
M o d e l  C h e c k i n g  o f  M a c r o  P r o c e s s e s  

Hardi Hungar 

Computer Science Dept., 
University Oldenburg, 

D-26111 Oldenburg, Germany 
hungar•informatik.uni-oldenburg.de 

Abstract. 
Decidability of modal logics is not limited to finite systems. The alternation- 
free modal mu-calculus has already been shown to be decidable for context- 
free processes, with a worst case complexity which is linear in the size of the 
system description and exponential in the size of the formula. Like context- 
free processes correspond to the concept of procedures without parameters, 
macro processes correspond to procedures with procedure parameters. They 
too allow deciding mu-calculus formulae, as is shown in this paper by pre- 
senting both global (iterative) and local (tableaux-based) procedures. These 
decision procedures handle correctly also process systems which are defined 
by unguarded recursion. As expected, the worst case complexity depends on 
the highest type level in the process description, and it is k-exponential in 
the size of the formula for a system description with type level k. 

1 Introduction 

Model checking provides a powerful tool for the automatic verification of behavioral 
systems. The corresponding standard algorithms fall into two classes: the iterative 
algorithms (cf. [15, 8, 11, 12]) and the tableaux-based algorithms (cf., e.g. [3, 4, 9, 
30, 33, 35]). Whereas the former class usually yields higher efficiency in the worst 
case, the latter allow local model checking (cf. [33]), which avoids the investigation 
of for the verification irrelevant parts of the process being verified. 

At first sight both kinds of algorithms seem to be restricted to finite systems, 
although Bradfield and Stirling [3, 4] constructed a sound and complete tableau 
system for the full mu-calculus [28], which can deal with infinite transition systems: 
In general, neither the assertions in the tableaux are purely syntactic nor is well- 
formedness of a tableau decidable. But by using second-order assertions Burkart 
and Steffen [5] were able to handle infinite systems given in the form of context-free 
process systems with an iterative algorithm, and a local model checking procedure 
has been developed by Hungar and Steffen [24]. Also, an automata-based approach 
has been presented by Iyer [26]. This one does not decide mu-calculus formulae but 
checks whether the process has a computation which is accepted by a given Biichi 
automaton. 

Context-free processes (CFPs) are essentially equivalent to BPA processes [2]. They 
are labeled transition systems generated by edge replacement systems: edges labeled 
with a nonatomic action (a procedure) are to be replaced by the transition system 
defining the action (the body of the procedure). Because the defining systems may 



170 

contain nonatomic actions as well, the resulting system might be infinite. But for 
model checking purposes, only the effect of an action to the validity of subformulae 
of the formula in question needs to be observed. This allows the reduction of the 
problem to a finite mutual recursive equation system, which was the central idea of 
[5, 24]. 

CFPs can model some interesting infinite structures, for example a stack. They 
can not, however, model a queue. This should not come as a surprise, because a 
queue would give the power of a Turing-machine, destroying decidability. Also, two 
stacks in parallel would yield undecidability. Therefore, CFPs are not closed under 
parallel composition [6]. But there are other ways in which the expressibility can be 
increased without destroying decidability of mu-calculus formulae. And this is done 
within this paper. 

Just like context-free grammars can be generalized to macro grammars [17], and 
further to higher-typed production systems, capable of generating more and more 
languages [13, 16], one can also study higher-typed expansion rules for the genera. 
tion of processes, resulting in what I call macro processes. In programming language 
terms, macro processes (MPs) correspond to programs with higher-order procedures, 
whereas context-free processes correspond to programs with parameterless proce- 
dures. Another way of introducing macro processes would be to enrich BPA by 
process abstraction and application. 

Recalling the results of classical program verification [18, 19], one could expect 
to be able to lift the algorithms working for CFPs to the macro case. And indeed 
this is the main result of this paper. Already the automata,based approach from 
[26] can cope with macro processes of second order (only parameterless processes 
are allowed as parameters). Here, arbitrary finite types are allowed. The price when 
dealing with MPs is that the upper bound for the worst-case complexity of the 
algorithms is k-exponential in the size of the formula, where k is the maximal type 
level in the process system definition. This hyperexponential growth is again in 
accordance with similar results for higher-order programming languages [22, 23, 29]. 
It is a worst-case complexity, though, and an efficient implementation should usually 
behave much better. 

