
On the Random Walk Method for Protocol Testing

Milena Mihail Christos H. Papadimitriou"
Bellcore University of California, San Diego

Abstract

An important method for testing large and complex protocols repeatedly generates and
tests a part of the reachable state space by following a random walk; the main advantage of
this method is that it has minimal memory requirements. We use the coupling technique from
Markov chain theory to show that short trajectories of the random walk sample accurately the
reachable state space of a nontrivial family of protocols, namely, the symmetric dyadic flip-flops.
This is the first evidence that the random walk method is amenable to rigorous treatment.

Following West's original reasoning, efficient sampling of the reachable state space by random
walk suffices to ensure effectiveness of testing. Is, however, efficient sampling of the random
walk necessary for the effectiveness of the random walk method? In the context of Markov
chain theory, "small cover time" can be thought of as a simpler justification for the effectiveness
of testing by random walk; all symmetric (reversible) protocols possess the small cover time
property.

Thus the conclusions of our work are that (i)the random walk method can be understood in
the context of known Markov chain theory, and (ii)symmetry (reversibility) is a general protocol
style that supports testing by random simulation.

1 Introduction

Testing complex protocols for conformance with their specifications is an ever-lncreasing techno-
logical challenge --see Holzmann's book for a detailed exposition [13]. According to Holzmann,
traditional testing techniques based on full or controlled partial state exploration become very com-
plex (perhaps prohibitively so) when the reachable state space becomes larger than, say, 10 s [13] [4]
[17]. For larger protocols, an alternative testing method is what could be called the random walk
method (a.k.a. random partial state exploration, or random simulation) [13] [19] [18]: Beginning
at the starting protocol state, a random applicable action of the protocol is chosen and applied,
another random step is repeated at the resulting state, and so on, up to some sufficiently large
and yet computationally feasible number of steps. At each step the next action is chosen among
the applicable actions either according to a distribution that reflects the protocors operation, or
uniformly at random - - the latter technique is good for exploring the less traveled paths in the
state space. The main advantage of this random simulation method is that it has minimal space
(memory) requirements: to simulate a step of the random walk we need to store only the current
state and a description of the actions (which is a natural lower bound on memory for any state
exploration process).

When and why is the random walk testing technique sound? Engineers argue that testing is
effective if the random walk looses memory of its starting state after a relatively short trajectory,
thus the final point of the walk simulates accurate observation of the system in steady state, or,
preferably, fair sampling of the protocol's reachable state space. Under such rapid mizin9 conditions,
errors are recovered in time proportional to their probability of occurrence in stationarity, and the
whole reachable state space can be potentially visited in time roughly proportional to its size
(which is again a natural lower bound on time for any exhaustive search). In his influential paper
introducing and advocating the random walk technique [19], West argued that this is indeed the
behavior of certain validation experiments over the OSI Session Layer, and, in the formal sense, in
the case of a vexy simple hypothetical totally decoupled system (a system without communication
between its entities).

"Research supported by the National Science Foundation.

133

There are several mathematical tools at the disposal of the full and controlled partial state ex-
ploration approach to protocol testing, such as temporal logic algorithms for model verification (eg.
see [20] [8] [9] for early references), symbolic methods, compression methods, projection methods,
and techniques for testing and minimizing finite state machines (eg. see [15] [21] for recent refer-
ences). In contrast, there is very little rigorous work on the random walk method --besides West's
observation concerning the decoupled protocol. In Markov chain theory, it is now well understood
that many common random walks do not converge in any satisfactory way --and a theory of those
that do is emerging [10] [1] [2] [14] [16] [6] [11] [12]. In this context, West's example of a decoupled
system is easily identified as the h~/percube, the most simple case of a rapidly mixing random walk.

The aim therefore is to use Markov chain theory to separate those protocols which can be effec-
tively tested by random walk from those which cannot. Naturally, circular characterizations such as
"protocols whose reachable state space is an expander" are completely useless. For a proposed fam-
ily of protocols to be interesting, it should be definable in terms of "local," "syntactic" properties
of the protocols. Ideally, one would like syntactic guidelines, perhaps "styles" of protocol writing,
that guarantee convergence of the associated random walk; for example, "reversibility of actions"
could be such a property. A possible analogy here is the "structured programming" paradigm in
software engineering, which guarantees positive debugging and maintainability properties of the
resulting code. The question therefore is, what are examples of broad families of protocols whose
state space can betested by random walks?

