
Realizability and Synthesis of Reactive Modules

Anuchit Anuchitanukul Zohar Manna

Computer Science Department
Stanford University
Stanford, CA 94305

a n u c h i t ~ c s , s t a n f o r d , e d u

April 4, 1994

A b s t r a c t
We present two algorithms: a realizability-checking algorithm and

a synthesis algorithm. Given a specification of reactive asynchronous
modules expressed in propositional ETL (Extended Temporal Logic), the
realizability-checking algorithm decides whether the specification has an
actual implementation, under the assumptions of a random environment
and fair execution. It also creates a structure which can then be trans-
formed by the synthesis algorithm into a program, represented as a labeled
finite automaton. Unlike previous approaches, the realizability-checking
algorithm can handle fairness assumptions. The realizability-checking al-
gorithm is incremental and it directly manipulates formulas in linear tem-
poral logic without having to transform into a branching-time logic or
other representations.

1 I n t r o d u c t i o n

The problem of automat ic program synthesis has been previously studied in
many different frameworks. For functional programs, the specification is a first-
order formula expressing the desired relationship between inputs and outputs,
where the synthesized program can be extracted from a constructive proof of
the formula [MW80].

Later, [EC82] and [MW84] extended the approach to reactive programs.
The synthesized program is extracted from a proof of the satisfiability of the
specification. However, the reactive programs considered in the approach do
not have any interaction with the environment, that is, they are closed systems.

The effort to synthesize reactive modules, i.e., open systems, was first re-
ported in [PR89a]. In that paper, the synthesis of reactive synchronous mod-
ules from a specification in linear-time temporal logic is linked to the problem of

157

checking the validity of a branching-time temporal formula obtained by trans-
forming the original specification.

The restriction to synchronous systems (or the game of perfect information)
was removed in [PR89b] where the problem of synthesizing asynchronous sys-
tems is considered. In that work, a linear-time temporal specification is trans-
formed into a formula in branching-time temporal logic by introducing read and
write variables, and by adding constraints on the variables.

Several notions of realizability were introduced and studied in [ALW89].
For the finite case, the approach taken is similar to the automata approach of
[PR89a,b]. Because of the choice of the specification, the method can check real-
izability in a more general sense, that is, when the behavior of the environment
is restricted. However, [ALW89] only considered synchronous systems.

In [WD91], the approach of [PR89b] was extended to handle shared variables
and the restriction on read and write sequences was relaxed. The paper also
generalizes [ALW89] to include the asynchronous and real-time cases. The main
technique used is still by transformations from one representation (automata)
to another.

The assumption shared by all of the works mentioned previously is that the
problem of realizability can be solved simply by transforming the specification
(under some representation) into an automata representation (tree automaton)
and then checking for non-emptiness. We argue that this assumption is not
valid when we want to solve a more general realizability problem. There are
properties which cannot be encoded into a specification, such as the assumption
of fairness. We would like to be able to determine whether a specification is
realizable, assuming that the execution of the system and the environment is
fair. Since the synthesized program does not exist at the time the specification
is written, there is no location or transition in the program to refer to in the
specification. We cannot encode in the specification the assumption that the
synthesized program is to be executed fairly. This problem arises regardless of
the choice of the specification language. Therefore, any realizability-checking
and synthesis algorithms must handle this explicitly. Although [ALW89] did
define a notion of realizability under fairness (and a theorem relating it to real-
izability without fairness), no solution was provided.

In this paper, we present two algorithms, one for realizability checking and
the other for synthesis. The specification language we study is the Extended
Temporal Logic (ETL) described in [Wo83]. We also introduce a scheduling
variable/~ following the approach in [BKP84]. Although useful for expressing
specifications and for extending the algorithm to handle sequential composition,
is not essential to the algorithms. The realizability-checking algorithm is based
on the tableau decision procedure described in [Wo85]. Given a specification,
the first algorithm checks for strong realizability under fairness and random
environment assumptions and generates a structure called a realizability graph.
The synthesis algorithm takes the generated realizability graph and produces a
program which satisfies the specification. Unlike other approaches, the synthesis

158

a lgor i thm will generate a more general class of p rog rams which m a y have some
disabled transi t ions. The t rans i t ions in the genera ted p r o g r a m m a y be labeled
weakly or s t rongly fair as necessary. Since the real izabil i ty-checking a lgor i thm
is a t ab leau-based a lgor i thm, it man ipu la t e s only formulas of linear t empora l
logic, which are subformulas of the original specification.

