
On the Automat ic Computa t ion of Network
Invariants

Feliee Balarin* and Alberto L. Sangiovanni-Vincentelli

Department of Electrical Engineering and Computer Science
University of California, Berkeley, CA, USA 94720

Abs t rac t . We study network invariants, abstractions of systems con-
sisting of arbitrary many identical components. In particular, we study a
case when an instance of some fixed size serves as an invariant. We study
the decidability of the existence of such an invariant, present a proce-
dure that will find it, if one exists, and finally give conditions under
which such an invariant does not exist. These conditions can be checked
in finite time, and if satisfied, they can be used in further searches for
an invariant.

1 I n t r o d u c t i o n

The ability to create abstractions has been key in formal verification of com-
plex digital systems (for example, see [3]). Usually, an abstraction is generated
manually, at the considerable expense of t ime by the expert with the deep un-
derstanding of both the verification tool, and the system being designed.

One specific class of abstractions applies to systems with many identical com-
ponents (also referred to as networks or iterative systems). Ideally, an abstraction
of such a system should not depend on the actual number of components. Such
an abstraction is called a network invariant. Once an invariant of manageable
size is found it allows:

- a verification of a large system with a fixed number of components; and at
the same t ime also

- a verification of the entire class of systems with the same structure but with
different number of components.

This is of particular interest for distributed systems where algorithms (e.g. mu-
tual exclusion) are usually designed to be correct for systems of any number of
concurrent processes.

Although iterative systems have been studied for a long t ime [4], only recently
there has been a significant interest in the formal verification of such systems.
Browne, Clarke and Grumberg [2], and Shtadler and Grumberg [8] have studied
conditions under which the satisfaction of formulae of certain temporal logics is
independent of the size of the system. In [8] the conditions seem to be quite re-
strictive, while in [2] the conditions cannot in general be checked automatically.

* Supported by SRC under grant ~ 94-DC-008.

235

Wolper and Lovinfosse [9] have studied formal verification of iterative systems
generated by interconnecting identical processes in certain regular fashion. They
also present some decidability results for related problems. Kurshan and MeMil-
lan [5] present slightly more general results which can be applied both to process
algebra and automata-based approaches. In both cases, automat ic tools are used
only to verify that a finite state system suggested by the user is indeed an in-
variant. Kurshan and McMillan have hinted that it might be a good idea to
check whether a system of some fixed size serves as an invariant. This idea was
further developed by Rho and Somenzi [6, 7], who have studied different network
topologies and presented several sufficient conditions for the existence of such
an invariant.

In this paper we address a problem of finding an invariant automatically.
More precisely, we introduce a notion of a tight invariant, and give some results
that can help a search for it. Intuitively, an invariant of a class of systems is a
finite-state system that can exhibit any behavior that some system in the class
can, and possibly some additional behaviors. Thus, in pre-order based formal
verification paradigms (where a system is verified if it does not exhibit any
undesirable behavior), an invariant is a conservative abstraction: if an abstract ion
is verified, so is every system in the class, but not vice versa. A tight invariant is
an exact abstraction: if an abstraction is verified, so is every system in the class,
and if an abstraction is not verified than there exists a system in the class which
exhibits undesirable behavior. Thus, a tight invariant must exhibit exactly those
behaviors that are exhibited by systems in the class.

Finding a tight invariant is easy if a finite invaviant exists, i.e. if there exists a
finite subclass such that any behavior exhibited by any system in the class is also
exhibited by some system in the subclass. The main contribution of this paper
is the test that can show that a finite invariant does not exist. The test is con-
structive in a sense that if successful, it identifies a set of behaviors that cannot
be "covered" by any finite subclass, but must be exhibited by a tight invariant.
Once identified, such a behavior can be added to the behaviors of some finite
subclass to possibly generate a tight (but not finite) invariant. Unfortunately,
we can not hope for a general algorithm that identifies all such sets of behaviors,
because the existence of a finite invariant is undecidable (see Theorem 1). To
the best of our knowledge no other algorithmic tests for the non-existence of a
finite invariant are available.

In this paper we consider only networks of chain structure, i.e. every compo-
nent can communicate only with its left and right neighbors. Also, we consider
only a u t o m a t a on finite tapes. Thus, using our approach only safety properties
can be verified.