In this paper we identify a family of protocols, namely systems of symmetric dyadic flip-flops
(SSDF's), and prove that the random walk always converges to the uniform distribution over the
state space of such protocols in time polylogarithmic in the size of the state space (Theorem
3.1). Thus, by West's statistical arguments, this class can be tested by random walk. SSDF's are
systems of communicating finite automata (see also Figure 1) with two states per entity (hence
the name flip-flop); each action involves only two entities (hence the attribute "dyadic"); and
symmetry (reversibility), that is, whenever an action that affects two coordinated transitions of two
entities is present, the reverse action is also present. Although the expressibility of SSDF's is rather
restricted, in the sense that their reachable state spaces have fairly regular characterizations, the
transition graph over the reachable state space is highly irregular, and consequently our rapid mixing
argument demonstrates nontrivial technique (and is a giant step beyond the mixing argument for
the hypercube decoupled protocol, the only one heretofore analyzed in this way [19]). Therefore our
result provides the first substantial evidence that the random walk method is amenable to formal
Markov chain analysis and understanding.

The technique employed to prove our main rapid mixing result uses the couplin 9 argument
from Markov chain theory [1] [10] [5] [6]. To show that the random walk from some starting state
converges within polynomial time to its stationary distribution, we imagine side-by-side two such
walks, one from the starting state and one from an arbitrary state of the reachable state space,
and coordinate their transitions so that each walk is simulated fairly, but in small expected time
the two states coincide and thus the two walks are indistinguishable; since the second random walk
can be assumed to start from the stationary distribution over all reachable states, fast convergence
is established.

Can arguments for the effectiveness of the random walk method extend beyond the class of
SSDF's? This question is twofold. Firstly, can rapid mixing arguments for the justification of the
random walk method extend beyond SDFF's? Secondly, are rapid mixing conditions necessary for
the random walk testing method to be effective?

For the first question, there are counter-examples showing that, if any of the conditions defining
SDFF's fails, rapid mixing also fails [7]. But perhaps characterizations somewhat different to the
features of SDFF's may reveal further rapid mixing cases (experiments suggest that "random"
symmetric protocols mix rapidly, thus, capturing features of randomness that ensure rapid mixing
might be a way to proceed).

For the second question, we point out that small cover time may be a simpler justification for
the effectiveness of the random walk method; small cover time is a strictly weaker property than
rapid mixing. The cover time of a graph is the expected time for a random walk to visit all the
vertices of the graph, and it fits naturally in the context of state space exploration. All symmetric
systems posses the small cover time property. Thus a possible heuristic for testing by random

134

simulation could be to design systems as reversible as possible, and/or impose artificial reversibility
for simulation purposes.

2 P r e l i m i n a r i e s

A protocol is a system of communicating finite automata, the entities. Each entity is driven by
a set of actions, and for a (state~ action) pair, the transition function determines (i)whether the
action is applicable on the particular state (not all actions are applicable on all states), and if
so, (ii)which is the new state after the action is applied. The system has communication in that
an action may simultaneously involve several entities. When the system evolves as a whole, an
action is applicable iff it is applicable for all entities that it involves. This determines the transition
function of the combined automaton, with combined states consisting of vectors of size n (storing
the state of each entityl and actions consisting of the union of actions over all entities. Finally there
is a specified starting combined state, and a reachable state space consisting of combined states to
which the initial state can be driven by a sequence of applicable actions; realize that the size N
of the combined state space is exponential in n. The aim of testing is to explore the reachable
state space of the reachable state space of the combined automaton. The aim of ej~cient testing
is to explore the reachable state space using resources that match the natural lower bounds (up to
polynomial factors, that is, time polyN and space poly n, and for practical efficiency as close to
linear as possible).

We shall also consider a protocol as a Markov chain (or random walk on the underlying graph of
the combined automaton). Without loss of generality, we consider a slightly modified version of the
natural random walk: Beginning at the starting combined state, at each step, some action is chosen
uniformly at random among all actions of the system, and if the action is applicable to the current
combined state, then, with probability 1/2, it is applied; in all other cases the combined state does
not change. How can such a scheme support efficient testing? Firstly realize that it satisfies the
memory requirement for efficiency: to simulate each step, we need to store only the current state
and the set of actions. To argue about time requirements we need additional conditions.