2 Def in i t ions

A [infinite] behavior cr over a s ta te space E is a pair (~v, (re) of two equal- length
[infinite] sequences: a sequence of states c% = sosls2 . . , where si E ~ and a
scheduling sequence c% = aoala2 . . . where ai E {0, 1}. We denote the set of all
infinite behaviors f rom E by Bhv(E), or Bhv i f E is clear f rom the context, and
the set o f all finite behaviors by Bhv/in (~).

We can represent a behav ior (sosls2 . . . , aoala2.. .) pictorial ly as

The intended mean ing is t h a t the move f rom si to si+l is caused by the envi-
ronmen t if ai+l = 0, and by the sys tem if ai+l = 1. Since we always assume
tha t the env i ronment chooses the initial s tate, we require t ha t the scheduling
sequence always begins wi th 0, i.e., a0 = 0.

Given a behavior ~ = (SOSlS2..., aoala2...), we write State(i, c~) to denote
si and Sched(i, cr) to denote ai. If ~ = (~rv,~rsl , then ~rli denotes a behavior
(~r~ li, ors li) where ~ li [~, Ii] is the prefix of ~v [~rs] of length i.

Let H ~ : Bhvlin ~-4 ~* be a funct ion t ha t maps a finite behavior r to a
subsequence of s ta tes which are caused by the sys tem, namely , all State(i, ~)
where Sched(i,c~) = 1. Let 1-I 1 : Bhvyin ~4 E* be a funct ion tha t m a p s a
finite behavior r to a subsequence of s ta tes which are observed by the sys tem
(precede a sys tem state) , t ha t is, all State(i, ct) where Sched(i + 1,~r) is defined
and Sched(i + 1, a) = 1, or i + 1 is the length of ~r.

A computer f : E* x ~* ~-~ E is a par t ia l function which takes a his tory
of all the s ta tes the sys tem caused and all the s ta tes the sys t em Observed and
selects a s ta te as the next move of the sys tem. A run of a compu te r f is an
infinite behavior such tha t for all i, if Sched(i, ~r) = 1 then f (I I ~ (~li), H l (a l i)) is
defined and equal to State(i, ~). Therefore, a behavior is a run of a compute r if
every sys tem move is the result of f compu ted with the in fo rmat ion regard ing
the sys t em ' s own moves and all the moves the sys tem has observed in the past .

A run a of f is weakly fair iff for all j , if f(YI~ is defined
for all i > j , then Sched(k, ~) = 1 for some k >_ j , i.e., if f is continuously
enabled beyond a certain point , it has to be taken eventually. Similarly, a run
~r is strongly fair iff for all j , if for all j~ > j there exists i > j~ such tha t
f(Yl~ II1(c~1i)) is defined, then Sched(k, or) = 1 for some k >)'.

Let Runsl (f) be all possible s t rongly fair runs and Run~o/(f~be all possible
weakly fair runs of the c o m p u t e r f . A set B o f ' behav io r s is realizable (under

159

fairness and random environment assumptions) iff there exists a computer f
such that Runsl(f) C_ B. If only weak fairness is assumed, B is realizable iff
there exists a computer f such that Runwf(f) C_ B.

3 Pre l imin ar i e s

3 . 1 S p e c i f i c a t i o n L a n g u a g e

The specification language studied here is Extended Temporal Logic (ETL) aug-
mented with a special predicate #. The use of ETL and # is not necessary for
the realizability-checking and synthesis algorithms. Clearly, the algorithms can
handle any subset of the language, including ordinary propositional temporal
logic specifications without p. Adding # to the language is necessary, however,
to express some common forms of specifications such as mutual exclusion. With-
out/~, we would have to separate the environment assumption and the system
property. With #, the whole specification can be expressed in a single formula.

In ETL, there are infinitely many temporal operators. Each corresponds to
a non-terminal symbol of a right-linear grammar. A right-linear grammar G is
a tuple (VN, VT, P) such that

* V N = {~1, . . . ,~,~} is a finite set of non-terminal symbols.

