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Abs t rac t .  We study network invariants, abstractions of systems con- 
sisting of arbitrary many identical components. In particular, we study a 
case when an instance of some fixed size serves as an invariant. We study 
the decidability of the existence of such an invariant, present a proce- 
dure that will find it, if one exists, and finally give conditions under 
which such an invariant does not exist. These conditions can be checked 
in finite time, and if satisfied, they can be used in further searches for 
an invariant. 

1 I n t r o d u c t i o n  

The ability to create abstractions has been key in formal verification of com- 
plex digital systems (for example, see [3]). Usually, an abstraction is generated 
manually, at the considerable expense of t ime by the expert with the deep un- 
derstanding of both the verification tool, and the system being designed. 

One specific class of abstractions applies to systems with many  identical com- 
ponents (also referred to as networks or iterative systems). Ideally, an abstraction 
of such a system should not depend on the actual number  of components. Such 
an abstraction is called a network invariant. Once an invariant of manageable 
size is found it allows: 

- a verification of a large system with a fixed number  of components; and at 
the same t ime also 

- a verification of the entire class of systems with the same structure but with 
different number  of components. 

This is of particular interest for distributed systems where algorithms (e.g. mu- 
tual exclusion) are usually designed to be correct for systems of any number of 
concurrent processes. 

Although iterative systems have been studied for a long t ime [4], only recently 
there has been a significant interest in the formal verification of such systems. 
Browne, Clarke and Grumberg [2], and Shtadler and Grumberg  [8] have studied 
conditions under which the satisfaction of formulae of certain temporal  logics is 
independent of the size of the system. In [8] the conditions seem to be quite re- 
strictive, while in [2] the conditions cannot in general be checked automatically. 

* Supported by SRC under grant ~ 94-DC-008. 
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Wolper and Lovinfosse [9] have studied formal verification of iterative systems 
generated by interconnecting identical processes in certain regular fashion. They 
also present some decidability results for related problems. Kurshan and MeMil- 
lan [5] present slightly more general results which can be applied both to process 
algebra and automata-based approaches. In both cases, automat ic  tools are used 
only to verify that  a finite state system suggested by the user is indeed an in- 
variant. Kurshan and McMillan have hinted that  it might  be a good idea to 
check whether a system of some fixed size serves as an invariant. This idea was 
further developed by Rho and Somenzi [6, 7], who have studied different network 
topologies and presented several sufficient conditions for the existence of such 
an invariant. 

In this paper we address a problem of finding an invariant automatically.  
More precisely, we introduce a notion of a tight invariant, and give some results 
that  can help a search for it. Intuitively, an invariant of a class of systems is a 
finite-state system that  can exhibit any behavior that  some system in the class 
can, and possibly some additional behaviors. Thus, in pre-order based formal 
verification paradigms (where a system is verified if it does not exhibit any 
undesirable behavior), an invariant is a conservative abstraction: if an abstract ion 
is verified, so is every system in the class, but not vice versa. A tight invariant is 
an exact abstraction: if an abstraction is verified, so is every system in the class, 
and if an abstraction is not verified than there exists a system in the class which 
exhibits undesirable behavior. Thus, a tight invariant must  exhibit exactly those 
behaviors that  are exhibited by systems in the class. 

Finding a tight invariant is easy if a finite invaviant exists, i.e. if there exists a 
finite subclass such that  any behavior exhibited by any system in the class is also 
exhibited by some system in the subclass. The main contribution of this paper  
is the test that  can show that  a finite invariant does not exist. The test is con- 
structive in a sense that  if successful, it identifies a set of behaviors that  cannot 
be "covered" by any finite subclass, but must  be exhibited by a tight invariant. 
Once identified, such a behavior can be added to the behaviors of some finite 
subclass to possibly generate a tight (but not finite) invariant. Unfortunately, 
we can not hope for a general algorithm that  identifies all such sets of behaviors, 
because the existence of a finite invariant is undecidable (see Theorem 1). To 
the best of our knowledge no other algorithmic tests for the non-existence of a 
finite invariant are available. 

