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1 I n t r o d u c t i o n  

As the computing systems have grown in size and complexity it has become 
necessary to develop automated methods for checking the correctness of such 
systems. Temporal logic modelchecking [2] is one of such automated methods 
for verifying properties of finite state systems. The practical applicability of the 
original modelchecking system was limited due to the state explosion problem. 
Recently many techniques have been developed to overcome the state explosion 
problem. One of the methods that has been finding much application is symbolic 
modelchecking [1, 8, 3, 6]. The symbolic modelchecking approach, implemented 
as the SMV system, uses BDDs for symbolically representing sets of states and 
the transition relation. This approach allowed the possibility of handling systems 
with extremely large state spaces. 

In this paper, we show how symbolic modelchecking has been used to verify 
a real life protocol. Specifically, we have used SMV tool to model and verify 
IEEE 802.3 Etherenet CSMA/CD protocol with minimal abstraction. The Eth- 
ernet CSMA/CD protocol is a protocol that allows a set of computer systems 
connected over a local area network to communicate with each other. The major 
steps involved in using the SMV system for verification of the protocol were to 
correctly identify the processes within the protocol, to model them in the SMV 
toolkit, and to specify and verify the required properties of the protocol. Some 
design issues while modeling such a protocol are also dealt with in the research. 

We have verified the protocol under the asynchronous and synchronous mod- 
els. The major problems encountered in using the SMV system were in modeling 
of the following aspects associated with the protocol: the channel, collision de- 
tection and carrier sensing, delay modeling (delay is used in successive attempts 
after a collision using the exponential backoff approach) and synchronization of 
transmitters and receivers. We first modeled the protocol at much detail and 
checked the properties. Under these two models, we used progressive abstrac- 
tion to reduce the number of variables in each transmitter and receiver, and 
thus reduce the time taken for modelchecking. We have verified many properties 
for different stations, for various values for different values of maximum number 
attempts and frame sizes. 

This paper describes the appraoches employed in the verification purpose. 
The paper is organized as follows. Section 2 briefly describes the SMV system and 
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the specification logic CTL. Section 3 gives an introduction to the Ethernet  IEEE 
802.3 protocol and a formal model of it. Section 4 specifies various problems 
encountered in modeling in SMV and how they were solved. It describes various 
components of the protocol. Section 5 lists various correctness properties of the 
protocol that  were specified and verified using SMV, together with the times 
taken for verification. Section 6 contains concluding remarks. 

2 T h e  S M V  t o o l  

The  inputs to the SMV system consist of the description of transition system 
modeling the concurrent system and a correctness specification. The correctness 
specification is a formula of the branching t ime temporal  logic CTL (Compu- 
tat ion Tree Logic) [2] . This logic allows the specification of various safety and 
liveness properties that  are of interest to concurrent systems. CTL is a proposi- 
tional branching t ime temporal  logic. 

The input language of SMV allows the description of the state transition 
system as modules. Each module has a set of parameters that  can be instantiated 
and reused. Thus if the system has many similar components then all of them 
can be defined as instantiations of a single module definition. It also provides for 
a hierarchical description of the system. The data types available are Booleans, 
scalars and fixed arrays. The language allows a parallel assignment syntax. The 
reader is refered to the [7] for a detailed description of SMV. 

3 E t h e r n e t  P r o t o c o l  

3.1 I n f o r m a l  D e s c r i p t i o n  

Modern Computer  Networks are designed in a highly structured way. A seven 
layered model was proposed by the International Standards Organization (ISO) 
as a first step towards international standardization. The layered approach has 
been taken with the fact that  each layer provides some primary service to its 
upper layer thus making their implementations and design independent of the 
other layers as long as the services needed are provided. IEEE's  802 standard 
for local area networks is the key standard for LANs. 

D e s c r i p t i o n  o f  t h e  C S M A / C D  L A N  P r o t o c o l  
The IEEE 802.3 (from now referred as ethernet) protocol is a Local Area Net- 

work(LAN) communication protocol. This standard covers the Physical Layer 
and Medium Access Control sublayer which is a part of the Data Link Layer. 
The Data Link Layer sits above the Physical Layer and provides services to the 
Network layer. 