The rest of the paper is organized as follows. In Sect. 2 we formally define
the class of au toma ta we consider, as well as rules by which these a u t o m a t a can
be combined to form iterative systems. In Sect. 3 we illustrate these concepts on
typical examples. The focus of our paper is the computat ion of the finite invariant
presented in Sect. 4, where results on the decidability and the existence as well
as the test for the non-existence of a finite invariant are given.

236

2 Basic Definit ions

In this section we formalize the notion of an iterative system consisting of many
identical automata. We assume that a state of the basic cell is fully observable
and that transitions of the basic cell can depend on the present and next states
of its left and right neighbors (see Fig. 1). These restrictions still enable us to
model many regular hardware arrays, such as stacks, FIFO buffers and counters�9
Other examples tha t fit into our framework are a token passing mutual exclusion
protocol [9] and the ever-so-popular Dining Philosophers Problem (e.g. [5]).

q observable p a r t

�9 o o - -

,,js2 C
" ~ s t

:'1

I I ' .
s5 s6 I s2n+ n§

�9 ""~l 4 2n+4

n times

�9 ~

�9 �9

�9 o

Fig. 1. An open network Nn.

In this paper, we adopt a standard definition of an automaton�9 More precisely,
an automaton A over some finite alphabet Z is a quadruple (S, I, T, F), where
S is some finite set of states , I C_ S is a set of initial states, T C S • E x S
is a transition relation, and F C S is a set of final states. The language of A
(denoted by s is a set of all strings x l x 2 . . , x~ E E* for which there exists
a sequence of states so, s l , . . . , se such that so E I, sk E F and (si-1, xi, si) E T
for all i = 1 , . . . , k .

We say that an automaton A = (S, I, T, F) is a cell if it is defined over
alphabet S 6 and the following condition holds:

(s , (s t , s ~ , s 3 , s 4 , s s , s s) , t) E T if and only i f s = s3 and t = s4 .

Intuitively, the alphabet of a cell consists of three parts: sl and s2 are the
present and the next state of the left neighbor, s3 and s4 are the present and the
next state of the cell itself, and finally s5 and ss are the present and the next
state of the right neighbor, as shown in Fig. 2.

To formalize connecting cells into larger units in [1] we define concatenation
".". Given two automata A and B the automaton the automaton A �9 B is well
defined only if the alphabet of A is S n and the alphabet of B is S k-n+4, where

n s i - T "b'

psi-"l - ~

237

psi ns i

t t

:i c
ns i+l

ps i+l

Fig. 2. A basic cell; ps and ns denote present and next states�9

S is the state space of the basic cell and k > n > 4. The alphabet of A. B if S k,
and s B) satisfies the following:

f -81,1 "slsl,1
�9 ~

:

81,n-3 , 8] s l , n - 3

�9 . . " E s B) if and only if

81,n ! 8lsl,n

k . s l , k .Slsl,k)

i.il,n j - . . . eZ:(A) and " . . . " �9 s .

Given a cell C = (S, I, T, F) and an automaton E over alphabet S 4 (c~lled
an env i ronmen t) a ne twork of length n is defined by:

N n = E . C . C C
Y

n times

If the behavior of the environment is unrestricted, i.e. if Z(E) = ($4) * we say
that the network is open. Otherwise, we say that the network is left-closed. In
this paper, we will consider only open and left-closed networks, but the results
are easily dualized for right-closed networks.

To compose networks into larger ones, only "peripheral" components of their
languages need to be considered (see Fig. 1). Therefore, we introduce a notion
of an observable part, first for elements of s2nq'4:

o ((s l , s 2 , . . . , s :n+4)) = (s l , s2, s3, s4, s : . + l , s : . + ~ , s : . + 3 , s : . + 4) ,

and then, we extend the notion naturally to strings and languages (for technical
details see [1]). For clarity, we wr i te /2 , instead of O (Z (N ~)) .