In this paper we consider only networks of chain structure, i.e. every compo- 
nent can communicate  only with its left and right neighbors. Also, we consider 
only a u t o m a t a  on finite tapes. Thus, using our approach only safety properties 
can be verified. 

The rest of the paper is organized as follows. In Sect. 2 we formally define 
the class of au toma ta  we consider, as well as rules by which these a u t o m a t a  can 
be combined to form iterative systems. In Sect. 3 we illustrate these concepts on 
typical examples. The focus of our paper is the computat ion of the finite invariant 
presented in Sect. 4, where results on the decidability and the existence as well 
as the test for the non-existence of a finite invariant are given. 
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2 Basic Definit ions 

In this section we formalize the notion of an iterative system consisting of many 
identical automata.  We assume that  a state of the basic cell is fully observable 
and that transitions of the basic cell can depend on the present and next states 
of its left and right neighbors (see Fig. 1). These restrictions still enable us to 
model many regular hardware arrays, such as stacks, FIFO buffers and counters�9 
Other examples tha t  fit into our framework are a token passing mutual exclusion 
protocol [9] and the ever-so-popular Dining Philosophers Problem (e.g. [5]). 
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Fig. 1. An open network Nn. 

In this paper, we adopt a standard definition of an automaton�9 More precisely, 
an automaton A over some finite alphabet Z is a quadruple (S, I, T, F),  where 
S is some finite set of states , I C_ S is a set of initial states, T C S • E x S 
is a transition relation, and F C S is a set of final states. The language of A 
(denoted by s  is a set of all strings x l x 2 . . ,  x~ E E* for which there exists 
a sequence of states so, s l , . . . ,  se such that  so E I,  sk E F and (si-1, xi, si) E T 
for all i = 1 , . . . , k .  

We say that  an automaton A = (S, I, T, F )  is a cell if it is defined over 
alphabet S 6 and the following condition holds: 

( s , ( s t , s ~ , s 3 , s 4 , s s , s s ) , t )  E T if and only i f s  = s3 and t = s4 . 

Intuitively, the alphabet of a cell consists of three parts: sl and s2 are the 
present and the next state of the  left neighbor, s3 and s4 are the present and the 
next state of the cell itself, and finally s5 and ss are the present and the next 
state of the right neighbor, as shown in Fig. 2. 

To formalize connecting cells into larger units in [1] we define concatenation 
".". Given two automata  A and B the automaton the automaton A �9 B is well 
defined only if the alphabet of A is S n and the alphabet of B is S k-n+4, where 
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Fig. 2. A basic cell; ps and ns denote present and next states�9 

S is the state space of the basic cell and k > n > 4. The alphabet of A.  B if S k, 
and s  B )  satisfies the following: 

f -81,1 "slsl,1 
�9 ~ 

: 

81,n-3 , 8 ] s l , n - 3  

�9 . .  " E s  B )  if and only if 

81,n ! 8lsl,n 

k . s l , k  .Slsl,k ) 

i.il,n j -  . . .  eZ:(A) and " . . .  " �9 s  . 

Given a cell C = (S, I, T, F)  and an automaton E over alphabet S 4 (c~lled 
an env i ronmen t )  a ne twork  of length n is defined by: 

N n = E . C . C . . . . . C  
Y 

n times 

If the behavior of the environment is unrestricted, i.e. if Z(E)  = ($4) * we say 
that  the network is open. Otherwise, we say that the network is left-closed. In 
this paper, we will consider only open and left-closed networks, but the results 
are easily dualized for right-closed networks. 

