
Mode l ing and Verification of a Real Life
Protoco l Using Symbol ic M o d e l Checking

Vivek G. Naik and A. P. Sistla

Department of Electrical Engineering and Computer Science, University of Illinois at
Chicago, Chicago, IL 60680

1 I n t r o d u c t i o n

As the computing systems have grown in size and complexity it has become
necessary to develop automated methods for checking the correctness of such
systems. Temporal logic modelchecking [2] is one of such automated methods
for verifying properties of finite state systems. The practical applicability of the
original modelchecking system was limited due to the state explosion problem.
Recently many techniques have been developed to overcome the state explosion
problem. One of the methods that has been finding much application is symbolic
modelchecking [1, 8, 3, 6]. The symbolic modelchecking approach, implemented
as the SMV system, uses BDDs for symbolically representing sets of states and
the transition relation. This approach allowed the possibility of handling systems
with extremely large state spaces.

In this paper, we show how symbolic modelchecking has been used to verify
a real life protocol. Specifically, we have used SMV tool to model and verify
IEEE 802.3 Etherenet CSMA/CD protocol with minimal abstraction. The Eth-
ernet CSMA/CD protocol is a protocol that allows a set of computer systems
connected over a local area network to communicate with each other. The major
steps involved in using the SMV system for verification of the protocol were to
correctly identify the processes within the protocol, to model them in the SMV
toolkit, and to specify and verify the required properties of the protocol. Some
design issues while modeling such a protocol are also dealt with in the research.

We have verified the protocol under the asynchronous and synchronous mod-
els. The major problems encountered in using the SMV system were in modeling
of the following aspects associated with the protocol: the channel, collision de-
tection and carrier sensing, delay modeling (delay is used in successive attempts
after a collision using the exponential backoff approach) and synchronization of
transmitters and receivers. We first modeled the protocol at much detail and
checked the properties. Under these two models, we used progressive abstrac-
tion to reduce the number of variables in each transmitter and receiver, and
thus reduce the time taken for modelchecking. We have verified many properties
for different stations, for various values for different values of maximum number
attempts and frame sizes.

This paper describes the appraoches employed in the verification purpose.
The paper is organized as follows. Section 2 briefly describes the SMV system and

a This research is partially funded by NSF grant CCR-9212183.

195

the specification logic CTL. Section 3 gives an introduction to the Ethernet IEEE
802.3 protocol and a formal model of it. Section 4 specifies various problems
encountered in modeling in SMV and how they were solved. It describes various
components of the protocol. Section 5 lists various correctness properties of the
protocol that were specified and verified using SMV, together with the times
taken for verification. Section 6 contains concluding remarks.

2 T h e S M V t o o l

The inputs to the SMV system consist of the description of transition system
modeling the concurrent system and a correctness specification. The correctness
specification is a formula of the branching t ime temporal logic CTL (Compu-
tat ion Tree Logic) [2] . This logic allows the specification of various safety and
liveness properties that are of interest to concurrent systems. CTL is a proposi-
tional branching t ime temporal logic.

The input language of SMV allows the description of the state transition
system as modules. Each module has a set of parameters that can be instantiated
and reused. Thus if the system has many similar components then all of them
can be defined as instantiations of a single module definition. It also provides for
a hierarchical description of the system. The data types available are Booleans,
scalars and fixed arrays. The language allows a parallel assignment syntax. The
reader is refered to the [7] for a detailed description of SMV.

3 E t h e r n e t P r o t o c o l

3.1 I n f o r m a l D e s c r i p t i o n

Modern Computer Networks are designed in a highly structured way. A seven
layered model was proposed by the International Standards Organization (ISO)
as a first step towards international standardization. The layered approach has
been taken with the fact that each layer provides some primary service to its
upper layer thus making their implementations and design independent of the
other layers as long as the services needed are provided. IEEE's 802 standard
for local area networks is the key standard for LANs.

D e s c r i p t i o n o f t h e C S M A / C D L A N P r o t o c o l
The IEEE 802.3 (from now referred as ethernet) protocol is a Local Area Net-

work(LAN) communication protocol. This standard covers the Physical Layer
and Medium Access Control sublayer which is a part of the Data Link Layer.
The Data Link Layer sits above the Physical Layer and provides services to the
Network layer.