238

An iterative system is the class of all networks of different length generated
by the same cell and environment. If {Nnln > 1} is an iterative system and
/:oo = [.J~=i s then an invariant is any finite-state automaton A over alphabet
S s satisfying s __D s If s = s we say that A is a tight invariant. If in

addition Z~(A) n* n* = Un=i/~n for some < cx), we say that A is a finite invariant.
Obviously, a tight invariant exists if and only if l:oo is regular. One may try

to find a "tightest regular invariant", i.e. an invariant that is not tight, but that
has a language contained in the languages of all other invariants. Unfortunately,
if Z:cr is not regular, such an invariant does not exist. To see this assume that A
is such an invariant. Let x be some string in s -:- s (since s is regular
and s is not, such a string always exists). Since a language containing just z is
also regular, one can construct an automaton A' such that s = ~:(A) - {x}.
Now, A' is an invariant and s ~= s contradicting the assumption that
A is the tightest regular invariant.

3 E x a m p l e s

The following three examples illustrate three possible cases: when a finite invari-
ant exists (Example 1), when a tight invariant exists, but a finite one does not
(Example 2), and finally when a tight invariant does not exists (Example 3). All
three examples are abstractions of buffers with different discipline of passing a
token. In all three cases cells are initially in idle state. The state token indicates
that a particular cell holds a token. In Examples 1 and 2, a cell moves to a
special dead state once it has delivered a token. In the description that follows
variables psn- i , n s n - i , ps ,+i and ns~+i take value of the present and the next
state of immediate neighbors of the cell under consideration. In all examples, all
states are final and all systems are open.

Example 1. In this example a cell can hold a token for any (possibly infinite)
number of steps before delivering it to its neighbor. A cell can deliver only one
token. More precisely the transition relation of the cell is defined by:

idle ~ idle : if psn- I ~ token or nSn-1 ~ dead
idle) token : if psn-1 = token and n s n - i = dead
token , token : always
token) dead : always
dead ~ dead : always

In this case a finite invariant exists. In fact, it is achieved for n* = 3. For
n >_ 3, a language/~n can be described by languages of the leftmost and the
rightmost cell and the following additional constraint:

"If the rightmost cell ever moves from idle to token it will happen at
least n - 2 steps after the leftmost cell leaves the token state."

Clearly, s (strictly) contains all s n > 3.

239

Example 2. In this example a cell holds a token for exactly one step. Again,
once it delivers a single token, a cell wil] move to the dead state. The transition
relation of the basic cell is:

idle
idle

token

dead

, idle : if p s , , - i = idle

, token : i f p s n - 1 = token

, dead : i f p s n - 1 = dead

, dead : i f p s n - i ~- dead

In this case a finite invariant does not exist. All strings in s (n > 2) that
are long enough must satisfy the following constraint:

"The r ightmost cell moves idle to token exactly n - 2 step after the
leftmost cell leaves the token state."

Obviously, for all n > 3 there are some strings in /~n+l which are not in s
However, a tight invariant exists, and it is similar to the one in the previous
example, except that the peripheral cells are restricted to remain in the token

state for one step only.

Example 3. This example is similar to the previous one, except that once a cell
delivers a token it will move back to the idle state and become ready to accept
a new token.

idle ~ idle : i f psn-1 ~ token
idle , token : if ps,~-i = token

token , idle : always

In this case / :~ is not regular, so a tight mvariant cannot exist. Indeed,
/ ~ must include L:l and all strings for which there exists k > 0 such that the
rightmost cell moves f rom idle to token exactly k steps after the leftmost cell
leaves the token state. Notice that for any given string k must be constant. It is
straightforward to show that such a language is not regular.

However, if we include in the description of the system an environment which
allows at most one token in the system, a tight invariant exists and is similar to
the one in Example 2.

4 C o m p u t i n g a F i n i t e I n v a r i a n t

4.1 D e c i d a b i l i t y a n d E x i s t e n c e

In this section we give some results on decidability as well as a simple semi-
decision procedure that will find a finite invariant if one exists. Due to the space
limitations we omit the proofs. They can be found in the extended version of
this paper [1].

T h e o r e m 1. The existence of finite invariant fo r a left-closed iterative system

is undecidable.