* V T = { t l , . . . ,tn} is a finite set of terminal symbols.

* P is a finite set of production rules of the forms ~i --+ tj or ~i ~ ~j~k
where Gi, Gk E VN and tj E VT.

For each non-terminal symbol ~i, the corresponding temporal operator
~ i (r r has exactly n arguments (n is the number of terminal symbols).

Given a set T' of propositions and a truth-value assignment function rr : E
2 ;~ the semantics of a formula on an infinite behavior ~r is defined as follows:

. (or, i) ~ p i f fp E ,(State(i, c~)), for any proposition p E /) .

. Ca, i) ~ # iff Sched(i, ~r) = 1.

* (~ , i) ~ O C i f f (~ , i + l) ~ r

�9 (a, i) ~ G(r r iffthere is a word (finite or infinite) w = t~otnlt,~2...
(each tnj E VT), generated by ~, and for all j 2 0, (c~, i + j) ~ Cnj.

�9 Other cases (r V r r A r and -7r are standard.

Clearly, any formula r defines a set of infinite behaviors B which satisfy
the formula, i.e., c~ ~ r iff c~ E B. Therefore, we define a specification to be
realizable if the corresponding set of behaviors is realizable.

160

3 . 2 E l e m e n t a r y F o r m u l a s

A formula is called elementary if it is either

�9 an atomic formula, i.e., an atomic proposition (including p) or its negation,
or

�9 a next formula, i.e., a formula that has O as its main connective.

3 . 3 D e c o m p o s i t i o n R u l e s

The following decomposition rules are used in the tableau graph construction
algorithm to decompose non-elementary formulas. The meaning of a decompo-
sition rule is that in order to satisfy the formula on the left hand side, one of
the sets on the right hand side must be satisfied.

�9 (r v r ~ { { r {r

�9 (r ^ r ~ {{r r

�9 -~(r v r ~ {{-~r162

�9 -~(r ^ r ~ {{-~r {-~r

�9 (~ r ~ {{r

�9 (-~ O r ~ { {0-~r

�9 For an ETL grammar operator G(r r with grammar productions
of the form: {~ --+ ta~ Gb, where 1 < i < l is the index of the production
rules of ~, ta, E VT and Gb~ E VN (which may or may not be present), we
have the following decomposition rules:

~(r r ~ U {{r o ~ , (r r
l < i < l

~ (r 1 6 2 ~ { U {~r v o ~ b , (r 1 6 2
1 < i < /

3 . 4 T a b l e a u G r a p h

Before we proceed to describe the realizability-checking algorithm, we will briefly
explain a tableau graph construction similar to that in [Wo85]. A tableau graph
is a directed graph in which each node n is labeled with a set of formulas, denoted
by (I)(n).

�9 A node n in a tableau graph is called a state node iff (I)(n) contains only
elementary formulas.

161

�9 A node n is environment-compatible iff # r (I)(n).

�9 Similarly, a node n is system-compatible iff -~# ~ ~(n) .

Given a formula ~ to be checked for satisfiability, the tableau graph for ~ is
created as follows:

First,

1. create a node (root} and label it with {~}.

Repeatedly apply steps 2 and 3.

2. If a node n, with no successor, contains a non-elementary formula ~b in
its label ~(n) , and if the decomposition rule for ~b is ~b ==~ { $ 1 , . . . , St},
then for each set of formulas Si, create a successor of n and label it with
((I)(n)- {ql})U Si. However, if there is a node with the same label already,
then just connect n to the existing node.

3. For a state node n with label ~(n) , create (if no duplication occurs) a
successor of n and label it with {~b I Oq ~ E (I)(n)}.

Finally,

4. Remove all inconsistent nodes (the nodes containing a proposition p and
its negation -~p).

A loop in a tableau graph is called a self-supporting loop if for any state
node n in the loop, there is a finite path in the loop start ing from n such that
all formulas of the form O G (. . .) in (I)(n) are fulfilled on the path. A formula
O - ~ (. . .) with the decomposition rule,

{ U
l < i < l

is fulfilled at a state n if the next state n ~ on the path contains a term from each
of the disjunctions of the decomposition rule and if the term is O~Gb, (. . .) then
it is also fulfilled at n ~ (i.e. at the next state down the path).