To compose networks into larger ones, only "peripheral" components of their 
languages need to be considered (see Fig. 1). Therefore, we introduce a notion 
of an observable part,  first for elements of s2nq'4: 

o ( ( s l ,  s 2 , . . . ,  s :n+4))  = ( s l ,  s2, s3, s4, s : . + l ,  s : . + ~ ,  s : . + 3 ,  s : . + 4 )  , 

and then, we extend the notion naturally to strings and languages (for technical 
details see [1]). For clarity, we wr i te /2 ,  instead of O ( Z ( N ~ ) ) .  
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An iterative system is the class of all networks of different length generated 
by the same cell and environment. If {Nnln > 1} is an iterative system and 
/:oo = [.J~=i s then an invariant is any finite-state automaton A over alphabet 
S s satisfying s __D s If s  = s we say that  A is a tight invariant. If in 

addition Z~(A) n* n* = Un=i/~n for some < cx), we say that  A is a finite invariant. 
Obviously, a tight invariant exists if and only if l:oo is regular. One may try 

to find a "tightest regular invariant", i.e. an invariant that  is not tight, but that  
has a language contained in the languages of all other invariants. Unfortunately, 
if Z:cr is not regular, such an invariant does not exist. To see this assume that A 
is such an invariant. Let x be some string in s -:- s (since s is regular 
and s is not, such a string always exists). Since a language containing just z is 
also regular, one can construct an automaton A' such that  s  = ~:(A) - {x}. 
Now, A' is an invariant and s  ~= s  contradicting the assumption that  
A is the tightest regular invariant. 

3 E x a m p l e s  

The following three examples illustrate three possible cases: when a finite invari- 
ant exists (Example 1), when a tight invariant exists, but a finite one does not 
(Example 2), and finally when a tight invariant does not exists (Example 3). All 
three examples are abstractions of buffers with different discipline of passing a 
token. In all three cases cells are initially in idle state. The state token indicates 
that a particular cell holds a token. In Examples 1 and 2, a cell moves to a 
special dead state once it has delivered a token. In the description that follows 
variables psn- i ,  n s n - i ,  ps ,+i  and ns~+i take value of the present and the next 
state of immediate neighbors of the cell under consideration. In all examples, all 
states are final and all systems are open. 

Example 1. In this example a cell can hold a token for any (possibly infinite) 
number of steps before delivering it to its neighbor. A cell can deliver only one 
token. More precisely the transition relation of the cell is defined by: 

idle ~ idle : if psn- I  ~ token or nSn-1 ~ dead 
idle ) token : if psn-1 = token and n s n - i  = dead 
token , token : always 
token ) dead : always 
dead ~ dead : always 

In this case a finite invariant exists. In fact, it is achieved for n* = 3. For 
n >_ 3, a language/~n can be described by languages of the leftmost and the 
rightmost cell and the following additional constraint: 

"If the rightmost cell ever moves from idle to token it will happen at 
least n - 2 steps after the leftmost cell leaves the token state." 

Clearly, s (strictly) contains all s  n > 3. 
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Example 2. In this example a cell holds a token for exactly one step. Again, 
once it delivers a single token, a cell wil] move to the dead state. The transition 
relation of the basic cell is: 

idle 
idle 

token 

dead 

, idle : if p s , , - i  = idle 

, token  : i f p s n - 1  = token 

, dead : i f p s n - 1  = dead 

, dead : i f p s n - i  ~- dead 

In this case a finite invariant does not exist. All strings in s  (n > 2) that  
are long enough must  satisfy the following constraint: 

"The r ightmost  cell moves idle to token exactly n - 2 step after the 
leftmost cell leaves the token state." 

Obviously, for all n > 3 there are some strings in /~n+l which are not in s 
However, a tight invariant exists, and it is similar to the one in the previous 
example, except that  the peripheral cells are restricted to remain in the token 

state for one step only. 