240

The proof is by reduction of the finite memory problem for Turing machines.
At present, it is not clear whether that proof can be extended to open systems. In
fact, this result is similar to Theorem 4.3 in [9] and Theorem 4 in [4]. In all cases,
the proofs substantially rely on the ability to distinguish one cell in the network:
in our case, it is the environment, in [9] the first cell is explicitly distinguished,
and in [4] one cell is distinguished by different boundary condition. Therefore,
the decidability of the existence of a finite invariant for open systems is still an
open problem.

T h e o r e m 2 . Let {Nnln > 1} be an iterative system, and let A be some au-
tomaton. If s C_ s and O (s C)) C_ s then A is an invariant of
{N, In > 1}.

The proof is by induction. Both Kurshan and McMillan [5] and Wolper and
Lovinfosse [9] require by definition that an invariant satisfy the conditions similar
to those in Theorem 2. We have adopted a broader definition, motivated by the
application to language containment. Still, Theorem 2 provides the only finite
procedure known to us, for verifying that a given automaton with non-trivial
language is indeed an invariant.

T h e o r e m 3 . A finite invariant of an iterative system {Nnln >_ 1} exists if and
only if there ezists n* < cv such that:

c,,.., c_ U z . . (1)
n-m1

In fact, a stronger claim follows from the proof of Theorem 3: if (1) holds,

then an automaton with the language [.J~=l/:n is an invariant. This immediately
gives us the following semi-decision procedure:

for eve ry integer n*: i f (1) holds t h e n HALT.

If the procedure terminates, it will produce n* which can be used to construct
n* a finite invariant with the language (-J~=l s However, if a finite invariant does

not exist, the procedure will not terminate.

4.2 P r o v i n g N o n - e x i s t e n c e o f F i n i t e I n v a r i a n t

In this section, we show a sufficient condition for non-existence of finite invariant.
The condition can be checked algorithmically, and, if satisfied, it provides useful
information on sets of strings that every invariant must include in its language.

In this section we consider a generic open iterative system induced by a cell
(S, I, T, F). Unless stated otherwise, we assume that s is some string in ($2'~) * .
We use I �9] to denote the length of a string. To refer to parts of the string we

1 2 use the naming scheme detailed in Fig. 3. We call a pair s~,y = (s~,y,s~,y) a

l
'821,rl
s] ,,
821,n_1

8],n--1

I

i

8~ 9
821

�9 ' v
sl

�9 S2 r~
sl ,r l

8~,n .1
s l , n -1

s~,2
1

82,2
2

S2pl
1

. ' - q 2 , 1
t � 9

$2

241

st2sl-l ,n
S~s l - l ,n
8~n}-l ,n-1
s J s l - l , n - 1

�9 . . �9

S~sl-l,2
S~s[-1,1
Slsl-l,1

�9 ' ' v
Sl,l-1

- ^

nlsl.n

S~sl,n-1
S~sl,n-1
Sial .n-2

I ~

~
~

I Slsl.1

.~

sl,I

Fig. 3. A naming scheme for parts of the string�9

transition, for all x = 1 , . . . , Isl and all y = 1 , . . . , n. If s, t and u are transit ions,
for s implic i ty we write (s, t, u) E T instead of:

(t 1, (s 1, s 2, t ~, t 2, u ~, u2), t ~) ~ T .

To prove the non-existence of a finite invariant, we search for a sequence of
strings: xl , x 2 , . . , satisfying O(zi) E s but O(zi) ~ s for any j < i. We will
show tha t in certain cases these relations can be established in a finite number
of steps�9 We consider only a special case when xi+l is obta ined by extending xi
in a certain regular fashion. If tha t is the case we write z~+l = a(x i) . Next, we
define precisely the extension operator ~.