This protocol is based on the concept of ALOHA system developed in 1970s 
by Norman Abramson and his colleagues at University of Hawaii. The system 
gives an elegant method for the allocation of a shared channel by multiple users. 
The users share the single communicating channel. A user sends data  in the form 
of a stream of bits which is called a frame. The basic idea of the original protocol 
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is to let users transmit  whenever they have data  to send. If collisions occur then 
users t ry  to transmit  the data after a random delay. A much improved version 
of the above protocol is the CSMA/CD protocol (Carrier Sense Multiple Access 
wit Collision Detection) protocol. In this protocol, whenever a station wants to 
send data  it first checks if the channel is busy (i.e. if any one else is currently 
transmitt ing);  If the channel is not busy then it goes ahead with transmission 
of the data. If the channel is busy, then the station waits until the channel is 
idle and then transmits the data. Collisions can occur if two stations try to 
transmit  at the same time or with in a short duration of time determined by the 
propagation delay of the channel. This protocol incorporates a collision detection 
mechanism. Whenever collisions occur, all t ransmitt ing stations are notified of 
the collision. Rather than finish transmitt ing their frames, which are irretrievably 
garbled anyway, the transmitt ing stations that  detect collisions would abruptly 
stop transmitt ing and go onto a phase of post collision arbitration. This improves 
the overall performance. 
P o s t  co l l i s ion  o p e r a t i o n  

The first station to detect the collision aborts transmission and transmits a 
short noise burst. This noise signal is the jam signal which indicates to all the 
other stations that  there has been collision. The station then waits for a random 
amount  of t ime and repeats the cycle. After collision the time interval is divided 
into slots of a period of 2r, where r is the one way propagation delay of data  
transmission. The propagation delay is divided into a slot t ime of 512 bits (51.2 
psec). 

After the first collision each station waits for 0 or 1 slot times before trying 
again. The number of slots for which a station is going to wait depends upon a 
random number selected by that  station. If two stations pickup the same random 
number then there will be another collision in their next a t tempt  at transmission. 
After the second collision the stations wait for a random period of between 0, 
1, 2 or 3 slot times and try again. If a third collision occurs then the random 
number picked will a value between 0 to 23 - 1. In general, after i collisions a 
random number between 0 to 2 i - 1 is chosen. After 10 consecutive collisions 
have been reached then the randomization interval is frozen to a maximum of 
1023 slots. After 16 collisions the controller gives up and reports the failure to 
the upper layer. 

This algorithm of dynamically choosing the delay is called Binary Exponential 
Backoff. This mechanism ensures that  the delay time adapts to the number of 
stations involved on collision. This mechanism ensures that  collision is resolved 
in a reasonable interval if many stations collide. 

The protocol as such doesn't provide any mechanism for acknowledgement 
of received frames. Thus the destination station should verify for the checksum 
and then send the acknowledgement frame if the data  received is error free. 

3.2 Formal  Specif icat ion of  the  p r o t o c o l  

A formal specification of the Ethernet  protocol is given in in [11]. In this model 
each station consists of a set of processes communicating through shared vari- 
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ables. Each process is modeled as a t imed transit ion system with upper  and 
lower bounds on each transition. This specification is much clearer and more 
readable than  the informal specification of Ethernet  in IEEE 802.3 [10, 4, 9]. We 
use this as the basis in our verification. 

The various processes at each stat ion and the da ta  flow between these pro- 
cesses is given in figure i. Each process performs a part icular  function. The  
arrows in the figure indicate the communicat ion of variables tha t  are being mod-  
ified/shared by the processes. The LLC sublayer sends raw data  frames to the 
MAC layer. In the model the actual f rame is not sent but the same effect is 
achieved by the LLC layer just  setting a variable to indicate tha t  the MAC layer 
can s tar t  transmission. The MAC layer consists of the following subprocesses. 