A protocol is symmetric if it is it is symmetric as a combined automaton and as a Markov
chain. This amounts to the protocol being reversible as a system: for each action a that drives

CLIENT A CLIENT B CLIENT C

a b C' b'

/ - \

a '

CRITICAL SECTION

Figure 1: A system of Symmetric Dyadic Flip-Flops implementing Critical Section with Three Clients.

135

combined state ~' to combined state ~, there exists a reverse action a -1 that drives ~ to g Well
known Markov chain theory suggests that the random walk on symmetr ic protocols converges to the
uni]orm distribution over the whole reachable state space. Now for testing purposes, convergence to
uniformity is quite favorable. We can use a point of the random walk after convergence has (nearly)
occurred as a uniformly random point of the state space. For a reachable state space of size N,
O(N log N) uniform samples, in expectation, generate the whole space (in addition, for any fraction
e of the reachable state space, a representative state is generated by e -1 samples in expectation).
But can we ensure efficient convergence to uniformity? We focus on a class of symmetric protocols
tha t we call systems of symmetric dyadic flip-flops (SSDF's), and show tha t their convergence to
uniformity is efficient, in the sense that it is ensured after poly log N steps (Theorem 3.1).

Three features determine symmetric dyadic flip-flops: They are symmetric in the way discussed
above. They are flip-flops, meaning that all entities have two states; we can assume that these are
0 and 1. They are dyadic, meaning that each action involves at most two automata; without loss
of generality we assume that each action involves exactly two automata. We impose the additional
technical condition that there are no self-loops, that is actions tha t leave the state of some involved
automaton unchanged (self loops are treated in [7]). Thus, there are two kinds of actions: the so
called bar actions that change a pair of O's to l ' s and their inverses changing a pair of r s to O's,
and the so called Cross actions changing a pair of a 1 and a 0 to a pair of a 0 and a 1. Given
a system of symmetric dyadic flip-flops, we define its communication graph, with one vertex for
each automaton, and with an edge [u, v] present if and only if there is an action (and its inverse)
involving both u and v; again, without loss of generality, we assume that if there is a bar (resp.
cross) action involving u and v, then there is no cross (resp. bar) action involving u and v. Now
realize that the transitions of the protocol can be completely specified by its communication graph,
once its edges have been labeled as bar or cross; we call this the labeled communication graph.

For each combined state ~'we also consider its action communication graph: if [u, v] is a bar edge
and the bits u and v are similar, or if [u, v] is a cross edge and the bits u and v are opposite, then
one of actions a and a -1 that correspond to [u, v] is applicable on ~', thus we mark [u, v] as active;
otherwise we mark [u, v] as inactive. Realize that if a s t a t e] differs from a state ~' on exactly one
bit, say v, then the action communication graphs of ~ and q~ are identical on edges not incident to
v, and exactly opposite on edges incident to u. In the next section, we shall repeatedly think of
combined states in terms of their action communication graphs and furthermore, of transitions as
follows (see also Figure 2): for some active edge [u,v] with corresponding actions a and a -1 exactly
one of which, say a, is applicable to ~, the effect of applying a on ~'can be thought of as activating
the edge [u, v] on the action communication graph of ~" thus changing bits u and v, and, in the
resulting action communication graph, changing all edges incident to u or v from active to inactive
and vice versa, except for [u, v] itself which remains unchanged.

Clearly the labeled communication graph is an invariant of the protocol, while the action com-
munication graph changes from state to state. However, the action graph inherits certain invariants
of the labeled graph. We shall need several such invariants in the next section; here we start by
demonstrat ing the simplest one in Lemma 2.1 below. In particular, we say that a cycle of the
labeled graph has odd parity iff it contains an odd number of bar edges, and we say that a cycle
of the action graph of a specific state has odd parity iff it contains an odd number of active edges
(here we mean generalized cycle: a closed trail with arbitrary part ial overlaps).

L e m m a 2.1 (Cyc le i nva r i an t) (See also Figure 2). For any cycle o] the communication graph,
the parity of the cycle in action graphs is invariant over all combined states, and it is the same as
the parity of the cycle in the labeled graph.