Example 3. This example is similar to the previous one, except that  once a cell 
delivers a token it will move back to the idle state and become ready to accept 
a new token. 

idle ~ idle : i f  psn-1  ~ token 
idle , token : if ps,~-i = token 

token , idle : always 

In this case / :~  is not regular, so a tight mvariant  cannot exist. Indeed, 
/ ~  must include L:l and all strings for which there exists k > 0 such that  the 
rightmost cell moves f rom idle to token  exactly k steps after the leftmost cell 
leaves the token state. Notice that  for any given string k must be constant. It  is 
straightforward to show that  such a language is not regular. 

However, if we include in the description of the system an environment which 
allows at most  one token in the system, a tight invariant exists and is similar to 
the one in Example  2. 

4 C o m p u t i n g  a F i n i t e  I n v a r i a n t  

4.1 D e c i d a b i l i t y  a n d  E x i s t e n c e  

In this section we give some results on decidability as well as a simple semi- 
decision procedure that  will find a finite invariant if one exists. Due to the space 
limitations we omit  the proofs. They can be found in the extended version of 
this paper [1]. 

T h e o r e m  1. The existence of  finite invariant fo r  a left-closed iterative system 

is undecidable. 
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The proof is by reduction of the finite memory problem for Turing machines. 
At present, it is not clear whether that  proof can be extended to open systems. In 
fact, this result is similar to Theorem 4.3 in [9] and Theorem 4 in [4]. In all cases, 
the proofs substantially rely on the ability to distinguish one cell in the network: 
in our case, it is the environment, in [9] the first cell is explicitly distinguished, 
and in [4] one cell is distinguished by different boundary condition. Therefore, 
the decidability of the existence of a finite invariant for open systems is still an 
open problem. 

T h e o r e m 2 .  Let {Nnln > 1} be an iterative system, and let A be some au- 
tomaton. If  s C_ s  and O ( s  C)) C_ s  then A is an invariant of 
{N,  In > 1}. 

The proof is by induction. Both Kurshan and McMillan [5] and Wolper and 
Lovinfosse [9] require by definition that  an invariant satisfy the conditions similar 
to those in Theorem 2. We have adopted a broader definition, motivated by the 
application to language containment. Still, Theorem 2 provides the only finite 
procedure known to us, for verifying that a given automaton with non-trivial 
language is indeed an invariant. 

T h e o r e m 3 .  A finite invariant of an iterative system {Nnln >_ 1} exists if and 
only if there ezists n* < cv such that: 

c,,.., c_ U z . .  (1) 
n-m1 

In fact, a stronger claim follows from the proof of Theorem 3: if (1) holds, 

then an automaton with the language [.J~=l/:n is an invariant. This immediately 
gives us the following semi-decision procedure: 

for  eve ry  integer n*: i f  (1) holds t h e n  HALT. 

If the procedure terminates, it will produce n* which can be used to construct 
n* a finite invariant with the language (-J~=l s However, if a finite invariant does 

not exist, the procedure will not terminate. 

4.2 P r o v i n g  N o n - e x i s t e n c e  o f  F i n i t e  I n v a r i a n t  

In this section, we show a sufficient condition for non-existence of finite invariant. 
The condition can be checked algorithmically, and, if satisfied, it provides useful 
information on sets of strings that  every invariant must include in its language. 

In this section we consider a generic open iterative system induced by a cell 
(S, I, T, F).  Unless stated otherwise, we assume that  s is some string in ($2'~) * . 
We use I �9 ] to denote the length of a string. To refer to parts of the string we 

1 2 use the naming scheme detailed in Fig. 3. We call a pair s~,y = (s~,y,s~,y) a 
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Fig.  3. A naming scheme for parts of the string�9 

transition, for all x = 1 , . . . ,  Isl and all y = 1 , . . . ,  n. If s, t and u are transit ions,  
for s implic i ty  we write  (s, t, u) E T instead of: 

(t 1, (s 1, s 2, t ~, t 2, u ~, u2), t ~) ~ T . 