/ / ", ' ' "1 \ 

PLS~am .send PLS data ' ~ 

'PL 
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~ " - - - ~  GLOBAL VARIABLEg "~'~ 

Fig. 1. Basic communication model of the Ethernet Protocol 

!. FT (Frame Transmitter) : This process takes input from the variable LLC_f_ready 
to indicate that  the frame is ready for transmission. I t  checks for availability 
of the carrier and if it finds it to be not busy, then it sends a send_BT_f signal 
to the bit t ransmit ter .  Then it waits for a finished_BT signal from the Bit 
Transmit ter .  While waiting, if it encounters a Collision Detection signal then 
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it sends a send_BT_jam signal to the BT and waits for finished_BT signal. 
If there is no collision detect signal till it receives the finished_BT signal 
then it sends an ok signal to the LLC indicating that  the data  transmission 
has been successful. If there had been a collision the process increments the 
variable indicating the number of at tempts,  picks up a random number ac- 
cording to the binary exponential backoff algorithm. It then sets the delay 
variable to the random number. After waiting for the amonut  of time given 
by the delay, the process returns to the state in which it checks if the carrier 
is free. If collision occurs again then the process executes the above described 
steps till the number of at tempts is less than maximum. Once the maximum 
limit is reached then the process terminates in the fail state indicating failure 
of transmission of the frame. 

2. BT (Bit Transmitter) : This process is the link between the MAC layer and 
the processes in the Physical layer processes. The BT, upon receiving the 
signal send_BT_f, sends the send_PLS_data signal to the Physical Layer 
Sender (PLS) process to transmit the next bit from the data frame. If BT 
receives a send_BT_jam signal, then it indicates to the PLS to send the 
jam sequence bits. After completion of transmission of all the bits in the 
frame or the jam sequence, BT sends the finished_BT signal to the FT. 
This processes keeps track of the number of bits sent and the index of the 
next bit to be sent. 

3. FR (Frame Receiver) : This process is the data receiver process of the MAC 
layer. It waits for the Carrier Sense signal to be true. It then communicates 
with the Physical Layer Receiver(PLR) and receives the data  bits. The data  
frame received is then sent to the LLC layer. 

The physical layer consists of the following processes: 

1. PLS (Physical Layer Sender) : This process is the link between the trans- 
mission medium and the BT of the MAC Layer. Each station has a variable 
containing the next data bit to be transmitted.  Upon receiving the signal 
from the BT to transmit  data  bit, PLS checks if the data  to be transmitted 
is a j am bit or a data  bit (this depends on the status of the send_BT_jam 
signal). Accordingly the data  bit is set to one of {0;1,id} or to {J}. After the 
last data  bit, an additional bit containing the value N D (n o  data) is sent; 
this provides spacing between successive frames transmitted on the channel. 
Other variables needed for synchronization of the Read and Write operations 
among all the stations are also set by this process. This topic is discussed in 
more detail in the Section 5. 

2. PLR ( Physical Layer Receiver) : This process is the receiver section of the 
Physical Layer. It receives data from the medium (we model them as global 
variables). When it receives a signal from the FR to read the data in, it 
reads it and stores it in the buffer. This process reads the data from the 
variable called the chnl_data. This variable is set using all the data bits of 
the transmitt ing stations in the model and its value represents the data  on 
the channel. Extra  variables are used to synchronize reading of the channel 
data with the sending of the data  by the transmitt ing station. 
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The processes FT,  BT and PLS form the t ransmit ter  part  of a station. The 
processes PLR and FR form the receiver part  of a station. 

4 M o d e l i n g  t h e  p r o t o c o l  i n  S M V  

The SMV uses for its input a transition based model of processes communicating 
to each other through shared and global variables. Thus, it is particularly suited 
for verifying the Ethernet protocol. However, the following major  problems were 
encountered in modeling the protocol in SMV. Many of these problems are due 
to the lack of representation of time in SMV. 