3 . 5 M a x i m a l l y C o n s i s t e n t S u b s e t s

Given a set of state nodes N, a subset Nmc8 C_ N is maximally consistent if
both of the following conditions are satisfied:

�9 C o n s i s t e n t : It is not the case that for some proposition p other than #
and for some nodes nl, n2 E Nmc~, both p E (I)(nl) and -~p E (I)(n2). In
other words, the union of all the observable atomic formulas (which are
all atomic formulas except # and --,#) in the labels of the nodes in N,~cs
is consistent.

�9 M a x i m a l : There is no other subset N ~ C N such that N ~ satisfies the
above condition (consistent) and Nmc~ C NC

162

3 . 6 M a x i m a l l y N e g a t i o n - C o n s i s t e n t S u b s e t s

For a set of state nodes N, a subset Nmncs C_ N is maximally negation-consistent
if both of the following conditions are satisfied:

�9 N e g a t i o n - c o n s i s t e n t : There exists a function f which maps each node
n E Nmnc8 to an atomic formula f (n) E ~(n) which is not # or -~#, and
the set P = {-~f(n) I n E Ninny8} is consistent. The set P is called the
falsifying set for Nm,~r

�9 M a x i m a h There is no other subset N ~ C N such that N ~ satisfies the
above condition (negation-consistent) and N,~c~ C N ~.

3 . 7 R e a l i z a b i l i t y G r a p h

The structure created by the realizability-checking algorithm is called a realiz-
ability graph. A realizability graph is a directed bipart i te graph (Vs, Vn, Esn, E,~s)
where

�9 V, is a set of nodes called R-state nodes and labeled by a node-label which
is a set of tableau graph nodes and a write-label which is a set of atomic
formulas.

�9 V~ is a set of nodes called R-non-state nodes and labeled by a node-label.

�9 Vs~ is a set of links from R-state nodes to R-non-state nodes.

�9 Vn, is a set of links from R-non-state nodes to R-state nodes.

3 . 8 E m b e d d i n g

An increasing sequence d0 . . . d l of integers is an embedding of a path [loop]
n o . . . nk in a tableau graph into a path [loop] v0 . . . v~ in a realizability graph if
both of the following conditions hold:

�9 for all 0 < i < l, n~, is in the node-label of vi.

�9 for all n j , if j ~ di for all 0 < i < l, then nj is environment-compatible.

It is straightforward to extend the definition to allow the embedding of an
infinite path in a tableau graph into a (finite or infinite) path in a realizability
graph.

163

4 Realizability-Checking Algorithm
The key idea in the algorithm is that the realizability graph represents a game
between the system and the environment in which the environment can make
any finite number of moves after a system's move. This is represented by the
alternate levels of R-state and R-non-state nodes. Given a formula ~b to be
tested for realizability, the algorithm construct a tableau graph for the negation
of ~b. To "win the game", the environment must try to force the execution to
stay on a pa th in the tableau graph which falsifies ~b; whereas the system must
try to push the execution out of such path.

We star t constructing the realizability graph from an R-state node which
contains the root node nroot of the tableau graph. Since the environment can
make any number of moves, it may try to follow any pa th in the tableau graph
from nroot. Without the complete knowledge of all the moves the environment
makes, the system cannot determine which pa th the environment has taken. It
can only use the information from the state it observes when it is scheduled to
run, to determine a set of all state nodes accessible from nroot the pa th might
have led into. In the worst case, such s set will be a maximal ly consistent
subset of all accessible state nodes. Therefore, we construct an R-non-state
successor of the R-state node, for each maximal ly consistent subset. For its
own move, the system must try to push the execution out of any pa th which
the environment might follow (and win) afterward. The best move that the
system can possibly make is to falsify as many successor nodes of the nodes
in the node-label of the R-non-state node and in essence, to limit the possible
paths left for the environment to follow. This is the reason why we compute the
maximally negation-consistent subsets and the falsifying set of atomic formulas.
The remaining nodes which are not falsified can be computed by subtracting
the maximally negation-consistent subsets from the set of all successors of the
nodes in the R-non-state node. For each best move possible, we create an R-
state successor of the R-non-state successor, put the remaining nodes in its
node-label and continue expanding the realizability graph from the new R-state
node.