The new algorithms also cope with unguarded recursion, which allows to define 
processes with infinite branching. In that respect they generalize the known algo- 
rithms even for unparameterized processes. For parameterized processes, this is of 
particular interest, because it is much harder to check finite branching for parame- 
terized processes than for unparameterized (context-free) processes. 

The next section introduces the technical definitions and demonstrates the mod- 
eling power of MPs by giving an example. Then the model checking algorithms are 
presented, and in the final section extensions and open questions are discussed. 

2 P r o c e s s e s  a n d  F o r m u l a e  

In this section I introduce process graphs as the basic structure for modeling behav- 
ior, and more specifically, macro process sys t ems  as finite representations of infinite 
process graphs, as well as the (alternation-free) modal mu-calculus as a logic for 
specification. 



171 

2.1 M a c r o  P r o c e s s  S y s t e m s  

Def in i t ion  1 ( P r o c e s s  Graphs ) .  A process graph (short PG) is a labeled transi- 
tion system G with distinguished start  and end state (sG and ea, sG ~ eG), where 
no transition originates at eG. I.e. it consists of a set (of states), a binary relation 
on the states (transitions), and a labeling of the transitions. 

Intuitively, a process graph encodes the operational behavior of a process. That  the 
end state of a process graph must not be the origin of a transition has its reason 
in the use which will be made later of process graphs: They will replace edges in 
transition systems, and that an inserted process graph may be entered via its end 
state has to be avoided. Leaving the inserted process graph via the start  state is 
avoided by using a specific form of insertion, called embedding. 

Defin i t ion  2 ( E m b e d d i n g ) .  Let G and G ~ be PGs and let sx and s2 be states in 
G ~. Embedding G into G ~ between sl and s2 produces a PG where a copy of G is 
inserted into G ~ with 

J -  all states in the copy are new except the end state, for which s~ is used, 
- for all edges leaving sa ,  an edge with the same label and destination originates 

at sl. 

The copy of sa  is called the initial state of the embedding and s2 is called its return 
stale. 

I want to remark that the construction ensuring that an embedded PG is not left 
through the start state could also have been used for the end states, to eliminate the 
restriction on transitions leaving end states in Definition 1. This choice is a matter  
of taste and of technical significance only. 

To generalize the notion of a context-free process system, I first introduce finite 
types. 

Defin i t ion  3 (F in i t e  T y p e s ) .  The set of finite types is given by the production 
rules 

::= Z I ( T ~  T). 

/3 is the base type. 
The level of a type is inductively defined by: 

lev(/3) = O, lev(r  --* p) = max(lev(r)  + 1, lev(p)). 

For every type r, an infinite set of identifiers Xr  is available, with xr,pr E Xr �9 
Typed terms are built up from identifiers by type-respecting application, i.e. 

t ,  ::= xr I ( t , _ ,  t , )  

Simple finite types are generated from fl ~ fl instead of ft. Accordingly, simple 
identifiers are those of simple types, and simple terms do only have subterrns of 
simple type. 



172 

Apart  from the notions of simple types and terms, the definition is fairly standard. 
Note that  types of level 1 are just curried forms of the usual first-order types/3 x 
�9 .- x 13 --*/3. I use an ML-style way of writing applications, i.e. (p x y) means that 
the result of p applied to x is applied to y. 

Simple terms of type/3 --,/3 will be used as nonatomic actions in the follow- 
ing definition of macro processes. Unrestricted finite types are considered in the 
discussion of extension in the final section. 

Def in i t ion  4 ( M a c r o  Processes ) .  Let Act be a set of atomic actions. 
A macro process system (MPS) has the form 

(pl  x11 . . .  x 1 , , )  = C,p, 

e m a i n  �9 

It  consists of a set of process definitions defining process identifiers p : , . . . , p t  and a 
main process graph G,nal,. The process graphs Gp l , . . .  , Gpk and Graa~n have start  
states spl . . . .  ,spk and S,nai, and end states ep l , . . . , e r~  and eraain. Labels in the 
graphs are either atomic actions or simple terms of type/3 --*/3. In addition to the 
defined identifiers, which may occur in any of the process graphs, the terms in Gp~ 
may contain xl 1 , . . . ,  x~,,, i.e. the formal parameters of the definition. The level of 
an MPS is the highest occuring type level. 