4.1 Issues  in Mode l ing  the  protoco l  in S M V  

1. Channel representation: The channel through which the stations communi- 
cate as we have seen in the previous sections consists of a stream of bits. 
These bits move at the speed of transmission that  is 10 megabits per second. 
The propagation delay on the channel results in the stream of data  bits to be 
unavailable at the same instant to all the stations on the network. To avoid 
modeling the propagation delay the data  channel is assumed to be one bit 
long. This part  of specification as given in [11] is a real t ime specification, 
and it needs to be modified so that  it can be handled by SMV. 

2. Simulation of Transmission: The rate at which the data is t ransmit ted in 
the protocol is fixed, and the model in [11] achieves this by introducing 
a fixed t ime delay between the consecutive bits that  are transmitted.  The 
t ime delay between transmission of successive bits ensures that  the receiving 
stations read the data before sending of the next bit. We achieve this by 
synchronizing the transmission and reception by using variable arrays. 

3. Processes with time constraints on their transitions: Some of the processes 
have t ime bounds on their transitions. As in the case of transmission of 
data, the time bounds on the transitions of processes ensure that ,  for a 
shared variable between two processes, the previous value of the variable 
would have been read by the second process before the variable is updated 
again (most of the processes communicate data  in a pat tern in which the 
writing action of one process is followed by a reading action of the other). To 
get this same effect in the model without t ime bounds on the transitions it is 
necessary to validate that the reader has read the previous value before the 
writer writes again. This involves additional message passing. The technique 
used is similar to the transmission of data  between stations and is discussed 
in the next section. 

4. The computation of Random Delay: In the Binary exponential backoff delay 
mechanism after collision each station waits for a random amount  of t ime 
slots. On the network it is imperative that  if only one station picks up the 
smallest random number of all the stations involved in the collision, then it 
is bound to transmit successfully. To ensure that  this behavior is preserved 
in the SMV model, it becomes necessary to have a centralized delay control 
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mechanism. This would take care of the post collision arbitration. 
The following sections describe the basic modeling approach and the pro- 
cesses that  effectively model the protocol. 

4.2 Modeling the different Aspects in SMV 

As indicated before, we considered two different method of modeling a set of sta- 
tions using the Ethernet protocol. The first method is the asynchronous method 
where all stations and all processes in each station are modeled as asynchronous 
processes. The second method is where all stations are modeled as synchronous 
processes. In this method, the whole station is a single process. 

Asynchronous Model 
To enable communication between the processes belonging to a station mod- 

ule within themselves and with the other station modules in the model, we 
define global variables which are shared by all the processes. The variables in- 
clude those which represent the status of data channel and those which are used 
for synchronization between the processes to ensure correct behavior. 

Various components of the protocol are modeled as follows. 

- Data Channel modeling: The data Channel was one of the complex aspects 
to model in the transition system. As mentioned in the section 4.1, some 
assumptions are made in modeling the channel. The most significant one is 
that  the channel is assumed to be just  one bit length, as opposed to that  in 
real life as a stream of bits whose bit length depends upon the physical length 
of the cable. The data  channel is assumed as a set of data  bit variables with 
one data  bit for each station on the network. Each Data  variable is defined 
as follows: 
D A T A  : {0, 1, 2, J, ND};  
These values represent the values that  this variable takes. A value of { 0, 1, 
2 } indicates good data  bits. If the value of the data  variable is J then it 
indicates that  the station is writing jam sequence. The value of N D  indicates 
that  there is no data. The number of data  variables depends on the number 
of stations in the system. Each station writes into the data variable which 
corresponds to its id number. The actual data on the channel is given by 
the variable chnl_data which is the composition of all the data variables. 
In a system with two stations the data  on the channel is the composite of 
the data  variables DATA1 and DATA2. The definition of the chnl_data is as 
given below. 

chnl_data := 
c a s e  

DATA1 = ND : DATA2; 
DATA2 = ND : DATA1; 
1 : J ;  

esac; 
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The above DEFINE takes care of the fact tha t  the ehnl=data has the valid 
da ta  depending upon the value of the individual da ta  variables. The  third 
assignment sets it to J if the both of the da ta  variables are not ND. Thus 
the ehnl_data will always represent the composite of the two stat ions da ta  
bits. 

