so on, up to some sufficiently large 
and yet computationally feasible number of steps. At each step the next action is chosen among 
the applicable actions either according to a distribution that  reflects the protocors operation, or 
uniformly at random - - the  latter technique is good for exploring the less traveled paths in the 
state space. The main advantage of this random simulation method is that  it has minimal space 
(memory) requirements: to simulate a step of the random walk we need to store only the current 
state and a description of the actions (which is a natural lower bound on memory for any state 
exploration process). 

When and why is the random walk testing technique sound? Engineers argue that testing is 
effective if the random walk looses memory of its starting state after a relatively short trajectory, 
thus the final point of the walk simulates accurate observation of the system in steady state, or, 
preferably, fair sampling of the protocol's reachable state space. Under such rapid mizin9 conditions, 
errors are recovered in time proportional to their probability of occurrence in stationarity, and the 
whole reachable state space can be potentially visited in time roughly proportional to its size 
(which is again a natural lower bound on time for any exhaustive search). In his influential paper 
introducing and advocating the random walk technique [19], West argued that  this is indeed the 
behavior of certain validation experiments over the OSI Session Layer, and, in the formal sense, in 
the case of a vexy simple hypothetical totally decoupled system (a system without communication 
between its entities). 
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There are several mathematical tools at the disposal of the full and controlled partial state ex- 
ploration approach to protocol testing, such as temporal logic algorithms for model verification (eg. 
see [20] [8] [9] for early references), symbolic methods, compression methods, projection methods, 
and techniques for testing and minimizing finite state machines (eg. see [15] [21] for recent refer- 
ences). In contrast, there is very little rigorous work on the random walk method --besides West's 
observation concerning the decoupled protocol. In Markov chain theory, it is now well understood 
that many common random walks do not converge in any satisfactory way --and a theory of those 
that do is emerging [10] [1] [2] [14] [16] [6] [11] [12]. In this context, West's example of a decoupled 
system is easily identified as the h~/percube, the most simple case of a rapidly mixing random walk. 

The aim therefore is to use Markov chain theory to separate those protocols which can be effec- 
tively tested by random walk from those which cannot. Naturally, circular characterizations such as 
"protocols whose reachable state space is an expander" are completely useless. For a proposed fam- 
ily of protocols to be interesting, it should be definable in terms of "local," "syntactic" properties 
of the protocols. Ideally, one would like syntactic guidelines, perhaps "styles" of protocol writing, 
that guarantee convergence of the associated random walk; for example, "reversibility of actions" 
could be such a property. A possible analogy here is the "structured programming" paradigm in 
software engineering, which guarantees positive debugging and maintainability properties of the 
resulting code. The question therefore is, what are examples of broad families of protocols whose 
state space can betested by random walks? 

In this paper we identify a family of protocols, namely systems of symmetric dyadic flip-flops 
(SSDF's), and prove that the random walk always converges to the uniform distribution over the 
state space of such protocols in time polylogarithmic in the size of the state space (Theorem 
3.1). Thus, by West's statistical arguments, this class can be tested by random walk. SSDF's are 
systems of communicating finite automata (see also Figure 1) with two states per entity (hence 
the name flip-flop); each action involves only two entities (hence the attribute "dyadic"); and 
symmetry (reversibility), that is, whenever an action that affects two coordinated transitions of two 
entities is present, the reverse action is also present. Although the expressibility of SSDF's is rather 
restricted, in the sense that their reachable state spaces have fairly regular characterizations, the 
transition graph over the reachable state space is highly irregular, and consequently our rapid mixing 
argument demonstrates nontrivial technique (and is a giant step beyond the mixing argument for 
the hypercube decoupled protocol, the only one heretofore analyzed in this way [19]). Therefore our 
result provides the first substantial evidence that the random walk method is amenable to formal 
Markov chain analysis and understanding. 