This protocol is based on the concept of ALOHA system developed in 1970s
by Norman Abramson and his colleagues at University of Hawaii. The system
gives an elegant method for the allocation of a shared channel by multiple users.
The users share the single communicating channel. A user sends data in the form
of a stream of bits which is called a frame. The basic idea of the original protocol

196

is to let users transmit whenever they have data to send. If collisions occur then
users t ry to transmit the data after a random delay. A much improved version
of the above protocol is the CSMA/CD protocol (Carrier Sense Multiple Access
wit Collision Detection) protocol. In this protocol, whenever a station wants to
send data it first checks if the channel is busy (i.e. if any one else is currently
transmitt ing); If the channel is not busy then it goes ahead with transmission
of the data. If the channel is busy, then the station waits until the channel is
idle and then transmits the data. Collisions can occur if two stations try to
transmit at the same time or with in a short duration of time determined by the
propagation delay of the channel. This protocol incorporates a collision detection
mechanism. Whenever collisions occur, all t ransmitt ing stations are notified of
the collision. Rather than finish transmitt ing their frames, which are irretrievably
garbled anyway, the transmitt ing stations that detect collisions would abruptly
stop transmitt ing and go onto a phase of post collision arbitration. This improves
the overall performance.
P o s t co l l i s ion o p e r a t i o n

The first station to detect the collision aborts transmission and transmits a
short noise burst. This noise signal is the jam signal which indicates to all the
other stations that there has been collision. The station then waits for a random
amount of t ime and repeats the cycle. After collision the time interval is divided
into slots of a period of 2r, where r is the one way propagation delay of data
transmission. The propagation delay is divided into a slot t ime of 512 bits (51.2
psec).

After the first collision each station waits for 0 or 1 slot times before trying
again. The number of slots for which a station is going to wait depends upon a
random number selected by that station. If two stations pickup the same random
number then there will be another collision in their next a t tempt at transmission.
After the second collision the stations wait for a random period of between 0,
1, 2 or 3 slot times and try again. If a third collision occurs then the random
number picked will a value between 0 to 23 - 1. In general, after i collisions a
random number between 0 to 2 i - 1 is chosen. After 10 consecutive collisions
have been reached then the randomization interval is frozen to a maximum of
1023 slots. After 16 collisions the controller gives up and reports the failure to
the upper layer.

This algorithm of dynamically choosing the delay is called Binary Exponential
Backoff. This mechanism ensures that the delay time adapts to the number of
stations involved on collision. This mechanism ensures that collision is resolved
in a reasonable interval if many stations collide.

The protocol as such doesn't provide any mechanism for acknowledgement
of received frames. Thus the destination station should verify for the checksum
and then send the acknowledgement frame if the data received is error free.

3.2 Formal Specif icat ion of the p r o t o c o l

A formal specification of the Ethernet protocol is given in in [11]. In this model
each station consists of a set of processes communicating through shared vari-

197

ables. Each process is modeled as a t imed transit ion system with upper and
lower bounds on each transition. This specification is much clearer and more
readable than the informal specification of Ethernet in IEEE 802.3 [10, 4, 9]. We
use this as the basis in our verification.

The various processes at each stat ion and the da ta flow between these pro-
cesses is given in figure i. Each process performs a part icular function. The
arrows in the figure indicate the communicat ion of variables tha t are being mod-
ified/shared by the processes. The LLC sublayer sends raw data frames to the
MAC layer. In the model the actual f rame is not sent but the same effect is
achieved by the LLC layer just setting a variable to indicate tha t the MAC layer
can s tar t transmission. The MAC layer consists of the following subprocesses.