The level of an MPS is the maximum of the levels of its defined identifiers. Context- 
free process systems coincide with the set of MPSs of level one. 

I will give a simple operational semantics for an MPS, by defining its complete 
expansion. This results from the main PG by repetetively replacing all nonatomic 
actions by their definitions. The complete expansion may be infinite or even infinitely 
branching. 

Def in i t ion  5 ( C o m p l e t e  Expans ion) .  Expanding a nonatomic transition 
(p~ q t.) 

sl "'; s~ in the main PG of an MPS embeds Gp,, the defining PG ofpl,  
with the formal identifiers xij in transition labels replaced by the tj, between sl and 

s2 and removes the transition Sl (p~ t~ ... t,) ------r 82 .  

An expansion step replaces all nonatomic edges in parallel. The complete expan- 
sion of an MPS results by repeated application of expansion steps. I.e. the complete 
expansion is the union of a (countable) chain of approximants, where an approximant 
is the PG of the MPS after a finite number of expansion steps with all nonatomic 
edges deleted. 

The finite language of an MPS consists of those strings of atomic actions which 
label finite paths from the start to the end state of the complete expansion. 

Note that expanding an edge in an MPS always yields a well-formed MPS. The 
result of an expansion step is unique up to renaming of states, thus also the complete 
expansion is uniquely determined. 



2.2 A n  E x a m p l e  o f  an  MPS 
173 

~ ~ q  x)) 

PC: 0 (P --�9 

Fig. 1. MPS for a 2-stack. 

Figure 1 shows the MPS for a 2-stack. There are several different, but equivalent 
versions of n-stacks [27]. Here, a 2-stack is a stack of ordinary stacks over a set of 
basic elements with (partial) operations 

- push l (d ) :  push d on the top ordinary stack 
- pop l :  pop the top ordinary stack 
- push2: duplicate the top stack 
- pop2: remove the top stack, 

which initially contains an empty ordinary stack. 
In the MPS of Figure 1, a and a are the actions for p u s h l ( d )  and pop1, and b 

and b are used for push2 and pop2. This MPS abstracts from the differences between 
the basic elements and just keeps their count, but it is obvious how to change it in 
order to model a 2-stack over a given finite set precisely (For each basic element, an 
atomic action for pushing and popping would be introduced). Also nested stacks of 
higher degree can be modeled (by MPSs of higher degrees). 

A formal argument that the given MPS indeed models a 2-stack would not be 
hard to give. One can establish a bisimulation between a 2-stack and the MPS. 
Roughly, the correspondence is as follows. During execution, the parameter of the 
actual instance of p represents the top 1-stack. It is always of the form (qn r), which 



174 

allows n consecutive a actions and thus corresponds to a 1-sta~k with n elements. A 
b starts a new recursive call with the same parameter, after which the current call 
is continued (i.e. it duplicates the top 1-stack), whereas a b returns to the previous 
incarnation of p (i.e. it removes the top 1-stack). 

Nested stacks are outside the scope of context-free processes. One could use the 
pumping lemma to show that the finite language of a nested stack (of nesting depth 
greater than one) is not context-free. Indeed, in several respects an n-stack comprises 
the essence of computation with procedures of type level n, cf. [14, 29], which in their 
computation power form an infinite hierarchy. 

2.3 M u  Calcu lus  

The following negation-free syntax defines a sublanguage of the mu-calculus, which 
in spite of being as expressive as the full mu-calculus allows a simpler technical 
development. 

r ::= .ffl t t l X  1r A r 1 6 2  V r I[a]r I (a)r I vX.r  I/-.tY-r 

In the above, a E Act, and X, Y E Vat, where Var is a set of variables. Only closed, 
alternation free formulae will be used, i.e. every variable is bound by a v or p, and 
no v-subformula has a free variable which, in the context of the whole formula, is 
bound by a p, and vice versa. The set of closed alternation-free formulae is denoted 
by ~ .  