To prove the non-existence of  a finite invariant,  we search for a sequence of  
strings: xl ,  x 2 , . . ,  satisfying O(zi) E s but  O(zi) ~ s for any j < i. We will 
show tha t  in certain cases these relations can be established in a finite number  
of  steps�9 We consider only a special case when xi+l is obta ined by extending xi 
in a certain regular fashion. If  tha t  is the case we write z~+l = a(x i ) .  Next, we 
define precisely the extension operator  ~. 

Given strings s E ($2~) * and t E (S2n+~) * such tha t  Itl = Isl + 1 w e  say tha t  
t = aik(S) if the following holds: 

1. t obtained f rom s by adding one row and one column of transitions, i�9149 

t=,y =S~,y for a l l x = l , . . . , l s l ,  y =  1 , . . . , n  , (2) 

2. the observable par t  of  t is the same as the observable par t  of  s, except tha t  
the i'th column is repeated twice, i.e.: 

{ O(s=) for all x = 1 , . . . , i ,  O(G) O(s,- l))  f o r a l l x = i + l , . . . , I t l  , (3) 

3. the last column of  t is the same as the last column of  s, except tha t  the k'th 
row is repeated twice, i.e.: 

f Sl,i, ~ for all x = 1 , . . . , k  , 
tlq,~ 

Slsl,=_~ for a l l x = k + l , . . . , n + l  . (4) l 
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In the rest of  this pape r  we assume tha t  all extensions have c o m m o n  i and 
k, so wi thout  ambigu i ty  we write c~(s) for cqk(s). Also, we use the  following 
abbrev ia t ion  for any j >_0: 

~J(s)  = ~ ( ~ ( . . . 5 ( s ) . . . ) )  . 

j t imes 

P r o p o s i t i o n 4 .  A s tr ing (~(s) exis ts  i f  and only i f  all o f  the fo l lowing  hold: 

C1:  sx,~ = s=,,~-l,  f o r  all x = 1 , . . . , i ,  
C2:  sx+l ,~ = s=,n-1,  f o r  all x - i . . . .  , Is I - 1, 
C3:sx,1 = si,1, sx,2 -- si,2, f o r  all x - i, . . ., Is]. 

Iron(s)  exists,  then it is unique. 

L e m m a S .  I f  s E s  and s satisf ies:  

C4:st,n-1 - ~  S i T l , n - 1 ,  

C5:  s[,[,~ = Si,l,k+i = si,i,k+2, 

then t = or(s) sat is f ies:  

t~ ,~=  ~ for a l l x = l ,  . I s l - 1 ,  = 2 ,  , (5) tx+l ,y  . �9 , y . . . ,  n 

t~,~ E I f o r  all x = 2 , . . . , n  , (6) 

t~,l., e F for ~ll x = 2 , . . . , ,  , (7) 

( t x , y -1 ,  tx ,y ,  t~,y+l) e T f o r  all x = 1 , . . . ,  It[, y = 2 , . . . ,  n - 1 . (8) 

Proof.  By definition, the assumpt ion  s E s  is equivalent  to: 

s=,y2 = sl=+l,y for all x -  1,. �9 - , I s l - 1 ,  y = 2 , . .  . , n - 1  , (9) 

81 x,= E I for all x = 2 , . . . , n -  1 , (10) 

81 I,l,* E F for all a: = 2 , . . . ,  n - 1 , (11) 

(8x , y -1 ,8x , y ,  8x,y+l)  E T for all x = 1 , . . . ,  Isl, y --= 2 , . . . ,  n - 1 . (12) 

Now, (5) follows f rom (2), (4), C4,  and (9); (6) follows f rom (2), (4), and (10); 
(7) follows f rom (3), and (11); and finally (8) follows f rom (2), (3), C5,  and (12). 

rn 

F rom this point  on, we do assume proper t ies  C 4  and C5.  We make  this 
a s sumpt ion  wi thou t  loss of  general i ty because they are always satisfied by ~2(s),  
which also satisfies all other  restr ict ion on s ment ioned  in this section. 