PROOF. The parity of cycles in labeled and action graphs are trivially identical for the combined
state ~ '= 00 . . . 0, and changing the bits of ~'one at a t ime preserves the parity of cycles on action
communication graphs.

136

q (w _ l) ~

,.
...." q(uJ

~~

q(w_3)

�9 qt~.lJ
/

/
1

qtv) q(z_2)

cro$ cross

Labeled communication graph:
parity of bar actions on the cycle is odd.

q(w_ l)~
\ \

q(w.2) "\...

q(w_3)

q(v) qfz.2)

Applying action [u,v]chonges all edges incident m
u and v from active to ina~vc and vice versa,
~cept for [u,v} itselfwhinh remains unchanged
(active edges am indicated with straight lines and
inactive edges are indicated with dotted lines).

~176 .~176176 \.,\ o% /o
o

0 1

0

Action communication graphs:
parity of active edges on the cycle is odd.

Figure 2: Transitions and cycle parities on action and labeled communication graphs.

3 SDFF's, Coupling, and Rapid Mixing

In this section we prove that SDFF's, viewed as Markov chains, posses the rapid mixing property,
that is, the random walk is arbitrarily close to uniformity over N reachable states after poly log N
number of steps. To establish rapid mixing we use the coupling method from Markov chain theory
[1] [10] [5] [6]. Consider two random walks on the protocol, random walk q~(t) starting from some
starting state q-'(0), and random walk q~(t) starting from some arbitrary state ~(0) reachable from
q-'(0); qt(t) can be thought of as representing the uniform stationary distribution. Intuitively, we
must show that q~(t) and ~(t) will soon be indistinguishable. To do this, we run q'~t) and ~(t)
side-by-side, by applying subtle coordination in their transitions. The coordination is such that
both random walks still obey the appropriate transition probabilities, but within expected time
poly n = poly log N the two walks converge to the same state. More formally, where the coupling
time T is the first time that q'~t) and q'(t) match: q-'(T) = ~(T), and E[T] is its worst case
expectation (over all initial configurations q"(0) and ~(0) that are reachable from each other), the
variation distance of q'~t) from stationarity can be bounded by (see [1] [10] [5] for a proof):

_<

For the coupling, we keep pebbles on the vertices of the communication graph where ~(t) and
~(t) differ and measure progress in terms of the number of pebbles left. In particular, where [u, v]
is an edge of the communication graph and there are pebbles on vertices here ~(t) and ~(t) differ,
realize that the following hold: (i)If there are pebbles on both u and v, then either [u, v] is active
for both ~(t) and r or [u,v] is inactive for both ~(t) and ~(t). The case where [u,v] is active
for both processes is particularly favorable: if [u, v] is activated on exactly one of the processes,

137

then this process will change bits u and v thus matching them with the other process, and the
pebbles can be removed from vertices u and v. (ii)If there is a pebble on exactly one of u and v,
say u, then [u,v] is active on exactly one of ~(t) and ~(t) and inactive on the other. This case is
indifferent: if [u, v] is activated for the process for which it is active, then the two processes will
match the bit u but will unmatch the bit v, thus the pebble should be moved from u to v. (iii)If
there are pebbles on neither u nor v, then the two processes match on these two bits and, as far
as [u, v] is concerned, they can proceed in full coordination. The above three observations lead us
to the following coupling (which is convenient to think of as it evolves on action communication
graphs, in the way explained in Section 2):

Let q'~t) and ~(t) be the states at time t;
Pick [u, v] uniformly at random among all edges of the communication graph;
Toss a fair coin;

Case ia IF there are pebbles on both u and v and [u, v] is active in both processes
if heads then [u, v] is activated on ~($) only;

THEN if tails then [u, v] is activated on ~ i t) only;
in either case the pebbles are removed from both u and v;

Case ib IF there are pebbles on both u and v and [u, v] is inactive in both processes
THEN nothing happens;

Case ii IF there is a pebble on u but not on v, thus [u, v] is active for exactly one of the processes
THEN, if heads, [u, v] is activated on the process for which it is active, and the pebble
is moved from u to v;
ELSE nothing happens;

Case iii IF there are no pebbles on either u or v, thus [u, v] is either active or inactive for both
processes,

THEN, if heads and [u, v] is active, [u, v] is activated on both processes;
ELSE nothing happens;

T h e o r e m 3.1 (M a i n T h e o r e m) For any SDFF with n entities and m actions, for any initial
configurations ~(0) and ~(0) that belong to the reachable state space, the expectation of the coupling
time T (when all pebbles are removed and q~T) = ~(T)) is E[T] -- O(n3rn2), and hence the
variation distance decreases as 2-f2(t/nSrn2).