The technique employed to prove our main rapid mixing result uses the couplin 9 argument 
from Markov chain theory [1] [10] [5] [6]. To show that the random walk from some starting state 
converges within polynomial time to its stationary distribution, we imagine side-by-side two such 
walks, one from the starting state and one from an arbitrary state of the reachable state space, 
and coordinate their transitions so that each walk is simulated fairly, but in small expected time 
the two states coincide and thus the two walks are indistinguishable; since the second random walk 
can be assumed to start from the stationary distribution over all reachable states, fast convergence 
is established. 

Can arguments for the effectiveness of the random walk method extend beyond the class of 
SSDF's? This question is twofold. Firstly, can rapid mixing arguments for the justification of the 
random walk method extend beyond SDFF's? Secondly, are rapid mixing conditions necessary for 
the random walk testing method to be effective? 

For the first question, there are counter-examples showing that, if any of the conditions defining 
SDFF's fails, rapid mixing also fails [7]. But perhaps characterizations somewhat different to the 
features of SDFF's may reveal further rapid mixing cases (experiments suggest that "random" 
symmetric protocols mix rapidly, thus, capturing features of randomness that ensure rapid mixing 
might be a way to proceed). 

For the second question, we point out that small cover time may be a simpler justification for 
the effectiveness of the random walk method; small cover time is a strictly weaker property than 
rapid mixing. The cover time of a graph is the expected time for a random walk to visit all the 
vertices of the graph, and it fits naturally in the context of state space exploration. All symmetric 
systems posses the small cover time property. Thus a possible heuristic for testing by random 
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simulation could be to design systems as reversible as possible, and/or  impose artificial reversibility 
for simulation purposes. 

2 P r e l i m i n a r i e s  

A protocol is a system of communicating finite automata, the entities. Each entity is driven by 
a set of actions, and for a (state~ action) pair, the transition function determines (i)whether the 
action is applicable on the particular state (not all actions are applicable on all states), and if 
so, (ii)which is the new state after the action is applied. The system has communication in that  
an action may simultaneously involve several entities. When the system evolves as a whole, an 
action is applicable iff it is applicable for all entities that  it involves. This determines the transition 
function of the combined automaton, with combined states consisting of vectors of size n (storing 
the state of each entityl and actions consisting of the union of actions over all entities. Finally there 
is a specified starting combined state, and a reachable state space consisting of combined states to 
which the initial state can be driven by a sequence of applicable actions; realize that  the size N 
of the combined state space is exponential in n. The aim of testing is to explore the reachable 
state space of the reachable state space of the combined automaton. The aim of ej~cient testing 
is to explore the reachable state space using resources that  match the natural lower bounds (up to 
polynomial factors, that  is, time polyN and space poly n, and for practical efficiency as close to 
linear as possible). 

We shall also consider a protocol as a Markov chain (or random walk on the underlying graph of 
the combined automaton). Without loss of generality, we consider a slightly modified version of the 
natural random walk: Beginning at the starting combined state, at each step, some action is chosen 
uniformly at random among all actions of the system, and if the action is applicable to the current 
combined state, then, with probability 1/2, it is applied; in all other cases the combined state does 
not change. How can such a scheme support efficient testing? Firstly realize that  it satisfies the 
memory requirement for efficiency: to simulate each step, we need to store only the current state 
and the set of actions. To argue about time requirements we need additional conditions. 

A protocol is symmetric if it is it is symmetric as a combined automaton and as a Markov 
chain. This amounts to the protocol being reversible as a system: for each action a that  drives 

CLIENT A CLIENT B CLIENT C 

a b C' b' 

/ - \  

a '  

CRITICAL SECTION 

Figure  1: A system of Symmetric Dyadic Flip-Flops implementing Critical Section with Three Clients. 
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combined state ~' to combined state ~,  there exists a reverse action a -1 that  drives ~ to g Well 
known Markov chain theory suggests that  the random walk on symmetr ic  protocols converges to the 
uni]orm distribution over the whole reachable state space. Now for testing purposes, convergence to 
uniformity is quite favorable. We can use a point of  the random walk after convergence has (nearly) 
occurred as a uniformly random point of the state space. For a reachable state space of size N,  
O(N log N) uniform samples, in expectation, generate the whole space (in addition, for any fraction 
e of the reachable state space, a representative state is generated by e -1 samples in expectation). 
But can we ensure efficient convergence to uniformity? We focus on a class of symmetric protocols 
tha t  we call systems of symmetric dyadic flip-flops (SSDF's),  and show tha t  their convergence to 
uniformity is efficient, in the sense that  it is ensured after poly log N steps (Theorem 3.1). 