Given strings s E ($2~) * and t E (S2n+~) * such tha t Itl = Isl + 1 w e say tha t
t = aik(S) if the following holds:

1. t obtained f rom s by adding one row and one column of transitions, i�9149

t=,y =S~,y for a l l x = l , . . . , l s l , y = 1 , . . . , n , (2)

2. the observable par t of t is the same as the observable par t of s, except tha t
the i'th column is repeated twice, i.e.:

{ O(s=) for all x = 1 , . . . , i , O(G) O(s,- l)) f o r a l l x = i + l , . . . , I t l , (3)

3. the last column of t is the same as the last column of s, except tha t the k'th
row is repeated twice, i.e.:

f Sl,i, ~ for all x = 1 , . . . , k ,
tlq,~

Slsl,=_~ for a l l x = k + l , . . . , n + l . (4) l

242

In the rest of this pape r we assume tha t all extensions have c o m m o n i and
k, so wi thout ambigu i ty we write c~(s) for cqk(s). Also, we use the following
abbrev ia t ion for any j >_0:

~J(s) = ~ (~ (. . . 5 (s) . . .)) .

j t imes

P r o p o s i t i o n 4 . A s tr ing (~(s) exis ts i f and only i f all o f the fo l lowing hold:

C1: sx,~ = s=,,~-l, f o r all x = 1 , . . . , i ,
C2: sx+l ,~ = s=,n-1, f o r all x - i , Is I - 1,
C3:sx,1 = si,1, sx,2 -- si,2, f o r all x - i, . . ., Is].

Iron(s) exists, then it is unique.

L e m m a S . I f s E s and s satisf ies:

C4:st,n-1 - ~ S i T l , n - 1 ,

C5: s[,[,~ = Si,l,k+i = si,i,k+2,

then t = or(s) sat is f ies:

t~ ,~= ~ for a l l x = l , . I s l - 1 , = 2 , , (5) tx+l ,y . �9 , y . . . , n

t~,~ E I f o r all x = 2 , . . . , n , (6)

t~,l., e F for ~ll x = 2 , . . . , , , (7)

(t x , y -1 , tx ,y , t~,y+l) e T f o r all x = 1 , . . . , It[, y = 2 , . . . , n - 1 . (8)

Proof. By definition, the assumpt ion s E s is equivalent to:

s=,y2 = sl=+l,y for all x - 1,. �9 - , I s l - 1 , y = 2 , . . . , n - 1 , (9)

81 x,= E I for all x = 2 , . . . , n - 1 , (10)

81 I,l,* E F for all a: = 2 , . . . , n - 1 , (11)

(8x , y -1 ,8x , y , 8x,y+l) E T for all x = 1 , . . . , Isl, y --= 2 , . . . , n - 1 . (12)

Now, (5) follows f rom (2), (4), C4, and (9); (6) follows f rom (2), (4), and (10);
(7) follows f rom (3), and (11); and finally (8) follows f rom (2), (3), C5, and (12).

rn

F rom this point on, we do assume proper t ies C 4 and C5. We make this
a s sumpt ion wi thou t loss of general i ty because they are always satisfied by ~2(s),
which also satisfies all other restr ict ion on s ment ioned in this section.

T h e pa r t of our s t ra tegy is to find a sequence of str ings x l , x 2 , . . , sat isfying
xi E f~i. The following l e m m a describes a case when all of these relat ions are
satisfied if one of t h e m is.

L e m m a 6 . Let s sa t i s fy C 1 - C 5 , and let t = (~(s). If:

c6 : (t~ ,~_l , t~ ,n , t~ ,~+l) ~ T for all �9 = 1 , . . . , N,

243

C7: t~tl_l, ~ = t~tl, x for all x = 2 , . . . , n,

then:

s e s ~ t e t : (N._~) ,

s c s ~ aJ(s) c s for a l l j >_ 0 .

(13)
(14)

Proof. Condi t ions (5)-(8) , (26 and (37 are exact ly the condit ions for t E / : (N n - 1)
to be satisfied. Thus , (13) holds. I f s satisfies (36 and C 7 so does a (s) . Therefore ,
we can repea ted ly apply (13) to get (14). []

The second pa r t of our s t ra tegy is to find a sequence of s tr ings x l , x2, . �9 �9 t ha t
xj ~ / : i for any j < i. In L e m m a 7 we establ ish a condi t ion which enables us to
prove this relat ion in a finite number of steps.