PROOF (outline). We wish to establish that the favorable Case ia with two pebbles placed at the
endpoints of an active edge occurs often enough. What causes difficulty in the pebble game is that
evolution is determined by the action graphs, and these graphs change. We therefore go through a
sequence of reductions to reformulate a pebble game on the time invariant labeled communication
graph. By the end of Lemma 3.4 the pebble game is played only on the labeled communication
graph.

Firstly, the pebble game can be reduced to one which starts with only two pebbles, where the
first time that Case ia occurs the game is finished. Let T be the time for Case ia to occur when
we start with two pebbles, and let E[~-] be its worst case expectation. It can be argued (and is
intuitive to understand) that

E[T] < nE['c] (1)

Now for the two-pebble game, say a red and a blue, there may be many possibilities by which
Case ia occurs; we focus on a single one. In Lemma 3.2 we isolate a "target" trail on the action
communication graphs with the property that this trail always contains an odd number of active
edges in both processes. In Lemma 3.3(i) we reduce removal of the pebbles to traversal of the
target trail: when this odd trail is of length one, the pebbles are neighboring by an active edge and
thus Case ia has occurred. However, straightforward traversal of the target trail is probabilistically
very unlikely, thus in Lemmas 3.3(ii) and 3.4 we account for the likely case of repeated "circular"
efforts until the target trail is finally traversed.

L e m m a 3.2 (Targe t t r a i l) . I] ~ is reachable .from ~ and they differ in exactly bits u and v (the
red and blue pebbles), then there is a "target" trail from u to v on the communication graph such

"138

that the trail contains an odd number of active edges in the action communication 9raphs of both
and ~.

PROOF (outline). Any trail from u to v has the same number of active edges in both ~and
(all edges incident to neither u nor v are similar - - and so is [u, v], if present, and all edges incident
to exactly one of u and v are opposite). Thus we need to find an odd active edge trail (odd trail,
for short) only for ~.

If the action communication graph of ~" contains a cycle with an odd number of active edges
(and by Lemma 2,1 the labeled graph contains and odd cycle), then an odd trail can be found
trivially: start with a path from u to some vertex of the cycle, end with a path from some vertex
of the cycle to v, and use the odd parity of the cycle to insert a trail that ensures correct parity of
active edges. If all cycles in the action communication graph of ~ contain an even number of active
edges, then it can be shown that all trails from u to v are odd (this reasoning is somewhat more
detailed and is omitted here).

Note that the specific target trail constructed in this proof is of length at most m.

R e m a r k : As a byproduct of Lemma 3.2 we obtain regular characterizations of the reachable
state spaces. For protocols whose labeled graph contains an odd cycle, all vectors with the same
parity of bits can be reached, and a similar (but somewhat finer) characterization holds for protocols
whose la~eied graph contains no odd cycle. Such observation draw limitations on the expressibility
of SDDF's in terms of their reachable state spaces, however, it should be obvious that the transitions
over these state spaces are highly irregular.

L e m m a 3.3 Let u = vo, .v l , . . . ,v be a target trail of Lemma 8.P. (i) l f edge [u, vl], which is active
in exactly one of q and q~, is applied, thus moving the red pebble to vl , then the suff~z v l , . . . ,v is
a target trail for the new configurations. (i i}l /edge [u, ul], u ~ ~ Vl, which is also active in exactly
one o/ ~ and ~ , is applied, thus moving the red pebble to u ~, then the concatenation ul, u, v l , . . . ,v
is a target trail for the new configurations.

L e m m a 3.4 Let u = v0 ,v l , . . . , v be a target trail of Lemma 3.2. Let vi, . . . , vj = vi be a cycle that
has even number o/ bar edges in the labeled graph, and by [,emma 2.1, the cycle contains an even
number of active edges in the action 9raphs of both ~ and ~ . Then u = vo, Vl . . . vi, vj, . . . , v is also
a target traa for ~ and ~ .

The proofs of Lemmas 3.3 and 3.4 are straightforward and omitted.