Three features determine symmetric dyadic flip-flops: They are symmetric in the way discussed 
above. They are flip-flops, meaning that  all entities have two states; we can assume that  these are 
0 and 1. They are dyadic, meaning that  each action involves at most  two automata;  without loss 
of generality we assume that  each action involves exactly two automata.  We impose the additional 
technical condition that  there are no self-loops, that  is actions tha t  leave the state of some involved 
automaton unchanged (self loops are treated in [7]). Thus, there  are two kinds of actions: the so 
called bar actions that  change a pair of O's to l ' s  and their inverses changing a pair of r s  to O's, 
and the so called Cross actions changing a pair of a 1 and a 0 to a pair of a 0 and a 1. Given 
a system of symmetric dyadic flip-flops, we define its communication graph, with one vertex for 
each automaton,  and with an edge [u, v] present if and only if there is an action (and its inverse) 
involving both  u and v; again, without loss of generality, we assume that  if there is a bar (resp. 
cross) action involving u and v, then there is no cross (resp. bar) action involving u and v. Now 
realize that  the transitions of the protocol can be completely specified by its communication graph, 
once its edges have been labeled as bar or cross; we call this the  labeled communication graph. 

For each combined state ~'we also consider its action communication graph: if [u, v] is a bar edge 
and the bits u and v are similar, or if [u, v] is a cross edge and the  bits u and v are opposite, then 
one of actions a and a -1 that  correspond to [u, v] is applicable on ~', thus we mark [u, v] as active; 
otherwise we mark [u, v] as inactive. Realize that  if a s t a t e ]  differs from a state  ~' on exactly one 
bit, say v, then the action communication graphs of ~ and q~ are identical on edges not incident to 
v, and exactly opposite on edges incident to u. In the next  section, we shall repeatedly think of 
combined states in terms of their action communication graphs and furthermore, of transitions as 
follows (see also Figure 2): for some active edge [u,v] with corresponding actions a and a -1 exactly 
one of which, say a, is applicable to ~, the effect of applying a on ~'can be thought of as activating 
the edge [u, v] on the action communication graph of ~" thus changing bits u and v, and, in the 
resulting action communication graph, changing all edges incident to u or v from active to inactive 
and vice versa, except for [u, v] itself which remains unchanged. 

Clearly the labeled communication graph is an invariant of the protocol, while the action com- 
munication graph changes from state to state. However, the action graph inherits certain invariants 
of the labeled graph. We shall need several such invariants in the  next section; here we start  by 
demonstrat ing the simplest one in Lemma 2.1 below. In particular, we say that  a cycle of the 
labeled graph has odd parity iff it contains an odd number of bar  edges, and we say that  a cycle 
of the action graph of a specific state has odd parity iff it contains an odd number of active edges 
(here we mean generalized cycle: a closed trail with arbitrary part ial  overlaps). 

L e m m a  2.1 (Cyc le  i nva r i an t )  (See also Figure 2). For any cycle o] the communication graph, 
the parity of the cycle in action graphs is invariant over all combined states, and it is the same as 
the parity of the cycle in the labeled graph. 

PROOF.  The parity of cycles in labeled and action graphs are trivially identical for the combined 
state ~ '= 00 . . .  0, and changing the bits of ~'one at a t ime preserves the parity of cycles on action 
communication graphs. 
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Figure 2: Transitions and cycle parities on action and labeled communication graphs. 