L e m m a 7. Let s satisfy C 1 - C 5 , and let t = a(s) . If."

c a : s~ , ._ l is the unique element # the set {u = (u~, u~)13v, ~ , z = (" t z~) :
(v, t~,., u) ~ T ^ (w, t~+~i., z) ~ T} fo~ alZ x = 1 , . . . , Isl, and

C9: there exists a sequence of transit ion u,~,.. ., u4, u3 such that u,~ = tltl,n ,
and u~ (for all x = n - 1 , . . . , 3) is the unique element of the set: { v lqw :
(w, u~+l, v) ~ T},

then:

o(t) e L ._I ~ o(s) ~ L._~ ,

O(s) ~ s ~ o(aJ(s)) ~ s for all j > 0 .
(15)

(16)

Proof. Assume O(t) E s let s tr ing t ' be such tha t t ' E s and O(t') =
O(t) . Also, let s ' be the str ing ob ta ined by removing f rom t ' the (n + 1) 'st row and
the last column. I t follows f rom C8 tha t the (n - 1) 'st row of s ' is exact ly equal
to the (n - 1) 'st row of s. Since C 1 - C 3 also hold, we have t ha t O(s ') = O(s) .
We claim tha t s ' E / : (N n - 2) and thus O(s) G s

T h a t s ' satisfies condit ions analog to (9), (10), and (12) follows direct ly f rom
t ' E s I t follows f rom C 9 tha t t~t,i, ~ = u~ for all z = n , . . . , 3 , so

1 t ' E / : (N , - I) also implies u~ E F , for all x = 3 , . . . , n. I t follows f rom C 2 tha t
! _ _ t / - - sls ' l ,n-1 -- Itq,n -- un, so we can again app ly C 9 to ob ta in ' 1 u 1 (%'1,~) = ~+1 ~ F,

for all x = n - 1 , . . . , 2 .

It is easy to check tha t a(s) satisfies C8 and C 9 if s does. Therefore, we can
repea ted ly apply (15) to get (16). []

A reader will notice t ha t the condit ion C 9 is used only to establ ish t e rmina -
tion. If all the s ta tes of the basic cell are final, L e m m a 7 holds even if C 9 is not
satisfied.

We are now ready to pos tu la te sufficient condit ions for the non-exis tence of
a finite invar iant .

244

T h e o r e m 8. If s is such that it satisfies C 1 - C 9 and:

s ~ s

O(o~J(s)) (t s for all j > 0 ,

O(aJ(s))~s forallj>__O, m = l , . . . , n - 3 ,

then:

(17)

(18)

(19)

a) a finite invariant does not exist,
b) s _~ {O(a~(s))lj >_ 0}.

Proof. From (17) and Lemma 6 we have:

o(,d (s)) ~ c._2+~ for all j >__ 0 . (20)

We can rewrite (18) as O(c~J-'n(s)) r I:n-2 for all j > 0, 0 < m < j , and
combine it with Lemma 7 to get:

O(c~J(s)) = O(c~m(aJ-m(s))) r for all j > 0, 0 < m < j . (21)

Thus, for every j > 0 there exists a string (specifically O(o~J(s))) in s
(by (20)), which is not in/ : rn for any m < n - 2 + j (by (19) and (21)), so a
finite invariant cannot exist. Also, part b) follows from (20). n

Consider Example 2 in section 3 and the following string 2 in/ :3:

| id le 1 r idle 1 | id le] r i d l e - ~ t o k e n "
|idle | |idle | |idle | | token ---* dead

s= |idle | l idle I I t~ I dead "+ dead
|idle | | token| |dead | |dead--dead
L token J L dead J L dead j L dead ~ dead

It is straightforward to check that conditions C 1 - C 9 are satisfied for a2,1. It
is also straightforward, to define an automaton accepting {O(a~,l,(s))lj >_ 0},
thus (17)-(19) can be easily checked by a language containment checking tool.
Since C 1 - C 9 , and (17)-(19) are all satisfied we conclude that a finite invariant
does not exist and t h a t / ~ _3 (s U 122 U {O(~,l(s))lj >_ 0}).

The following procedure shows how Theorem 8 can be used to search for an
invariant:

1. construct A s . t . / : (A) = s
2. choose a string s and let n denote its "width" (i.e. s E ($2")*),

n - - 2 3. construct B s.t. s = Z(A) U U~=l z:i; let A := B,
4. i f O(~(A . C)) C_ Z(A) t h e n HALT,
5. i f s satisfies C1 -C 9 , (17)-(19) for some ~ik., where 1 < i < Isl, 1 < k < n

t h e n construct B s.t. s = s U {O(c~k(s))lj > 0}; let A := B,
6, i f O(I:(A. C)) C s t h e n HALT else go to step 2.