We proceed to finish the proof of Main Theorem 3.1. In particular, we are now ready to
formulate a time invariant pebble game.

Let u = vo, v l , . . , ,vt = v be a target trail for 40) and ~(0). Lemmas 3.3 and 3.4 suggest that
when, for some (so called "return") time rr, the red pebble returns on u ~ after having traveled a
cycle u = ~/0, ~/1 # Vl, . . . ,u that has an even number of bar edges in the labeled graph, and, for the
same rr, the blue pebble returns on v after having traversed a cycle v = z0, zl ~ v t -1 , . . . ,v , then
u = vo, v l , . . . ,vt = v is still a target trail for q'(rr) and ~(rr) .

And if the first time that a pebble moves after rr, it is either the red pebble moving along [u, Vl],
or the blue pebble moving along [v, vt-1], then the target trail shortens by one. The probability
that this happens is at least 1/n, thus in expected n attempts it will indeed occur.

Now it follows that the expected time for a target trail of initial length l to become a single
edge is

E[r] _< Z. n . ~[r~] _< ~2E[~] (2)

For the return time rr, combining arguments of [3] and averaging principles (about odd and
even cycles), it can be shown that

E[~] _< O(m 2) (3)
Now (1), (2), and (3) complete the proof of the Main Theorem 3.1.

139

4 M o r e General P r o t o c o l s and Cover T i m e s

Three main restrictions define the class of SDFF's: symmetry, two states per enity, and two entities
per action. In Figures 3 and 4 we outline examples where if any of the above conditions fail, rapid
mixing falls (more extensive discussions are in [7]; the counter-like counter-examples were pointed
out to us by Ernie Cohen). Thus, in the strict sense, rapid mixing cannot extend beyond SDFF's,
unless we obtain some characterization somewhat different to the features involved in SDFF's.

On the positive side, experiments with random graphs indicate that random symmetric protocols
mix rapidly [7]. Therefore, perhaps there are features of randomness that can be captured to
establish rapid mixing beyond SDFF's (in graph theory, the process of isolating features of random
graphs, and constructing explicit graphs that posses these features thus inheriting certain behaviors
of random graphs, is well explored). For example, the combined automata and the communication
graphs (hypergraphs) of random symmetric protocols have small diameter - - a feature strongly
violated by counter-like counter-examples (where not only wost case points are in long distances,
but also average case points are in long distances).

Howeverl is rapid mixing essential for the effectiveness of testing by random walk?
If the requirement of testing is that, for any fraction e of the reachable state space of size N,

we visit a representative element from this set in expected time roughly e - lpo ly logN (which is
the natural lower bound), then rapid mixing (which achieves efficient testing almost by definition)
appears necessary.

If the requirement of testing is weakened to exhaustive state space exploration, then perhaps
"small cover time" for the combined automaton is a simpler justification for effectiveness of testing.

IbJ

a_O _1

b_3

A system of assymetric dyadic flip-flops that does not
mix rapidly: Starting from the 00...0 combined state, it takes
2^n attempts in expectation for a 1 to propagate to the n-th
bit. This is because, at each step, with probability 1/2, some
"b" action will bring the system to its starting combined state.

a2 3

U
O �9 �9

ETC

Figure 3: Assymmetric counter-example to rapid mixing.

For a random walk on a graph, the cover t ime is the time by which all vertices have been
visited at least once. All symmetric (undirected) graphs are known to have cover times at most
cubic in their sizes [3], and most graphs have cover times slightly bigger than linear. Thus all
symmetric protocols posses the small cover-time property, and, in the sense of exhaustive search of
the reachable state space, are amenable to effective testing by random walk.

1 4 0

b..l

t0 t_e'~(l~ ~ b 0 b..O

bJ b..l'

t_l' a l b l' b_l

t . l

t.2'

�9 0
�9 e

s
ETC

A system ~ symmetflc dyadic eutttl~ wttb three states per entity. A ~ ots/mmttlc f l ~ wld~ inch tc~ou h,~C~q .* Jmt tbm mtl6s.
This systm Implements a counter, thus It does not mix rapk]]y, l'tb ~ implmam a tNnttr nd dim Jt does ~ nix r ~ .

Figure 4: Counter-like counter-examples to rapid mixing.