Given a PG, the semantics of a formula is a subset of its states. I do not give the 
formals of the standard definition. The closure CL(r of a formula r is the set of all 
its subformulae with each free variable replaced (iteratively) by the corresponding 
fixpoint subformula, e.g. CL(vX.r = { vX.r } U CL(r162 

2.4 H i g h e r - O r d e r  F o r m u l a e  

Def in i t ion  6 ( H i g h e r - O r d e r  Formulae ) .  
Let the set of typed h'igher-orderformulae be defined by 

7a =df 7 

where P denotes the powerset of a set. A higher-order formula (ttOF) is finite 
iff its components are finite. The basis of a higher-order formula is the set of all 
its constituent mu-calculus formulae, i.e. (b Cg) = r (b (O,r  = { (b 0) I 0 e 
e}u{(br 

The relation --<, defined by 

~),0 "< ~b~ =df r : ~b~ 

(~}',~r) "< (kP~',~r) =df kS"r -----<_ ~" A ~r ~_. ~r , 

gives a syntactic approximation of implication on higher-order formulae. 



175 

Higher-order formulae will be denoted by lowercase greek letters, whereas uppercase 
letters will be used for sets of formulae. 

The objects denoted by higher-order formulae are terms over the defined identi- 
fiers of an MPS. The base ease of the definition concerns the validity of second-order 
assertions for arbitrary PGs, and this is explained as ordinary validity for embed- 
dings of the PG. 

Def in i t ion  7 (Seman t i c s  o f  H i g h e r - O r d e r  F o r m u l a e ) .  Let G be a PG. Then 
G ~ (~9~, r iff the initial state of every embedding of G satisfies ~#, whenever the 
return state satisfies all formulae in OZ. 

Let t a_#  be a term of defined identifiers in an MPS. t#_..a ~ ~#_# iff the 

complete expansion of s '~ .~  e satisfies r  
For higher simple types e ---+ r, t ~ r  I= (Or, e r )  iff, for all t~ With tr  ~ Or, it 

holds that ( tr_~ tr) ~ er  (the MPS may be extended to define identifiers in re). 

The usefulness of higher-order formulae for the verification relies on two observations: 

- For verification purposes, defined processes are completely determined by the s.et 
of formulae they satisfy, which is important for the completeness of compositional 
reasoning. 

- If the validity of a finite formula is concerned, only finite formulae need to be 
considered, which will make the method effective. 

In other words: a finite set of formulae is an adequate abstraction of the true seman- 
tics of a macro process. This is formalized in the following proposition. 

P r o p o s i t i o n  8 ( A d e q u a c y ) .  

1. Let G be a PG, and let si resp. sr be lhe initial resp. return stale of an embedding 
of G. Then 

s i~r ifr C~({0eCL(r l s , ~ 0 } , r  

2. Let tr.-.~ and tr be lerms of defined identifiers. Then 

( t r _ ~ t r ) ~ r  i f f t r - . . ~ ( { O r 6 J c  i t  r ~ 0 r  and(bar)  G C L ( b r 1 6 2  . 

Formulae of type fl ~ fl are essentially the second-order formulae from [24]. Intu- 
itively, ({gp, r is true if the start  state always satisfies r whenever at the end state 
a PG is added, so that the end state now satisfies each formula in 69p. Higher-order 
formulae impose this on the PG if all parameters satisfy their specification. 

3 M o d e l  C h e c k i n g  o f  M a c r o  P r o c e s s e s  

I will formulate the algorithms in this section w.r.t, a given MPS with defined pro- 
cesses PI, �9 �9 �9 Pk �9 



176 

3.1 Local Model Checking 

The local method is tableaux-based. I give a set of tableau rules. Other than the 
iterative algorithm to be presented in the following subsection, local model checking 
allows to ignore irrelevant parts of the MPS. 

Intermediate formulae in the proofs concern either states of defining PGs with 
appropriate assumptions about the parameters and the return state, or terms which 
might be called or passed as parameters in calls. Such an intermediate formula is 
called a sequent. 