- Carrier Sense (CS) and Collision Detect (GD) variables: The Carrier Sense 
(CS) variable which represents the s ta tus  of the Channel is defined as follows: 
CS := !( DATA1 = ND & DATA2 = ND ); 
This sets the variable CS to 1 if it is not the case tha t  both  the da ta  variables 
are not ND. Thus a busy channel s ta tus  is indicated by this variable when 
it is set. 
The Collision Detect (CD) variable which is set to 1 if there is collision on 
the channel. This is achieved by the following definition: 
C D : =  [ (DATA1 = ND [ D A T A 2 = N D )  I ( D A T A I = J  ] D A T A 2 = J ) ;  

- The Read Array to synchronize the Transmitters and lhe Receivers: The da ta  
variables, mentioned above, are set by the t ransmit t ing  side of the station, 
and the receiving side reads from the ehnLdata variable. In the real life 
systems there is a t ime bound on each of the transitions which occur in the 
t ransmit t ing  section and the receiving section. The rate at which the Receiver 
reads is same as the rate at which the Transmi t te r  sends. Thus the Receiver 
will never read the same data  bit twice f rom the channel and the Transmi t te r  
will not overwrite the last written data.  Since we are modeling all processes 
as completely asynchronous and since we don not have t ime in our model,  
we achieve the synchronization between t ransmit ters  and receivers by using 
extra variables. 

We use an n x n array Read of binary variables to synchronize the t ransmit ters  
and receivers. Transmit ter  i sets the bits in the i th r o w  to zero after writing 
on the channel and will not write again until all these bits are set to 1 by 
the receivers indicating that  they have read it. Receiver set these bits to 
1 after they read the data. Since all receivers run asynchronously we need 
one bit per receiver; Also, since the t ransmit ters  can t ry  to t ransmit  at the 
same t ime we need one row of bits per each transmit ters .  We also have used 
a model where~only a one dimensional array of n bits are used. However, 
this model does not accurately depict the complete parallelism among the 
transmitters .  

- Modeling of Delay after collision: The ethernet protocol uses a Binary Expo- 
nential Backoff algorithm for handling the post collision arbitrat ion.  When 
two stations get into collision then each one of them picks up a r andom num- 
ber which depends upon the current a t t empt  for sending data. Each stat ion 
then waits for an amount  of t ime given by the delay chosen by it, and tries 
to t ransmit  again. Since the clocks at different stations are synchronized to 
run more or less at the same rate, the stat ion to pick up the least delay will 
a t t empt  to t ransmit  first in the next try. Clearly, in an asynchronous model,  
we canot implement  this by using an obvious count down of the delay vari- 
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able. We use a simple centralized delay monitoring mechanism for achieving 
the above effect. 
Each station has its local variable delay which is set by the Frame Transmit-  
ter process. A value of 0 for this variable indicates that  the corresponding 
station is not in an arbitration, i.e. not waiting to transmit.  The Frame 
Transmit ter  process sets the delay variable according to the binary expo- 
nential backoff algorithm and waits for its stn_go signal to be set to true. 
The stn_go signal is globally defined for each station. This signal for station 
1, in a two station configuration, is defined as follows. 
stnl_go := !( s tn l .FT.delay  = 0 ) & !( stn2.FT.delay = 0 ) & ( s tn l .FT.delay  
< =  stn2.FT.delay ) 
This definition ensures that  the stnl_go is set to true only if both the delay 
variables are not zero and the third condition is true. The station which gets 
its stn_go signal to be true then goes ahead to transmitt ing data and sets 
the delay variable to 9 which then allows the other station to proceed. This 
further ensures that  if this is the case only one station gets the stn_go signal 
then, it will t ransmit  successfully next. 

Synchronous M o d e l  
In the synchronous model, we do not need the Read array for synchronization 

purposes. Each value written by a t ransmit ter  in a clock cycle is read by all the 
receivers in the next clock cycle. No centralized delay monitoring system was 
needed. Essentially each transmitter  decrements its delay counter in successive 
clock cycles, and when the delay becomes zero it tries to transmit  again. Thus, 
this delay mechanism, in the synchronous model, is closer to reality than in the 
asynchronous model. However, in the synchronous model, each step of all the 
transmitters is synchronized which is not exactly the case in real life. These are 
the only differences between the asynchronous and the synchronous model. 