/ / ", ' ' "1 \

PLS~am .send PLS data ' ~

'PL

medium

~ " - - - ~ GLOBAL VARIABLEg "~'~

Fig. 1. Basic communication model of the Ethernet Protocol

!. FT (Frame Transmitter) : This process takes input from the variable LLC_f_ready
to indicate that the frame is ready for transmission. I t checks for availability
of the carrier and if it finds it to be not busy, then it sends a send_BT_f signal
to the bit t ransmit ter . Then it waits for a finished_BT signal from the Bit
Transmit ter . While waiting, if it encounters a Collision Detection signal then

198

it sends a send_BT_jam signal to the BT and waits for finished_BT signal.
If there is no collision detect signal till it receives the finished_BT signal
then it sends an ok signal to the LLC indicating that the data transmission
has been successful. If there had been a collision the process increments the
variable indicating the number of at tempts, picks up a random number ac-
cording to the binary exponential backoff algorithm. It then sets the delay
variable to the random number. After waiting for the amonut of time given
by the delay, the process returns to the state in which it checks if the carrier
is free. If collision occurs again then the process executes the above described
steps till the number of at tempts is less than maximum. Once the maximum
limit is reached then the process terminates in the fail state indicating failure
of transmission of the frame.

2. BT (Bit Transmitter) : This process is the link between the MAC layer and
the processes in the Physical layer processes. The BT, upon receiving the
signal send_BT_f, sends the send_PLS_data signal to the Physical Layer
Sender (PLS) process to transmit the next bit from the data frame. If BT
receives a send_BT_jam signal, then it indicates to the PLS to send the
jam sequence bits. After completion of transmission of all the bits in the
frame or the jam sequence, BT sends the finished_BT signal to the FT.
This processes keeps track of the number of bits sent and the index of the
next bit to be sent.

3. FR (Frame Receiver) : This process is the data receiver process of the MAC
layer. It waits for the Carrier Sense signal to be true. It then communicates
with the Physical Layer Receiver(PLR) and receives the data bits. The data
frame received is then sent to the LLC layer.

The physical layer consists of the following processes:

1. PLS (Physical Layer Sender) : This process is the link between the trans-
mission medium and the BT of the MAC Layer. Each station has a variable
containing the next data bit to be transmitted. Upon receiving the signal
from the BT to transmit data bit, PLS checks if the data to be transmitted
is a j am bit or a data bit (this depends on the status of the send_BT_jam
signal). Accordingly the data bit is set to one of {0;1,id} or to {J}. After the
last data bit, an additional bit containing the value N D (n o data) is sent;
this provides spacing between successive frames transmitted on the channel.
Other variables needed for synchronization of the Read and Write operations
among all the stations are also set by this process. This topic is discussed in
more detail in the Section 5.

2. PLR (Physical Layer Receiver) : This process is the receiver section of the
Physical Layer. It receives data from the medium (we model them as global
variables). When it receives a signal from the FR to read the data in, it
reads it and stores it in the buffer. This process reads the data from the
variable called the chnl_data. This variable is set using all the data bits of
the transmitt ing stations in the model and its value represents the data on
the channel. Extra variables are used to synchronize reading of the channel
data with the sending of the data by the transmitt ing station.

199

The processes FT, BT and PLS form the t ransmit ter part of a station. The
processes PLR and FR form the receiver part of a station.

4 M o d e l i n g t h e p r o t o c o l i n S M V

The SMV uses for its input a transition based model of processes communicating
to each other through shared and global variables. Thus, it is particularly suited
for verifying the Ethernet protocol. However, the following major problems were
encountered in modeling the protocol in SMV. Many of these problems are due
to the lack of representation of time in SMV.

4.1 Issues in Mode l ing the protoco l in S M V

1. Channel representation: The channel through which the stations communi-
cate as we have seen in the previous sections consists of a stream of bits.
These bits move at the speed of transmission that is 10 megabits per second.
The propagation delay on the channel results in the stream of data bits to be
unavailable at the same instant to all the stations on the network. To avoid
modeling the propagation delay the data channel is assumed to be one bit
long. This part of specification as given in [11] is a real t ime specification,
and it needs to be modified so that it can be handled by SMV.

2. Simulation of Transmission: The rate at which the data is t ransmit ted in
the protocol is fixed, and the model in [11] achieves this by introducing
a fixed t ime delay between the consecutive bits that are transmitted. The
t ime delay between transmission of successive bits ensures that the receiving
stations read the data before sending of the next bit. We achieve this by
synchronizing the transmission and reception by using variable arrays.