For general assymmetric protocols (and graphs) little is known about bounds on their cover
times --besides the fact that, in the worst case, these bounds are exponential in the size of the
graphs. However, experiments suggest more refined behavior (in particular, that under suitable
adaptations of the random walk, only a small fraction of the states remains unvisited after what
seems to be superpolynomial effort).

References

[1] Aldous, D.i "Random Walks on finite groups and rapidly mixing Markov chains", Seminaire
de Probabilites XVII, Lecture Notes in Mathematics, Vol. 986, Springer Ferlag, Berlin, 1983.

[2] Aldons, D., "On the Markov Chain Simulation Method for uniform combinatorial distributions
and simulated annealing", Probability in Eng. and In[. Sci. I, 1987, pp 33-46.

141

[3] Aleliunas, R., Karp, R.M., Lipton, J.R., Lovasz, L., and Rackoff, C., "Random walks, uni-
versal traversal sequences, and the complexity of maze problems", P.roc. ~Oth IEEE Syrup. on
Foundations of Computer Science, 1979, 218-233.

[4] Apt, K.R., and Kozen, D.Z., "Limits for automatic verification of finite state concurrent sys-
tems", Inf. Processing Letters, Vol. 22. No. 6, 1986, pp. 307-309.

[5] Broder, A.Z., "How hard is it to marry at random? Approximating the Permanent", Proc.
18th ACM Syrup. on the Theory of Computing, 1986, pp. 55-58.

[6] Broder, A.Z., "Generating random Spanning Trees", Proc. 30th IEEE Syrup. on Foundations
of Computer Science, 1989, pp 4422-447.

[7] Cohen, E., Mihall, M., Papadimitriou, C.H., and Tsantilas, T., "Testing Protocols by Random
Walk: Mixing and Cover Times", Bellcore TM ARA-4-94, 1994.

[8] Browne, M.C., Clarke, E.M., Dill, D.L., and Mishra, B., "Automatic verification of sequential
circuits using temporal logic", IEEE Trans. on Computers, Vol. C-35, No. 12, 1986, pp. 1035-
1043.

[9] Clarke, E:M., Emerson, E.A., and Sisla, A.P., "Automatic verification of finite state concurrent
systems using temporal logic specifications: a practical approach", Proc. lOth A CM Symposium
on Principles o] Programming Languages, 1983.

[10] Diaconis, P., "Group Theory and Statistics", Lecture Notes from a course taught at Harvard,
Spring 1982.

[11] Dyer, M., Frieze, A., and Kannan, R., "A random polynomial time algorithm for estimating
volumes of convex bodies", Proc. 21st ACM Syrup. on the Theory of Computing, 1989, pp
375-381.

[12] Feder, T., and Mihail, M., "Balanced Matroids", Proc. ~4th ACM Syrup. on the Theory of
Computing, 1992, pp. 26-37.

[13] Holzmann, G.J., Design and Validation of Computer Protocols, Prentice Hall Software Series,
1991.

[14] Jerrum, M.R., and Sinclair, A., "Approximating the Permanent", Proc. 20th ACM Syrup. on
the Theory of Computing, 1988, pp 235-243.

[15] Lee, D., and Yannakakis, M., "Online minimization of transition systems", Proc. 24th ACM
Syrup. on the Theory o] Computing, 1992, pp. 264-274.

[16] Mihail, M., "Conductance and Convergence of Markov Chains, A Combinatorial Treatment of
Expanders", Proc. 30th IEEE Syrup. on Foundations of Computer Science, 1989.

[17] Reif, J.H., and Smolka, S.A., "The complexity of reachability in distributed communicating
processes", Acta Informatica, Vol. 25, 1988, pp. 333-354.

[18] Rudin, H., "Protocol development success stories: Part 1", Protocol Specification, Testing, and
Verification, XII, Elsevier Science Publishers, (North-Holland), 1992.

[19] West, C.H., "Protocol Validation in Complex Systems", Proc.. 8th A CM Symposium on Prin-
ciples of Distributed Computing, 1989, pp. 303-312.

[20] Wolper, P., "Specifying interesting properties of programs in propositional temporal logic",
Proc. 13th A CM Symposium on Principles of Programming Languages, 1986, pp. 148-193.

[21] Yannakakis, M., and Lee, D., "Testing Finite State Machines", Proc. of the 23rd ACM Syrup.
on the Theory of Computing, 1991, pp. 476-485.