5 R e s u l t s  a n d  I n f e r e n c e  

We were able to verify various properties in the asynchronous as well as the 
synchronous model. While testing the asynchronous model, we found some errors 
due to the fact that  in the real life protocol there is an inherent assumption about  
the frame level synchronization which we did not model. We had to change our 
model appropriately to take this into consideration. 

In the synchronous testing we used only one receiver since all the receivers 
are identical. This receiver is used to check that  the transmitted frame is cor- 
rectly received. We tested for different number of transmitters. We checked for 
the cases when the number of at tempts is 2 and 4. We also checked for a frame 
size of 3 bits and of one bit. We checked for two properties. The first property 
asserts that  whenever the LLC layer requests the transmission of a frame then 
eventually the MAC layer (i.e. frame transmitter)  responds with a success or a 
failure message. This property for station 1, called property 1, is expressed by 
the following CTL formula: 
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A a ( L L C f r e a d y l  = 1 ---* A F ( i n d l  = success  V i n d l  = f a i l ) ) .  
Here i n d l  is the variable through which the MAC layer sends a successful or fail- 
ure message to the L L C  layer. The amount  of t ime taken for different parameter  
values is given in the table 1. 

T a b l e  1, Table of Results for synchronous models for checking property 1 

Mode l  Conf igura t ion  

t r a n s m i t t e r s  a t t e m p t s  f r ame  size 

2 1 
2 1 

4 1 

4 3 

reachable[Irelat ion[[t ime sec i 

s t a tes  II nodes  I] t ime  

10K 
280K 

77K 

750K 

13.3K 
34.9K 

13.3K 

140K 

287 
5839 

3905 
20,987 

The second property that  we checked asserts that  the frame received by a 
receiver is the correct frame. In the synchronous model this is asserted as an 
invariance property. The following formula asserts this. In this, the predicate 
t r a n s l . F T . s t a t e l  = done indicates that  t ransmit ter  1 reaches a done state 
while the predicate Gooddata l  indicates that  the frame buffer in the receiver 
denotes a good data frame from station 1. 
A G ( t r a n s l . F T . s t a t e  = done --+ Goodda ta l )  
The timing results for property 2 are given in the table 2. The times given in 
this table include the time taken for computing the number of reachable states 
(usin the -r option) and this later t ime completely dominated the over all t ime 
taken for checking this assertion. When this option is removed the checking of 
this property was extremely fast. In fact, for the case of five transmitters the 
t ime reduced to 85 seconds when the -r option was not used. 

In our asynchronous model, each station has all the processes on the trans- 
mit ter  side and the receiver side. Also each frame has three bits. We checked for 
the following properties. The first property (property 1) asserts that  each station 
will eventually reaches a done state or a fail state. This property is asserted by 
the following CTL formula: 
A F ( s t n l . F T . s t a t e  -- d o n e [ s t n l . F T . s t a t e  = f a i l )  

The second property asserts that  if a station reaches a success state all other 
stations must have received the frame sent by it. This is asserted by a CTL 
formula of the form A G ( S t n l . F T . s t a t e  = done ~ A F  proper - recep t ion )  
Here proper - recep t ion  is a state predicate on the receivers asserting that  they 
received correct frame station 1. It is to be noted we needed an A F  modali ty 
inside due to the asynchrony. 

The third property we checked is that  in a two station system whenever there 
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Table 2. Table of Results for synchronous models for checking property 2 

Model Configuration [[reachable relation [[time sec 

t ransmit ters  a t tempts  frame size states BDD nodes time sec 

3 2 1 10K 13.3K 23 
4 2 1 280K 34.9K 247 
5 2 1 7,500K 93.4K 3724 

i 

3 4 1 77K 13.3K 
4 34.9K 3950K 

116 
2787 

3 4 3 750K 140K 618 

is a collision, then both stations reach a done state (sucCessful transmission), or 
both states reach a fail state. This is expressed by a formula of the form AF(p) 
where p is a state predicate. 