3 SDFF's, Coupling, and Rapid Mixing 

In this section we prove that SDFF's, viewed as Markov chains, posses the rapid mixing property, 
that is, the random walk is arbitrarily close to uniformity over N reachable states after poly log N 
number of steps. To establish rapid mixing we use the coupling method from Markov chain theory 
[1] [10] [5] [6]. Consider two random walks on the protocol, random walk q~(t) starting from some 
starting state q-'(0), and random walk q~(t) starting from some arbitrary state ~(0) reachable from 
q-'(0); qt(t) can be thought of as representing the uniform stationary distribution. Intuitively, we 
must show that q~(t) and ~(t) will soon be indistinguishable. To do this, we run q'~t) and ~(t) 
side-by-side, by applying subtle coordination in their transitions. The coordination is such that 
both random walks still obey the appropriate transition probabilities, but within expected time 
poly n = poly log N the two walks converge to the same state. More formally, where the coupling 
time T is the first time that q'~t) and q'(t) match: q-'(T) = ~(T), and E[T] is its worst case 
expectation (over all initial configurations q"(0) and ~(0) that are reachable from each other), the 
variation distance of q'~t) from stationarity can be bounded by (see [1] [10] [5] for a proof): 

_< 

For the coupling, we keep pebbles on the vertices of the communication graph where ~(t) and 
~(t) differ and measure progress in terms of the number of pebbles left. In particular, where [u, v] 
is an edge of the communication graph and there are pebbles on vertices here ~(t) and ~(t) differ, 
realize that the following hold: (i)If there are pebbles on both u and v, then either [u, v] is active 
for both ~(t) and r or [u,v] is inactive for both ~(t) and ~(t). The case where [u,v] is active 
for both processes is particularly favorable: if [u, v] is activated on exactly one of the processes, 
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then this process will change bits u and v thus matching them with the other process, and the 
pebbles can be removed from vertices u and v. (ii)If there is a pebble on exactly one of u and v, 
say u, then [u,v] is active on exactly one of ~(t) and ~(t) and inactive on the other. This case is 
indifferent: if [u, v] is activated for the process for which it is active, then the two processes will 
match the bit u but will unmatch the bit v, thus the pebble should be moved from u to v. (iii)If 
there are pebbles on neither u nor v, then the two processes match on these two bits and, as far 
as [u, v] is concerned, they can proceed in full coordination. The above three observations lead us 
to the following coupling (which is convenient to think of as it evolves on action communication 
graphs, in the way explained in Section 2): 

Let q'~t) and ~(t)  be the states at time t; 
Pick [u, v] uniformly at random among all edges of the communication graph; 
Toss a fair coin; 

Case ia IF there are pebbles on both u and v and [u, v] is active in both  processes 
if heads then [u, v] is activated on ~($) only; 

THEN if tails then [u, v] is activated on ~ i t) only; 
in either case the pebbles are removed from both  u and v; 

Case ib IF there are pebbles on both u and v and [u, v] is inactive in both  processes 
THEN nothing happens; 

Case ii IF there is a pebble on u but not on v, thus [u, v] is active for exactly one of the processes 
THEN, if heads, [u, v] is activated on the process for which it is active, and the pebble 
is moved from u to v; 
ELSE nothing happens; 

Case iii IF there are no pebbles on either u or v, thus [u, v] is either active or inactive for both 
processes, 

THEN, if heads and [u, v] is active, [u, v] is activated on both  processes; 
ELSE nothing happens; 

T h e o r e m  3.1 ( M a i n  T h e o r e m )  For any SDFF with n entities and m actions, for any initial 
configurations ~(0) and ~(0) that belong to the reachable state space, the expectation of the coupling 
time T (when all pebbles are removed and q~T) = ~(T) )  is E[T] -- O(n3rn2), and hence the 
variation distance decreases as 2-f2(t/nSrn2). 

PROOF (outline). We wish to establish that  the favorable Case ia with two pebbles placed at the 
endpoints of an active edge occurs often enough. What causes difficulty in the pebble game is that  
evolution is determined by the action graphs, and these graphs change. We therefore go through a 
sequence of reductions to reformulate a pebble game on the time invariant labeled communication 
graph. By the end of Lemma 3.4 the pebble game is played only on the labeled communication 
graph. 