3. Processes with time constraints on their transitions: Some of the processes
have t ime bounds on their transitions. As in the case of transmission of
data, the time bounds on the transitions of processes ensure that , for a
shared variable between two processes, the previous value of the variable
would have been read by the second process before the variable is updated
again (most of the processes communicate data in a pat tern in which the
writing action of one process is followed by a reading action of the other). To
get this same effect in the model without t ime bounds on the transitions it is
necessary to validate that the reader has read the previous value before the
writer writes again. This involves additional message passing. The technique
used is similar to the transmission of data between stations and is discussed
in the next section.

4. The computation of Random Delay: In the Binary exponential backoff delay
mechanism after collision each station waits for a random amount of t ime
slots. On the network it is imperative that if only one station picks up the
smallest random number of all the stations involved in the collision, then it
is bound to transmit successfully. To ensure that this behavior is preserved
in the SMV model, it becomes necessary to have a centralized delay control

200

mechanism. This would take care of the post collision arbitration.
The following sections describe the basic modeling approach and the pro-
cesses that effectively model the protocol.

4.2 Modeling the different Aspects in SMV

As indicated before, we considered two different method of modeling a set of sta-
tions using the Ethernet protocol. The first method is the asynchronous method
where all stations and all processes in each station are modeled as asynchronous
processes. The second method is where all stations are modeled as synchronous
processes. In this method, the whole station is a single process.

Asynchronous Model
To enable communication between the processes belonging to a station mod-

ule within themselves and with the other station modules in the model, we
define global variables which are shared by all the processes. The variables in-
clude those which represent the status of data channel and those which are used
for synchronization between the processes to ensure correct behavior.

Various components of the protocol are modeled as follows.

- Data Channel modeling: The data Channel was one of the complex aspects
to model in the transition system. As mentioned in the section 4.1, some
assumptions are made in modeling the channel. The most significant one is
that the channel is assumed to be just one bit length, as opposed to that in
real life as a stream of bits whose bit length depends upon the physical length
of the cable. The data channel is assumed as a set of data bit variables with
one data bit for each station on the network. Each Data variable is defined
as follows:
D A T A : {0, 1, 2, J, ND};
These values represent the values that this variable takes. A value of { 0, 1,
2 } indicates good data bits. If the value of the data variable is J then it
indicates that the station is writing jam sequence. The value of N D indicates
that there is no data. The number of data variables depends on the number
of stations in the system. Each station writes into the data variable which
corresponds to its id number. The actual data on the channel is given by
the variable chnl_data which is the composition of all the data variables.
In a system with two stations the data on the channel is the composite of
the data variables DATA1 and DATA2. The definition of the chnl_data is as
given below.

chnl_data :=
c a s e

DATA1 = ND : DATA2;
DATA2 = ND : DATA1;
1 : J ;

esac;

201

The above DEFINE takes care of the fact tha t the ehnl=data has the valid
da ta depending upon the value of the individual da ta variables. The third
assignment sets it to J if the both of the da ta variables are not ND. Thus
the ehnl_data will always represent the composite of the two stat ions da ta
bits.

- Carrier Sense (CS) and Collision Detect (GD) variables: The Carrier Sense
(CS) variable which represents the s ta tus of the Channel is defined as follows:
CS := !(DATA1 = ND & DATA2 = ND);
This sets the variable CS to 1 if it is not the case tha t both the da ta variables
are not ND. Thus a busy channel s ta tus is indicated by this variable when
it is set.
The Collision Detect (CD) variable which is set to 1 if there is collision on
the channel. This is achieved by the following definition:
C D : = [(DATA1 = ND [D A T A 2 = N D) I (D A T A I = J] D A T A 2 = J) ;

- The Read Array to synchronize the Transmitters and lhe Receivers: The da ta
variables, mentioned above, are set by the t ransmit t ing side of the station,
and the receiving side reads from the ehnLdata variable. In the real life
systems there is a t ime bound on each of the transitions which occur in the
t ransmit t ing section and the receiving section. The rate at which the Receiver
reads is same as the rate at which the Transmi t te r sends. Thus the Receiver
will never read the same data bit twice f rom the channel and the Transmi t te r
will not overwrite the last written data. Since we are modeling all processes
as completely asynchronous and since we don not have t ime in our model,
we achieve the synchronization between t ransmit ters and receivers by using
extra variables.