T h e  pa r t  of  our s t ra tegy is to find a sequence of str ings x l ,  x 2 , . . ,  sat isfying 
xi  E f~i. The  following l e m m a  describes a case when all of these relat ions are 
satisfied if one of t h e m  is. 

L e m m a 6 .  Let  s sa t i s fy  C 1 - C 5 ,  and let t = (~(s). If: 

c6 :  ( t~ ,~_l , t~ ,n , t~ ,~+l)  ~ T for  all �9 = 1 , . . . ,  N, 
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C7:  t~tl_l, ~ = t~tl, x for  all x = 2 , . . . ,  n, 

then: 

s e s  ~ t e t : (N._~)  , 

s c s  ~ aJ(s) c s  for a l l j  >_ 0 . 

(13) 
(14) 

Proof. Condi t ions  (5)-(8) ,  (26 and (37 are exact ly  the condit ions for t E / : ( N n - 1 )  
to  be satisfied. Thus ,  (13) holds. I f  s satisfies (36 and C 7  so does a ( s ) .  Therefore ,  
we can repea ted ly  apply  (13) to get (14). [] 

The  second pa r t  of  our s t ra tegy  is to find a sequence of s tr ings x l ,  x2, .  �9 �9 t ha t  
xj  ~ / : i  for any j < i. In L e m m a  7 we establ ish a condi t ion which enables us to 
prove this relat ion in a finite number  of  steps.  

L e m m a  7. Let s satisfy C 1 - C 5 ,  and let t = a(s ) .  If." 

c a :  s~ , ._ l  is the unique element # the set {u = (u~, u~)13v, ~ ,  z = ( " t  z~) : 
(v, t~,., u) ~ T ^ (w, t~+~i., z) ~ T}  fo~ alZ x = 1 , . . . ,  Isl, and 

C9:  there exists a sequence of  transit ion u,~,..  ., u4, u3 such that u,~ = tltl,n , 
and u~ (for all x = n - 1 , . . . ,  3) is the unique element  of  the set: { v lqw  : 
(w, u~+l, v) ~ T}, 

then: 

o(t )  e L ._I  ~ o(s)  ~ L._~ , 

O(s) ~ s ~ o(aJ(s)) ~ s for all j > 0 . 
(15) 

(16) 

Proof. Assume O(t)  E s let s tr ing t '  be such tha t  t '  E s  and O(t') = 
O(t) .  Also, let s '  be the str ing ob ta ined  by removing  f rom t '  the ( n +  1) 'st  row and 
the last  column.  I t  follows f rom C8  tha t  the (n - 1) 'st  row of s '  is exact ly  equal  
to the (n - 1) 'st  row of s. Since C 1 - C 3  also hold, we have t ha t  O(s ' )  = O(s) .  
We claim tha t  s '  E / : ( N n - 2 )  and thus O(s)  G s  

T h a t  s '  satisfies condit ions analog to (9), (10), and (12) follows direct ly f rom 
t '  E s  I t  follows f rom C 9  tha t  t~t,i, ~ = u~ for all z = n , . . . , 3 ,  so 

1 t '  E / : ( N , - I )  also implies u~ E F ,  for all x = 3 , . . . ,  n. I t  follows f rom C 2  tha t  
! _ _  t / - -  sls ' l ,n-1 -- Itq,n -- un, so we can again app ly  C 9  to ob ta in  ' 1 u 1 (%'1,~) = ~+1 ~ F,  

for all x = n -  1 , . . . , 2 .  

It  is easy to check tha t  a(s )  satisfies C8  and C 9  if s does. Therefore,  we can 
repea ted ly  apply  (15) to get (16). [] 

A reader  will notice t ha t  the condit ion C 9  is used only to establ ish t e rmina -  
tion. If  all the s ta tes  of the basic cell are final, L e m m a  7 holds even if C 9  is not  
satisfied. 