D e f i n i t i o n 9  (Sequen t s ) .  A (higher-order) assertion is either a state assertion 
s sa t  r a Zerm assertion G sat  CT for a simple type v, with finite r in both 
cases. 

A hypotheses set Fp~ for a defined identifier Pl is a set of assertions of the form 

{epi sat r xil sat ~t, ... ,xln~ sat Cnl} , 

i.e. a collection of assertions containing one assertion for each parameter and one for 
the end state of the definition. 

A sequenl is either Fp~ l- s sat r where s is one of the states of pi or Fp~ l- 
tr sat Cr where tT only involves defined identifiers and formal parameters of Pi �9 

The validity of sequents is defined similar to the validity of formulae: The assertion 
must hold whenever the formal parameters are instantiated with defined identifiers 
satisfying the hypotheses. 

The rule set is an adaptation of the rule set from [24], by adding higher-type 
reasoning like in [19]. 

Definition 10 (Successful Tableau, Derivability). A tableau is successful if it 
is finite and all leaves are successful. Successful leaves are of the form 

1. F ~- s s a t  $1, or 
2. {... ::~ s a t  ~ r  .- .} I- ~:~ sa t  0~ where {0r} -< Or, or 
3. F I- s sa t  r162  where r162  e c n ( v x . r  there is another node on the 

path from the root of the tableau to this node labeled with the same sequent, 
and the maximal fixpoint gets unfolded between these two nodes, or 

4. F ~- p sa t  (@r, , . . . , (@~, [a]r where the assertion recurs along a path 
where the last component of the formula is always [ale#. 

A sequent is derivable if it has a successful tableau. 

A node in a tableau may also have no successor without being a leaf. This applies 
to sequents of the form F b s sa t  [a]r if neither a-transitions nor nonatomic 
transitions originate at s, for example if s = emaln. 

Some remarks in order to explain the mechanism of tableau construction: At any 
time, reasoning is restricted to one process definition (resp., the main process), and 
the hypotheses contain a set of assertions about each parameter and the end state 
of the definition. A subtableau for a process call is entered only when necessary, i.e. 
when evaluating a modality at the origin of a nonatomic transition. Then, ultimately 



Main  

Basic 

177 

H sat  ~b a 

{} l- s i n . i n  sat ~b# 

F I -  s s a t 4 ~ ^ r  F F s s a t  ~ V r  E l -  s s a t ~ V r  

Y F s sat  4~ 1" F s sat ~b~ 1" I- s sat  ~ F I- s sa t  ~a 

F I- s sat  [a]~ a 

1` t- s sat  (a)d~ 

1` F s'sat~ba ... /'F s"satOa F b ta_ asat (Oa,[a]~ba) 

a t t B . ~a  8u. (An s '  where s ---* s and all ta_a, s" where s s ~ { sp I P defined identifier }}. 

F I- s sat  (a)fa t~.~ s") 
(, -.* r (s 

F F s' sat @z 

Higher Types 

F I- s" sat  19 a 

F I- s sat  vX.C~p 

r F s sat  r~[vX.4,IX] 

1" F ta--~ sat (e~, <a)4~) 

.P P s sat pY.~b~ 

/" F s sat  ~[#Y.fa]Y] 

1" t- ( t , _ ,  t , )  sat ~ .  

F I- t , - ~  sat (19,, ~ , )  F t- t ,  sat Or, Or E 6), 

1` F p sat (On, (8. 2 . . . .  (e#, f fp) . . . ) )  

{xi sat  O n , x2 sat  Or~ , . . . ,  ep sat  O~} I- sp sa t  ~ba 

Fig. 2. Tableau Rules 

a modali ty formula about the initial state of another process has to be proven. This 
depends only on the successors of  the initial state, which makes this reasoning sound, 
considering the construction of the complete expansion. 