We use an n x n array Read of binary variables to synchronize the t ransmit ters
and receivers. Transmit ter i sets the bits in the i th r o w to zero after writing
on the channel and will not write again until all these bits are set to 1 by
the receivers indicating that they have read it. Receiver set these bits to
1 after they read the data. Since all receivers run asynchronously we need
one bit per receiver; Also, since the t ransmit ters can t ry to t ransmit at the
same t ime we need one row of bits per each transmit ters . We also have used
a model where~only a one dimensional array of n bits are used. However,
this model does not accurately depict the complete parallelism among the
transmitters .

- Modeling of Delay after collision: The ethernet protocol uses a Binary Expo-
nential Backoff algorithm for handling the post collision arbitrat ion. When
two stations get into collision then each one of them picks up a r andom num-
ber which depends upon the current a t t empt for sending data. Each stat ion
then waits for an amount of t ime given by the delay chosen by it, and tries
to t ransmit again. Since the clocks at different stations are synchronized to
run more or less at the same rate, the stat ion to pick up the least delay will
a t t empt to t ransmit first in the next try. Clearly, in an asynchronous model,
we canot implement this by using an obvious count down of the delay vari-

202

able. We use a simple centralized delay monitoring mechanism for achieving
the above effect.
Each station has its local variable delay which is set by the Frame Transmit-
ter process. A value of 0 for this variable indicates that the corresponding
station is not in an arbitration, i.e. not waiting to transmit. The Frame
Transmit ter process sets the delay variable according to the binary expo-
nential backoff algorithm and waits for its stn_go signal to be set to true.
The stn_go signal is globally defined for each station. This signal for station
1, in a two station configuration, is defined as follows.
stnl_go := !(s tn l .FT.delay = 0) & !(stn2.FT.delay = 0) & (s tn l .FT.delay
< = stn2.FT.delay)
This definition ensures that the stnl_go is set to true only if both the delay
variables are not zero and the third condition is true. The station which gets
its stn_go signal to be true then goes ahead to transmitt ing data and sets
the delay variable to 9 which then allows the other station to proceed. This
further ensures that if this is the case only one station gets the stn_go signal
then, it will t ransmit successfully next.

Synchronous M o d e l
In the synchronous model, we do not need the Read array for synchronization

purposes. Each value written by a t ransmit ter in a clock cycle is read by all the
receivers in the next clock cycle. No centralized delay monitoring system was
needed. Essentially each transmitter decrements its delay counter in successive
clock cycles, and when the delay becomes zero it tries to transmit again. Thus,
this delay mechanism, in the synchronous model, is closer to reality than in the
asynchronous model. However, in the synchronous model, each step of all the
transmitters is synchronized which is not exactly the case in real life. These are
the only differences between the asynchronous and the synchronous model.

5 R e s u l t s a n d I n f e r e n c e

We were able to verify various properties in the asynchronous as well as the
synchronous model. While testing the asynchronous model, we found some errors
due to the fact that in the real life protocol there is an inherent assumption about
the frame level synchronization which we did not model. We had to change our
model appropriately to take this into consideration.

In the synchronous testing we used only one receiver since all the receivers
are identical. This receiver is used to check that the transmitted frame is cor-
rectly received. We tested for different number of transmitters. We checked for
the cases when the number of at tempts is 2 and 4. We also checked for a frame
size of 3 bits and of one bit. We checked for two properties. The first property
asserts that whenever the LLC layer requests the transmission of a frame then
eventually the MAC layer (i.e. frame transmitter) responds with a success or a
failure message. This property for station 1, called property 1, is expressed by
the following CTL formula:

203

A a (L L C f r e a d y l = 1 ---* A F (i n d l = success V i n d l = f a i l)) .
Here i n d l is the variable through which the MAC layer sends a successful or fail-
ure message to the L L C layer. The amount of t ime taken for different parameter
values is given in the table 1.