Firstly, the pebble game can be reduced to one which starts with only two pebbles, where the 
first time that  Case ia occurs the game is finished. Let T be the time for Case ia to occur when 
we start with two pebbles, and let E[~-] be its worst case expectation. It can be argued (and is 
intuitive to understand) that  

E[T] < nE['c] (1) 

Now for the two-pebble game, say a red and a blue, there may be many possibilities by which 
Case ia occurs; we focus on a single one. In Lemma 3.2 we isolate a "target" trail on the action 
communication graphs with the property that  this trail always contains an odd number of active 
edges in both processes. In Lemma 3.3(i) we reduce removal of the pebbles to traversal of the 
target trail: when this odd trail is of length one, the pebbles are neighboring by an active edge and 
thus Case ia has occurred. However, straightforward traversal of the target trail is probabilistically 
very unlikely, thus in Lemmas 3.3(ii) and 3.4 we account for the likely case of repeated "circular" 
efforts until the target trail is finally traversed. 

L e m m a  3.2 (Targe t  t r a i l ) .  I] ~ is reachable .from ~ and they differ in exactly bits u and v (the 
red and blue pebbles), then there is a "target" trail from u to v on the communication graph such 
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that the trail contains an odd number of  active edges in the action communication 9raphs of both 
and ~.  

PROOF (outline). Any trail from u to v has the same number of active edges in both ~and  
(all edges incident to neither u nor v are similar - - and  so is [u, v], if present, and all edges incident 
to exactly one of u and v are opposite). Thus we need to find an odd active edge trail (odd trail, 
for short) only for ~. 

If the action communication graph of ~" contains a cycle with an odd number of active edges 
(and by Lemma 2,1 the labeled graph contains and odd cycle), then an odd trail can be found 
trivially: start with a path from u to some vertex of the cycle, end with a path from some vertex 
of the cycle to v, and use the odd parity of the cycle to insert a trail that  ensures correct parity of 
active edges. If all cycles in the action communication graph of ~ contain an even number of active 
edges, then it can be shown that  all trails from u to v are odd (this reasoning is somewhat more 
detailed and is omitted here). 

Note that  the specific target trail constructed in this proof is of length at most m. 

R e m a r k :  As a byproduct of Lemma 3.2 we obtain regular characterizations of the reachable 
state spaces. For protocols whose labeled graph contains an odd cycle, all vectors with the same 
parity of bits can be reached, and a similar (but somewhat finer) characterization holds for protocols 
whose la~eied graph contains no odd cycle. Such observation draw limitations on the expressibility 
of SDDF's in terms of their reachable state spaces, however, it should be obvious that  the transitions 
over these state spaces are highly irregular. 

L e m m a  3.3 Let u = vo, .v l , . . .  ,v  be a target trail of  Lemma 8.P. ( i ) l f  edge [u, vl], which is active 
in exactly one of  q and q~, is applied, thus moving the red pebble to vl ,  then the suff~z v l , . . .  ,v  is 
a target trail for the new configurations. ( i i}l /edge [u, ul], u ~ ~ Vl, which is also active in exactly 
one o/ ~ and ~ ,  is applied, thus moving the red pebble to u ~, then the concatenation ul, u, v l , . . .  ,v  
is a target trail for  the new configurations. 

L e m m a  3.4 Let u = v0 ,v l , . . .  , v be a target trail of  Lemma 3.2. Let vi, . . . , vj  = vi be a cycle that 
has even number o/  bar edges in the labeled graph, and by [,emma 2.1, the cycle contains an even 
number of active edges in the action 9raphs of  both ~ and ~ .  Then u = vo, Vl . . . vi, vj,  . . . , v is also 
a target traa for  ~ and ~ .  

The proofs of Lemmas 3.3 and 3.4 are straightforward and omitted. 

We proceed to finish the proof of Main Theorem 3.1. In particular, we are now ready to 
formulate a time invariant pebble game. 