In the algorithm, at each R-state node v~, we compute a set Disabled by
collecting all state nodes in the labels of every deleted R-non-state successor of
vs. When an R-non-state successor v,~, is deleted, it means the system will not
be able to satisfy the specification by making a transition from vs through v,~s.
Therefore, we should consider such a transition "disabled". As a result, we put
every state node in the deleted R-non-state node into the set Disabled because
the environment can choose to move into some states in which the transition
through the deleted R-non-state node is disabled.

Finally, we also have to check at each R-state node that the environment
cannot win by remaining in a loop containing disabled State nodes.

164

4.1

1.

.

.

.

M a i n p r o c e d u r e

First, create a tableau graph Glb for the formula -~r where r is the formula
to be tested for realizability.

Create an R-state node (root) and label it with the set {nroot} where nroot
is the root node of Glb.

Call the subroutine Expand, passing the root node as its parameter, to
expand the realizability graph in a depth-first fashion.

Finally, check if the root node of the final realizability graph is deleted.
If it is not deleted, then the formula r is realizable. Otherwise, it is
unrealizable.

4.2 S u b r o u t i n e Expand (R e a l i z a b i l i t y G r a p h C o n s t r u c t i o n)

Given an R-state node v~ with a node-label L (v~), expand the realizability graph
as follows:

.

2.

.

.

5.

If L(vs) is empty, then do nothing and return.

Let Nacc be the set of all state nodes nk accessible from some no E L(v~)
through some path n 0 . . . n k in Glb such that for all 0 < i < k, ni is an
environment-compatible node.

If there is a node in Nacc which contains only atomic formulas, then delete
vs and return from Expand.

Set Disabled to be the empty set.

For each maximally consistent subset N,~c~ of Na~,

(a) Create an R-non-state node v,,8 as a successor of vs and label v,~s by
N m c $ �9

(b) Let N ~ be the set of all system-compatible state nodes nk accessible
from some no E Nmc8 through a path no. �9 �9 nk where for all 0 < i < k,
ni is not a state node.

(c) For each maximally negation-consistent subset N , mc~ of N' and the
corresponding falsifying set P of atomic formulas,

i. Create an R-state node as a successor of vn~ and label it by a
node-label N r - Nmncs and a write-label P. Then, recursively
call Expand on the new node.

ii. However, if there is an R-state node v~ with the same node-label
and write-label, and if, in addition, the node v~ itself is marked,

If v~ is not marked "satisfied", "satisfied", then connect vns to v 8 .

.

165

then check whether there exists a self-supporting loop in Glb that
can be embedded into the loop v, . . . v~,. If there is no such loop
in Glb, connect v,s to v~8.

(d) If there is no successor to v~,, delete vn, and add all the nodes in
Nmc, (the node-label of vn,) to the set variable Disabled.

Check if there is a self-supporting loop in Glb which is accessible from a
node in L(v,) through a path consisting only of environment-compatible
nodes, and all state nodes in the loop are environment-compatible and in
the set Disabled. If there is, then delete vs. Otherwise, mark v, "satisfied"
and return.

If only weak fairness is allowed in the definition of realizability that we
are checking, we only have to look for a self-supporting loop with at least
one state node in Disabled.

5 Synthesis Algorithm
To simplify the presentation, we choose to represent the synthesized module by a
labeled finite automaton. A module automaton is a tuple (S, $, so, l) where S is a
finite set of states, ~ : S x 2 ~' ~-~ 2 s the transition relation, so E S the initial s tate
and 1 : S ~4 2 ~ the labeling function. A run r is a sequence (finite or infinite)
of states from S start ing with so. We will write r[k] to denote the k-th state
in the sequence r and]r] to denote the length of r. A behavior ~ with a t ruth-
value assignment ~r : ~ ~-4 2 ~' is accepted by the au tomaton iff there is a run r
such that for every k, if r[k + 1] is defined then ~-((II~ -- l(r[k + 1]) and
r[k + 1] E 5(r[k], 7r((IIl(~r))[k])). With weak fairness, a behavior c~ is accepted
iff in addition to the previous conditions, if r is finite then for some j, there
exist infinitely many i > j , such that 5(r[Irtl , ~r(State(i,r = 0. A similar
acceptance condition can be defined for the case of strong fairness.