T a b l e 1, Table of Results for synchronous models for checking property 1

Mode l Conf igura t ion

t r a n s m i t t e r s a t t e m p t s f r ame size

2 1
2 1

4 1

4 3

reachable[Irelat ion[[t ime sec i

s t a tes II nodes I] t ime

10K
280K

77K

750K

13.3K
34.9K

13.3K

140K

287
5839

3905
20,987

The second property that we checked asserts that the frame received by a
receiver is the correct frame. In the synchronous model this is asserted as an
invariance property. The following formula asserts this. In this, the predicate
t r a n s l . F T . s t a t e l = done indicates that t ransmit ter 1 reaches a done state
while the predicate Gooddata l indicates that the frame buffer in the receiver
denotes a good data frame from station 1.
A G (t r a n s l . F T . s t a t e = done --+ Goodda ta l)
The timing results for property 2 are given in the table 2. The times given in
this table include the time taken for computing the number of reachable states
(usin the -r option) and this later t ime completely dominated the over all t ime
taken for checking this assertion. When this option is removed the checking of
this property was extremely fast. In fact, for the case of five transmitters the
t ime reduced to 85 seconds when the -r option was not used.

In our asynchronous model, each station has all the processes on the trans-
mit ter side and the receiver side. Also each frame has three bits. We checked for
the following properties. The first property (property 1) asserts that each station
will eventually reaches a done state or a fail state. This property is asserted by
the following CTL formula:
A F (s t n l . F T . s t a t e -- d o n e [s t n l . F T . s t a t e = f a i l)

The second property asserts that if a station reaches a success state all other
stations must have received the frame sent by it. This is asserted by a CTL
formula of the form A G (S t n l . F T . s t a t e = done ~ A F proper - recep t ion)
Here proper - recep t ion is a state predicate on the receivers asserting that they
received correct frame station 1. It is to be noted we needed an A F modali ty
inside due to the asynchrony.

The third property we checked is that in a two station system whenever there

204

Table 2. Table of Results for synchronous models for checking property 2

Model Configuration [[reachable relation [[time sec

t ransmit ters a t tempts frame size states BDD nodes time sec

3 2 1 10K 13.3K 23
4 2 1 280K 34.9K 247
5 2 1 7,500K 93.4K 3724

i

3 4 1 77K 13.3K
4 34.9K 3950K

116
2787

3 4 3 750K 140K 618

is a collision, then both stations reach a done state (sucCessful transmission), or
both states reach a fail state. This is expressed by a formula of the form AF(p)
where p is a state predicate.

The fourth property that we checked is that, in a two station system, in case
of a collision the station picking up the lower delay will successfully transmit.
This is expressed as a formula of the form
AG(stationl-go --* AF(s~nl.FT.s~ate = done)

We checked the above properties for the asynchronous system with configu-
ration of two and three stations in which one or two stations are active. A station
is active if it is allowed to send messages. The results are given in table 3.

Table 3. Table of Results for the asynchronous model

[[Model Configuration

[[stations[active stns

2 2
2 2
2 2
2 2
3 2

prop ertY[l[reachable

property states

1 701K
2 701K
3 701K
4 701K
4 1500K

relation

BDD nodes

24K
24K

Itime sec

time sec

51,500
52,000

24K 59,466
24K 62,400
64K 59,200

As can be seen from table 3 that verification of different properties in the
asynchronous model, the modelchecking took more time. We believe that this is
due to the inherent complexity of the protocol. We were able to reduce the times
by 40%, for some of the cases of the table, by changing the variable ordering.

After modelchecking using a detailed model, we deleted lot of detail in the

205

protocol and also removed the receiver part and modelchecked for the reduced
system. In this system we checked for the property 1 given in the previous table.
The number of reachable states reduced substantially and we were able to check
for two station system with four a t tempts much faster, i.e. in 1600 seconds
(approximately, 25 minutes).