The fourth property that we checked is that, in a two station system, in case 
of a collision the station picking up the lower delay will successfully transmit. 
This is expressed as a formula of the form 
AG(stationl-go --* AF(s~nl.FT.s~ate = done) 

We checked the above properties for the asynchronous system with configu- 
ration of two and three stations in which one or two stations are active. A station 
is active if it is allowed to send messages. The results are given in table 3. 

Table 3. Table of Results for the asynchronous model 

[[Model Configuration 

[[stations[ active stns 

2 2 
2 2 
2 2 
2 2 
3 2 

prop ertY[l[reachable 

property states 

1 701K 
2 701K 
3 701K 
4 701K 
4 1500K 

relation 

BDD nodes 

24K 
24K 

Itime sec 

time sec 

51,500 
52,000 

24K 59,466 
24K 62,400 
64K 59,200 

As can be seen from table 3 that verification of different properties in the 
asynchronous model, the modelchecking took more time. We believe that this is 
due to the inherent complexity of the protocol. We were able to reduce the times 
by 40%, for some of the cases of the table, by changing the variable ordering. 

After modelchecking using a detailed model, we deleted lot of detail in the 
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protocol and also removed the receiver part  and modelchecked for the reduced 
system. In this system we checked for the property 1 given in the previous table. 
The number of reachable states reduced substantially and we were able to check 
for two station system with four a t tempts  much faster, i.e. in 1600 seconds 
(approximately, 25 minutes). 

6 C o n c l u s i o n  a n d  F u t u r e  w o r k  

In this paper, for the first time, we verified various properties of a detailed 
model of the Etherenet Protocol using symbolic modelchecking. The model for 
the protocol has been developed in stages, and the verification process identified 
some problems in our modeling. The difficulties in modeling were part ly due 
to the absence of real t ime in the model checker. Solutions to these problems 
needed use of additional data structures, to preserve the correct behavior of 
the protocol. As an example, while developing the model it was found that  the 
transmit ter  could possibly transmit before the receiver has reset its da ta  buffers. 
This needed modifications in the model to transmit  after all the receivers have 
reset. 

The centralized delay monitoring mechanism used in the asynchronous model 
works for the case when there are two active stations. It can be modified to work 
for an arbitrary number of stations. In this case, system allows the station with 
smallest delay to transmit by setting appropriate flag, and decrements the delay 
variables of other waiting stations by th delay of the chosen process. 

A more general approach for verifying properties of t imed trantion systems 
under the discrete time model, is to transform the timed system into an un- 
t imed system by using extra time variables to keep track of the times for which 
each of the transitions has been enabled. In this case, we need to add another 
process/transition that  models the clock and increments the t ime variables. The 
lower bounds bounds associated with each transition can be enforced by adding 
additional conjucts to the enabling conditions of the transitions. The upper 
bounds on the transitions are enforced by enabling the clock transition only 
when all the t ime variables obey the upper bounds of the corresponding tran- 
sitions. Also, the time variables need to be reset to zero, in the action parts of 
each transition, whenever the corresponding transition is disabled or whenever 
the corresponding transition is executed. All of this can be done by a simple 
syntactic trnasformation of the transition system, and this can be automated.  
The SMV system can be used on the transformed system. 

Our conclusion is that  real life protocols can be verified using the SMV sys- 
tem. As indicated in the paper, our verification under the asynchronous model 
was done using a fairly detailed description of the system. The CTL specifi- 
cations, which are used for model checking on the model, cover a wide range 
of properties. We believe that  we can make the modelchecking faster by using 
dynamic variable reordering. This we expect to do in future. 

Future work: The model which was developed is symmetric in the sense that  
there are more than one instances of the same module used in the model. Thus 
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symbolic model checking with symmetry may make the verification faster. Sec- 
ondly the SMV system presently doesn't have real time in its language. We 
feel that  model checker for real time systems would model the problem more 
accurately. 
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