Since all rules are (backwards) sound, the soundness of the method follows from 
the validity of each successful leaf. Both forms of recurring leaves require an argu- 
ment. The recurrence of a maximal formula by unfolding the maximal fixpoint on 
the connecting path suffices (in the Mternation-free mu-ealculus) for an application 
of the maximal fixpoint" characterization. Note that  the maximal fixpoint formula 
need not recur itself, because it might only appear in disjoint subtableaux handling 
process calls (compare the example in [24]). If a p sa t  (OT~,. . . ,  (O~, [a ] r  re- 
curs without the box being removed on the path, all possibilities of invalidating 
the assertion by doing an a-step are examined in subtableaux along the path.  The 
minimality of the complete expansion guarantees that  this is sufficient. 1 

The completeness relies on the finiteness of the set of relevant assertions and 
sequents, and on the adequacy of the higher-order semantics. To prove a formula r 

1 Box recurrence is an effect of allowing unguarded recursion in MPSs. 



178 

the basis of intermediately needed higher-order formulae is in CL(r (finiteness). 
For every valid v-formula, some sequent with an element of its closure must recur, if 
the rules are applied with care (adequacy). And a valid p-formula must have a finite 
justification. 

The finiteness accounts also for the completeness of an exhaustive search. Sum- 
ming up, we have: 

T h e o r e m  11, The tableau system provides an effective, sound and complete model 
checking procedure for macro processes and alternation-free formulae. 

3.2 I t e r a t i v e  M o d e l  Check ing  

The iterative algorithm follows the idea of [5], only that  it is extended to macro pro- 
cesses and that  it copes with infinitely branching processes (generated by unguarded 
recursion). 

Since the formulae are Mternation-free, minimal and maximal fixpoints can be 
treated separately. To check the validity of a formula r for the start  state (of the 
complete expansion), the iterative algorithm essentially computes all valid sequents. 
To be more precise, if s is a state of Pi and a complete semantic description of the 
parameters and the end state of pi is given, the subset of CL(r which is valid at 
s is computed. The semantic description of an end state is a subset of CL(fb) (the 
subformula which are assumed to be valid). For a parameter, a monotonic function 
over 7~(CL(r of appropriate type is taken as description. For identifiers of/~ ---,/3, 
this is just the second-order semantics of [5]: The function yielding the set of formulae 
valid at the start  state, given the set of formulae at the end 2. For higher types, it 
is a higher-order monotonic function. The function (of parameter and end state 
descriptions) computed for the sp~ gives the semantic description for pi, the result 
for sinai, gives the set of formulae valid for the MPS. 

I will sketch the computation step for minimal fixpoint operators. It is best ex- 
plained for the case of one fixpoint only. Every fact about subformulae not containing 
the fixpoint variable can be assumed to be known. Let k~ be the set of closure for- 
mulae containing the fixpoint formula. The computation iteratively approximates 
from below the subsets of ~ valid at the states of the definitions for all possible 
parameter descriptions. It starts with the end states of process definitions initialized 
according to the respective description values, and everything else initialized to the 
empty set. Then, modalities and conjunctions and disjunctions are evaluated, and 
fixpoints may be unfolded. Transitions labeled with atomic actions are easy to cope 
with, transitions labeled with terms need an evaluation of tlie term according to the 
parameter descriptions (for parameters of the definition) respectively the current 
aproximation of the higher-order semantics of a defined identifier. This computation 
is monotonic, i.e. the sets of valid formulae do increase a. Therefore, it will reach a 
fixpoint, which itself gives a monotonic function for each state. 

2 This description of the algorithm is still oversimplified. E.g. in case that the argument 
set is inconsistent, the result of the computation of the algorithm need not be the full set 
CL(~). In general, only a subset is computed. But the result is correct if the argument 
set consists of all subformulae valid for some process graph. A similar remark applies to 
parameter specifications. 

3 This relies on the monotonicity of the functions for parameter descriptions. 



179 

If recursion was always guarded, this fixpoint would be the correct approximation 
of the semantics of the definitions (as in [5]). In the presence of unguarded recursion, 
it has to be checked whether each box formula [a]# which is computed as f f  is 
properly invalidated by some other formula, i.e. whether according to the parameter 
descriptions there is a transition labeled with a to a state where 0 is false. This 
will always be the case except when a defined process recursively calls itself (with 
semantically equivalent parameters) without any atomic action occuring before the 
second call. If  some box formulae are set to tl because they do not pass the test, the 
iteration continues until finally a fixpoint is reached where all false box-formulae are 
properly invalidated. 