Given a realizability graph, we will synthesize a module au tomaton which
implements the specification. First, for each R-state node v, create a state
sv E S for the automaton. The initial state so corresponds to the root node of
the realizability graph. For the labeling function l, let l(s~) be the write-label
of V.

For each sv and each x C 2 p, recall the set Nacc of all state nodes accessible
from the nodes in the node-label L(v) of the R-state node v. Find the largest
subset N C L(v) such that for every state node n E N, all the propositions
p E ~(n) are in x and there is no p E x such that -~p C ~(n) . An R-non-state
successor v.8 o fv is said to coverx i f f g C_ L(v~s) where L(v~8) is the node-label
of vn~. Let V be the set of all R-state successors of the R-non-state successor
v,~8 of v which covers x. Then 8(sv,x) = {Sv, E S Iv8 E Y} .

166

6 Correctness and C o m p l e t e n e s s

P r o p o s i t i o n 6.1 (Correc tness) I f A is the module automaton synthesized af-
ter checking the realizability o f the specification formula r under strong [weak]
fairness , then f o r all behaviors cr accepted by A under strong [weak] fairness ,

P r o o f Ou t l i n e : Suppose there were a behavior cr accepted by A under strong
fairness but cr ~ r We will prove that this leads to a contradiction. First,
from ~ ~= r then c~ ~ -~r and we can show that ~ can be embedded into a
path in the tableau graph Glb. The path starts from the root node of Glb and
may be either finite or infinite. A behavior ~ can be embedded into a path
n o n l n 2 . . , in the tableau graph iff for all state nodes hi, if ni is the j - th state
node in the path, then for all r E O(ni), (~, j) ~ r Next, we can show that
the path nonln2 . . . can be embedded into a path vovlv2 . . . in the realizability
graph, using the assumption that cr is accepted by A. We use the fact that we
compute the maximally negation-consistent subset in the realizability-checking
algorithm to show (by induction) the existence of the part of the embedding
from an R-non-state node to an R-state node and the fact that we compute the
largest subset N C_ L(v) for each R-state node v in the synthesis algorithm for
the part of the embedding from an R-state node to an R-non-state node. If the
path n o n 1 . . , in Glb is finite, then it must be the case that the last state node
nt in the path must contain only atomic formulas, because a ~ -~r It implies
that nt is accessible (in Nac~) from some node in the label of the last R-state
node vl of the path VOVl If that is the case, vl would have been deleted in
step 3 of the realizability-checking algorithm, a contradiction.

If n o n l . . . is infinite but vovl �9 �9 �9 vt is finite, then we can also derive a con-
tradiction by showing that for the case of strong [weak] fairness, there must be
a self-supporting loop within n o n 1 . . , such that all [some] state nodes in the
loop are environment-compatible and in the set Disabled. The essential step
is to use the fact that cr is accepted under strong [weak] fairness and to show
from the properties of maximally consistent subsets that all state nodes ni in
the loop must be in the set Disabled if 5(s~r, ~r(n~)) = O. However, if such a
self-supporting loop exists, then vt would have been deleted in step 6.

Similarly, we can also derive a contradiction in the case when both non1 . . .
and vovl . . . are infinite, by showing that the loops in roy1 . . . would have been
eliminated in step 5.(c).ii.

P r o p o s i t i o n 6.2 (Termina t ion) The realizability-checking algorithm always ter-

minates .

P r o o f Ou t l i n e : There are only finitely many possible R-state and R-non-state
nodes. Therefore, it is not possible to keep expanding the realizability graph
forever. It is also clear that there are only finitely many maximally consistent
and maximally negation-consistent subsets at any time in the algorithm.

167

P r o p o s i t i o n 6.3 (Completeness) The formula r is realizable iff the root node
of the realizability graph is not deleted.

P r o o f O u t l i n e : One direction of the proof, showing that if the root node of the
realizability graph is not deleted then r is realizable, is straightforward from
the proposition 1 (correctness).

In the other direction, we assume that r is realizable and show that the root
node of the realizability graph is not deleted. Since r is realizable, there exists
a function f which realizes it.