Let u = vo, v l , . . ,  ,vt = v be a target trail for 40)  and ~(0). Lemmas 3.3 and 3.4 suggest that  
when, for some (so called "return") time rr, the red pebble returns on u ~ after having traveled a 
cycle u = ~/0, ~/1 # Vl, . . .  ,u  that  has an even number of bar edges in the labeled graph, and, for the 
same rr, the blue pebble returns on v after having traversed a cycle v = z0, zl ~ v t -1 , . . .  ,v ,  then 
u = vo, v l , . . .  ,vt = v is still a target trail for q'(rr) and ~(rr) .  

And if the first time that  a pebble moves after rr, it is either the red pebble moving along [u, Vl], 
or the blue pebble moving along [v, vt-1], then the target trail shortens by one. The probability 
that  this happens is at least 1/n,  thus in expected n attempts it will indeed occur. 

Now it follows that  the expected time for a target trail of initial length l to become a single 
edge is 

E[r] _< Z. n .  ~[r~] _< ~2E[~] (2) 

For the return time rr, combining arguments of [3] and averaging principles (about odd and 
even cycles), it can be shown that  

E[~] _< O(m 2) (3) 
Now (1), (2), and (3) complete the proof of the Main Theorem 3.1. 
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4 M o r e  General  P r o t o c o l s  and  Cover  T i m e s  

Three main restrictions define the class of SDFF's: symmetry, two states per enity, and two entities 
per action. In Figures 3 and 4 we outline examples where if any of the above conditions fail, rapid 
mixing falls (more extensive discussions are in [7]; the counter-like counter-examples were pointed 
out to us by Ernie Cohen). Thus, in the strict sense, rapid mixing cannot extend beyond SDFF's, 
unless we obtain some characterization somewhat different to the features involved in SDFF's. 

On the positive side, experiments with random graphs indicate that random symmetric protocols 
mix rapidly [7]. Therefore, perhaps there are features of randomness that can be captured to 
establish rapid mixing beyond SDFF's (in graph theory, the process of isolating features of random 
graphs, and constructing explicit graphs that posses these features thus inheriting certain behaviors 
of random graphs, is well explored). For example, the combined automata and the communication 
graphs (hypergraphs) of random symmetric protocols have small diameter - - a  feature strongly 
violated by counter-like counter-examples (where not only wost case points are in long distances, 
but also average case points are in long distances). 

Howeverl is rapid mixing essential for the effectiveness of testing by random walk? 
If the requirement of testing is that, for any fraction e of the reachable state space of size N, 

we visit a representative element from this set in expected time roughly e - lpo ly logN (which is 
the natural lower bound), then rapid mixing (which achieves efficient testing almost by definition) 
appears necessary. 

If the requirement of testing is weakened to exhaustive state space exploration, then perhaps 
"small cover time" for the combined automaton is a simpler justification for effectiveness of testing. 

IbJ 

a_O _1 

b_3 

A system of assymetric dyadic flip-flops that does not 
mix rapidly: Starting from the 00...0 combined state, it takes 
2^n attempts in expectation for a 1 to propagate to the n-th 
bit. This is because, at each step, with probability 1/2, some 
"b" action will bring the system to its starting combined state. 

a2 3 

U 
O �9 �9 

ETC 

Figure 3: Assymmetric counter-example to rapid mixing. 

For a random walk on a graph, the cover t ime  is the time by which all vertices have been 
visited at least once. All symmetric (undirected) graphs are known to have cover times at most 
cubic in their sizes [3], and most graphs have cover times slightly bigger than linear. Thus all 
symmetric protocols posses the small cover-time property, and, in the sense of exhaustive search of 
the reachable state space, are amenable to effective testing by random walk. 
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Figure 4: Counter-like counter-examples to rapid mixing. 

For general assymmetric protocols (and graphs) little is known about bounds on their cover 
times --besides the fact that, in the worst case, these bounds are exponential in the size of the 
graphs. However, experiments suggest more refined behavior (in particular, that under suitable 
adaptations of the random walk, only a small fraction of the states remains unvisited after what 
seems to be superpolynomial effort). 
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