The computation process for maximal fixpoint formulae is the dual procedure. 
It approximates the result from above, and has a special check for the validity of 
diamond formulae. 

Once the higher-order descriptions of the defined identifiers are computed, it is easy 
to decide whether the formula in question holds at the start  state of the main process 
graph. 

The complexity of this iterative computation is dominated by length of represen- 
tations of the descriptions of defined identifiers. This representation is k-exponential 
in O(lev(r)) for an identifier of type r. I.e. for context-free processes the algorithm 
is exponential, for second-order processes it is double exponential, and so on. 

4 E x t e n s i o n s  a n d  O p e n  P r o b l e m s  

The presented model checking procedures are restricted to MPSs with simple types, 
i.e. the type hierarchy in fact starts with fl ~ / 3 .  It is, however, quite straightforward 
to extend them to arbitrary finite types. But what should be a process of type 
/3 ---* (/3 ~ /3)? Tim answer is simple: The argument of type fl of a simple process 
is instantiated with the return state of the call, so an extra argument of this type 
should be regarded as a second possible return state. A call to this process would 
have to be represented by a hyperedge with one origin and two destinations, and the 
defining process graph would have two end states. 

Hyperedge replacement systems [21] are, anyhow, a more adequate generalization 
of context-free string grammars to graph grammars than edge replacement systems. 
They can generate all [7] graphs of pushdown automata [32] (exactly the same set of 
finitely branching graphs). In [6], the iterative model checking procedure for CFPs 
is already extended to pushdown processes, and this set is shown to be closed under 
parallel composition with finite processes. 

The same holds here. All results of this paper carry over to the more general 
case. The tableau rules do not even have to be changed much, only the modality 
rules have to take care of a tuple of end states of nonatomic transitions. And the set 
of processes at each type level will also be closed under parallel composition with 
finite processes, in the same sense as pushdown processes are. 

Several open questions concern the complexity of the methods. The k-exponential 
worst-case complexity is an upper bound, but I conjecture that it can also be es- 
tablished as a lower bound - for the worst case. In many cases, a clever algorithm 



180 

should perform much better. The tableau system gives the basis of an incremental 
algorithm, and the behavior of a program in the style of [34] would be interesting to 
observe. Very often, only a small subset of all parameter values is rel/evant, so one 
could save a lot. 

Of more theoretical interest are two other questions. First, whether it is possible 
to give a denotational semantics to MPSs. And second (perhaps after solving the 
first problem), whether monadic second-order logic, which is more expressive than 
the mu-calculus, is decidable for macro processes. Also, of course, to extend the 
decision procedure to handle the full mu-calculus is something worth trying. 

R e f e r e n c e s  

1. Andersen, H., Model checking on boolean graphs. ESOP '92, LNCS 582 (1992), 1-19.  
2. Bergstra, J.A., and Klop, J.W., Process theory based on bisimulation semantics. LNCS 

354 (eds de Bakker, de R0ever, Rozenberg) (1988), 50-122. 
3. Bradfield, J.C., Verifying temporal properties of systems. Birkhiuser, Boston (1992). 
4. Bradfield, J.C., and Stifling, C. P., Verifying temporal properties of processes. Proc. 

CONCUR '90, LNCS 458 (1990), 115-125. 
5. Burkart, O., and Steffen, B., Model checking for context-free processes. CONCUR "92, 

LNCS 630 (1992), 123-137. 
6. Burkart, O., and Stetfen, B., Pushdown processes: Parallel composition and model 

checking. Tech. Rep. Aachen/Passau (1994), I7 p. (1992), 123-137. 
7. Caucal, D., and Monfort, R., On the transition graphs of automata and languages. WG 

90, LNCS 484 (1990), 311-337. 
8. Clarke, E.M., Emerson, E.A., and Sistla, A.P., Automatic verification of finite state 

concurrent systems using temporal logic specifications. ACM TOPLAS 8 (1986), 244- 
263. 