2 We omit writing s 2 ~ for x < 4, and assume th~tt s 2 1 , x , y -~" S x + l , y "

245

If the procedure terminates it will generate a tight (but possibly not finite)
invariant A. Unfortunately, we can not claim tha t the procedure will te rminate
even if a tight invariant exists and all strings are systematical ly enumerated in
step 2. It might be more efficient to apply this procedure interactively, i.e. to let
the user choose a string and then execute other s t eps automatically.

5 C o n c l u s i o n s

We have studied the existence of the finite invariant of an iterative system con-
sisting of many identical au tomata : We have shown tha t if constraints on the
environment are allowed, the existence is undecidable, but we have also pointed
out that the proof does not exist presently for the case of an unconstrained envi-
ronment. We have presented a semi-decision procedure that will generate a finite
invariant, if one exists. We have also provided sufficient conditions for the non-
existence of a finite invariant. Those conditions can be checked in finite t ime so
a semi-decision procedure can be defined tha t will recognize a pat tern satisfying
those conditions, if such a pa t t e rn exists. These results can then be used in a
search for an invariant that is possibly tight but not finite. It is possible tha t
neither of these procedures terminate. This is consistent with the decidability
result (at least for closed systems).

This work can be natural ly extended in several ways. From the theoretical
point of view, the decidability of existence of a finite invariant for open iterative
systems needs to be studied. From the practical point of view, it would be useful
to generalize the conditions for non-existence. This can be done by analyzing
sequences of strings where not only a single element, but a whole substring
is repeated many times. It is also possible to construct cases where the non-
existence can be proved by analyzing a sequence of sets of string, rather then
just a sequence of strings. Finally, in order to verify liveness properties, these
results need to be extended to the au tomata on infinite tapes.

R e f e r e n c e s

1. Felice Balarin and Alberto L. Sangiovanni-Vincentelli. On the automatic computa-
tion of network invariants, 1994. UCB/ERL M94/18.

2. M.C. Browne, E.M. Clarke, and O. Grumberg. Reasoning about networks with
many identical finite state processes. Information and Computation, 81(1):13-31,
1989.

3. E. M. Clarke, O. Grumberg, H. Hiraisi, S. Jha, D. E. Long, K. L. McMillan, and
L. A. Ness. Verification of the Futurebus+ cache coherence protocol. In Proc. 11th
Intl. Symp. on Comput. Hardware Description Lang. and their Applications, 1993.

4. Frederick C. Hennie. Iterative Arrays of Logical Circuits. MIT Press and John Eiley
Sons, Inc., 1961.

5. R. P. Kurshan and K. L. McMillan. A structural induction theorem for processes.
In Proceedings of the 8th ACM Syrup. PODC, 1989.

6. J.K. Rho and F. Somenzi. Inductive verification of iterative systems. In Proceedings
of the P9th ACM/IEEE Design Automation Conference, pages 628-33, June 1992.

246

7. J.K. Rho and F. Somenzi. Automatic generation of network invariants for the
verification of iterative sequential systems. In Costas C0urcoubetis, editor, Com-
puter Aided Verification: 5th International Conference, CAW93, Elounda, Greece,
June/July 1993, Proceedings, pages 123-137. Springer-Verlag, 1993. LNCS vol. 697.

8. Z. Shtadler and O. Grumberg. Network grammars, communication behaviors and
automatic verification. In J. Sifakis, editor, Automatic Verification Methods]or
Finite State Systems, International Workshop Proceedings, Grenoble, France, 12-14
June 1989, pages 151-65. Springer-Verlag, 1990. LNCS vol. 407.

9. P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes with
network invariants. In J. Sifakis, editor, Automatic Verification Methods]or Finite
State Systems, International Workshop Proceedings, Grenoble, France, 12-14 June
1989, pages 68-80. Springer-Verlag, 1990. LNCS vol. 407.