We have to define an embedding of a behavior into the realizability graph.
A behavior ~ can be embedded into a finite or infinite path roy1.., star t ing
from the root in the realizability graph iff there exists an increasing sequence of
integers dodx.., such that all of the following conditions are true:

�9 for all i _> 0 and n E L(v~i), there is a formula r E r such tha t
(Or, di) ~ "~r

�9 for all i > O, (c~, di) ~ It,

�9 for all i > 0 and n E L(v21+l), there is a formula r E if(n) such that
(or, d i - 1) ~ 7r

An R-state node is called reachable iff there is a behavior of f which can
be embedded into some path passing through the node. It is easy to see that
the root node must be reachable. We want to show that some of the reachable
nodes including the root are not deleted.

First, we can show that a reachable R-state node must not be deleted in step
3; otherwise, we can easily construct a behavior of f which falsifies r

Next, we can show that for every reachable R-state node v and every self-
supporting environment-compatible loops accessible from a node in the node-
label L(v) Of v, there exists a node n in the loop such that for every R-non-
state successor v~, of v which contains n in the node-label, there is an R-state
successor v ~ of vns which is also reachable. Again, we can prove this by showing
that if such n does not exist, we can construct a fair behavior of f which falsifies
r We also use the fact that the label of vns is a maximally consistent set to
show the existence of the embedding into a pa th through v ~ .

Finally, we can show that for any loop of reachable R-state nodes, if there is
a self-supporting loop in Glb which can be embedded into it as in step 5.(c).ii,
there is a reachable R-state node in the loop which is not deleted as the result of
breaking the loop of R-state nodes in step 5.(c).ii. We prove this by considering
a behavior of f which can be embedded into a path passing through this loop
of reachable R-state nodes. Clearly, the path cannot remain within the loop
forever or the behavior will not satisfy r

168

A c k n o w l e d g e m e n t s

We thank Allen Emerson for his very useful comments and Howard Wong-Toi,
Eddie Chang, Nikolaj Bjorner and Henny Sipma for fruitful discussions and for
carefully reading the drafts of this paper.

R e f e r e n c e s

[ALW89]

[BKP84]

[EC82]

[MW80]

[MW84]

[PR89a]

[PR89b]

[WD91]

[Wo83]

[Wo85]

M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealiz-
able concurrent program specifications. Proc. 16th Int. Colloq. Aut.
Lang. and Prog. Lec. Notes in Comp. Sci. 372, Springer-Verlag,
Berlin, 1-17, 1989.

H. Barringer, R. Kuiper, and A. Pnueli. Now you may compose
temporal logic specifications. Proc. 16th ACM Syrup. Theory of
Comp., 51-63, 1984.

E.A. Emerson and E.M. Clarke. Using branching time temporal
logic to synthesize synchronization skeletons. Sci. Comp. Prog.,
2(3):241-266, 1982.

Z. Manna and R. Waldinger. A deductive approach to program
synthesis. ACM Trans. Prog. of Lang. and Sys., 2(1):90-121, 1980.

Z. Manna and P. Wolper. Synthesis of communicating processes
from temporal-logic specifications. A CM Trans. on Prog. Lang. and
Sys., 6(1):68-93, 1984.

A. Pnueli and R. Rosner. On the synthesis of a reactive module.
Proc. 16th ACM Symp. Princ. of Prog. Lang., 179-190, 1989.

A. Pnueli and R. Rosner. On the synthesis of an asynchronous re-
active module. Proc. 16th Int. Colloq. Aut. Lang. Prog. Lec. Notes
in Comp. Sci. 372, Springer-Verlag, Berlin, 652-671, 1989.

H. Wong-Toi and D.L. Dill. Synthesizing processes and schedulers
from temporal specifications, Computer-Aided Verification (Proc.
CAV90 Workshop), DIMACS Series in Discrete Mathematics and
Theoretical Computer Science Vol. 3 (American Mathematical So-
ciety, 1991).

P. Wolper. Temporal logic can be more expressive. Info. and Cont.,
56:72-99, 1983.

P. Wolper. The tableau method for temporal logic: An overview.
Logique et AnaL, 28:119-136, 1985.