9. Cleaveland, R., Tableau.based model checking in the propositional mu-calculus. Acta 
Inf. 27 (1990), 725-747. 

10. Cleaveland, R., Parrow, J., and Steffen, B., The concurrency workbench. Workshop 
Automatic Verification Methods for Finite-State Systems, LNCS 407 (1989), 24-37. 

11. Cleaveland, R., and Steffen, B., Computing behavioral relations, logically. ICALP '91, 
LNCS 510 (1991). 

12. Cleaveland, R., and Steffen, B., A linear-time model-checking algorithm for the 
alternation-free modal mu.calculus. CAV 91, LNCS 575 (1992), 48-58. 

13. Datum, W., The IO- and OI-hierarchies, TCS 20 (1982), 95-205. 
14. Datum, W., and Goerdt, A., An automata.theoretic characterization of the OI- 

hierarchy, Inf. and Cont. 71 (1986), 1-32. 
15. Emerson, E.A., and Lei, C.-L., Efficient model checking in fragments of the proposi- 

tional mu-calculus. 1st LiCS (1986), 267-278. 
16. Engelfriet, J., and Schmidt, E.M., 10 and 01, JCSS 15 (1977), 328-353, and JCSS 16 

(1978), 67-99. 
17. Fischer, M.J., Grammars with macro.like productions, 9th Conf. Switching and Au- 

tomata Theory, IEEE (1968), 131-142. 
18. German, S.M., Clarke, E. M. and Halpern, J.Y., Reasoning about procedures as param- 

eters in the language L4, Inf. and Camp. 83 (1989) 265-359. (Earlier version: 1st LiCS 
(1986) 11-25) 

19. Goerdt, A., A Hoare calculus for functions defined by recursion an higher types, Logics 
of Programs 1985, LNCS 193, 106-117. 



181 

20. Habel~ A., I'[yperedge replacement: Grammars and languages. PhD thesis, Bremen 
(1989), 193 p. 

21. Habel, A., and Kreowski, H.-J., May toe introduce to you: Hyperedge replacement, 
Graph-grammars and their application to computer science 1986, LNCS 291 (1987), 
15-26. 

22. Hungar, H., Complexity of proving program correctness, TACS '91, LNCS 526 (1991), 
459--474. 

23. Hungar, H. The complexity of verifying functional programs, STACS '93, LNCS 665 
(1993), 428-439. 

24. Hungax, H., ~nd Steffen, B., Local model checking for context-fr~ processes. ICALP 
'93, LNCS 700 (1993), 593-605. 

25. Huynh, D.T., and Tian, L., Deciding bisimilarity of normod context-free processes is in 
~ .  Tech. Rep. UTDCS-1-92, Univ. Texas Dallas (1992). 

26. Iyer, S.P., A note on model checking context-free processes, North American Process 
Algebra Workshop '93 (ed. Bard Bloom). 

27. Kowalczyk, W., Niwinski, D., and Tiuryn, J. A generalization of Cook's att~iliary- 
pushdown-automata theorem, Fund. Inf. 12 (1989) 497-506. 

28. Kozen, D., Results on the propositional #.calculus. TCS 27 (1983), 333-354. 
29. Kfoury, A. J., Tiuryn, J. and Urzyczyn, P., The hierarchie of finitely typed functions, 

2nd LiCS (1987) 225-235. 
30. Larsen, K. G., Proof systems for satisfiability in Hennessy.Milner logic with recursion. 

TCS "/2 (1990), 265-288. 
31. Larsen, K.G., Efficient local correctness checking. CAV '92. 
32. Muller, D.E., and Schupp, P.E., The theory of ends, pushdown automata, and second. 

order logic. TCS 37' (1985), 51-75. 
33. Stifling, C. P., and Walker, D. J., Local model checking in the modal mu.calculus. 

TAPSOFT '89, LNCS 351 (1989), 369-383. 
34. Vergauwen, B., and Lewi, J., A linear local model checking algorithm for CTL. CON- 

CUR '93, LNCS 715 (1993), 447-461. 
35. Winskel, G., A note on model checking the modal mu-calculus. ICALP '89, LNCS 372 

(1989), 761-772. 