6 C o n c l u s i o n a n d F u t u r e w o r k

In this paper, for the first time, we verified various properties of a detailed
model of the Etherenet Protocol using symbolic modelchecking. The model for
the protocol has been developed in stages, and the verification process identified
some problems in our modeling. The difficulties in modeling were part ly due
to the absence of real t ime in the model checker. Solutions to these problems
needed use of additional data structures, to preserve the correct behavior of
the protocol. As an example, while developing the model it was found that the
transmit ter could possibly transmit before the receiver has reset its da ta buffers.
This needed modifications in the model to transmit after all the receivers have
reset.

The centralized delay monitoring mechanism used in the asynchronous model
works for the case when there are two active stations. It can be modified to work
for an arbitrary number of stations. In this case, system allows the station with
smallest delay to transmit by setting appropriate flag, and decrements the delay
variables of other waiting stations by th delay of the chosen process.

A more general approach for verifying properties of t imed trantion systems
under the discrete time model, is to transform the timed system into an un-
t imed system by using extra time variables to keep track of the times for which
each of the transitions has been enabled. In this case, we need to add another
process/transition that models the clock and increments the t ime variables. The
lower bounds bounds associated with each transition can be enforced by adding
additional conjucts to the enabling conditions of the transitions. The upper
bounds on the transitions are enforced by enabling the clock transition only
when all the t ime variables obey the upper bounds of the corresponding tran-
sitions. Also, the time variables need to be reset to zero, in the action parts of
each transition, whenever the corresponding transition is disabled or whenever
the corresponding transition is executed. All of this can be done by a simple
syntactic trnasformation of the transition system, and this can be automated.
The SMV system can be used on the transformed system.

Our conclusion is that real life protocols can be verified using the SMV sys-
tem. As indicated in the paper, our verification under the asynchronous model
was done using a fairly detailed description of the system. The CTL specifi-
cations, which are used for model checking on the model, cover a wide range
of properties. We believe that we can make the modelchecking faster by using
dynamic variable reordering. This we expect to do in future.

Future work: The model which was developed is symmetric in the sense that
there are more than one instances of the same module used in the model. Thus

206

symbolic model checking with symmetry may make the verification faster. Sec-
ondly the SMV system presently doesn't have real time in its language. We
feel that model checker for real time systems would model the problem more
accurately.

R e f e r e n c e s

1. J. R. Burch, E. M. Clarke, K. L. McMillan, D.L. Dill, "Symbofic
Modelchecking: 102~ states and beyond", In Proceedings of fifth
annual Symposium on Logic in Computer Science, June 1990.

2. E. M. Clarke, E. A. Emerson and A. P. Sistla. "Automatic verifica-
tion of finite-state concurrent systems using temporal logic." A CM
Trans. Program. Lang. Syst. 8, 2, (April 1986), 244-263.

3. E. M. Clarke, J. 'R. Butch, O. Grumberg, D. E. Long and K. L.
McMillan. "Automatic verification of Sequential Circuit Designs."
Royal Society of London, October 1991.

4. J. D. Day and H. Zimmerman. "The OSI reference model." In Proc.
of 1EEE, volume 71, pages 1334-1340, December 1983.

5. O. Lichtenstein and A. Pnueli. "Checking that finite state concurrent
programs satisfy their linear specification." In Conference Record of
the Twelfth Annual A CM Symposium on Principles of Programming
Languages, 1985.

6. K. McMillan and J. Schawalbe. "Formal verification of the Encore
Gigamax cache consistency protocol." In International Symposium
on Shared Memory Multiprocessors., 1991.

7. K. L. McMillan. "The SMV system " February 1992.
8. K.L. McMillan. "Symbolic Modelchecking: An approach to state

explosion problem" Ph.D. thesis, CMU-CS-92-131, may 1992.
9. A. Tanenbaum. Computer Networks. Prentice Hall, 2nd edition,

1989.
10. ANSI/IEEE std. Information Processing Systems- Local Area

Networks- Part3: Carrier sense multiple access with collision detec-
tion (CSMA/CD) access method and physical layer specifications.
The IEEE, Inc., NY, October 1991.

11. It. B. Weinberg and L. D. Zuck. "Timed Ethernet: Real-Time Formal
Specification of Ethernet" In Proc. 3rd CONCUR, August 1992.