We are now ready to pos tu la te  sufficient condit ions for the non-exis tence of  
a finite invar iant .  
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T h e o r e m  8. If s is such that it satisfies C 1 - C 9  and: 

s ~ s  

O(o~J(s)) (t s for all j > 0 , 

O(aJ(s))~s forallj>__O, m =  l , . . . , n - 3  , 

then: 

(17) 

(18) 

(19) 

a) a finite invariant does not exist, 
b) s _~ {O(a~(s))lj >_ 0}. 

Proof. From (17) and Lemma 6 we have: 

o(,d (s)) ~ c._2+~ for all j >__ 0 .  (20) 

We can rewrite (18) as O(c~J-'n(s)) r I:n-2 for all j > 0, 0 < m < j ,  and 
combine it with Lemma 7 to get: 

O(c~J(s)) = O(c~m(aJ-m(s))) r  for all j > 0, 0 < m < j . (21) 

Thus, for every j > 0 there exists a string (specifically O(o~J(s))) in s  
(by (20)), which is not in/ : rn  for any m < n - 2 + j (by (19) and (21)), so a 
finite invariant cannot exist. Also, part b) follows from (20). n 

Consider Example 2 in section 3 and the following string 2 in/ :3:  

| id le  1 r idle 1 | id le  ] r i d l e - ~ t o k e n "  
|idle | |idle | |idle | | token ---* dead 

s=  |idle | l idle I I t~ I dead "+ dead 
|idle | | token|  |dead | |dead--dead 
L token J L dead J L dead j L dead ~ dead 

It is straightforward to check that conditions C 1 - C 9  are satisfied for a2,1. It 
is also straightforward, to define an automaton accepting {O(a~,l,(s))lj >_ 0}, 
thus (17)-(19) can be easily checked by a language containment checking tool. 
Since C 1 - C 9 ,  and (17)-(19) are all satisfied we conclude that  a finite invariant 
does not exist and t h a t / ~  _3 (s U 122 U {O(~,l(s))lj >_ 0}). 

The following procedure shows how Theorem 8 can be used to search for an 
invariant: 

1. construct A s . t . / : (A) = s 
2. choose a string s and let n denote its "width" (i.e. s E ($2")*), 

n - - 2  3. construct B s.t. s = Z(A) U U~=l z:i; let A := B, 
4. i f  O(~(A . C)) C_ Z(A) t h e n  HALT, 
5. i f  s satisfies C1 -C 9 ,  (17)-(19) for some ~ik., where 1 < i < Isl, 1 < k < n 

t h e n  construct B s.t. s = s U {O(c~k(s))lj > 0}; let A := B, 
6, i f  O(I:(A. C)) C s t h e n  HALT else go to step 2. 

2 We omit writing s 2 ~ for x < 4, and assume th~tt s 2 1 , x , y  -~" S x + l , y "  
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If  the procedure terminates it will generate a tight (but possibly not finite) 
invariant A. Unfortunately, we can not claim tha t  the procedure will te rminate  
even if a tight invariant exists and all strings are systematical ly enumerated in 
step 2. It might  be more efficient to apply this procedure interactively, i.e. to let 
the user choose a string and then execute other s t eps  automatically.  

5 C o n c l u s i o n s  

We have studied the existence of the finite invariant of an iterative system con- 
sisting of many  identical au tomata :  We have shown tha t  if constraints on the 
environment are allowed, the existence is undecidable, but we have also pointed 
out that  the proof does not exist presently for the case of an unconstrained envi- 
ronment.  We have presented a semi-decision procedure that  will generate a finite 
invariant, if one exists. We have also provided sufficient conditions for the non- 
existence of a finite invariant. Those conditions can be checked in finite t ime so 
a semi-decision procedure can be defined tha t  will recognize a pat tern  satisfying 
those conditions, if such a pa t t e rn  exists. These results can then be used in a 
search for an invariant that  is possibly tight but not finite. It  is possible tha t  
neither of these procedures terminate.  This is consistent with the decidability 
result (at least for closed systems). 

This work can be natural ly extended in several ways. From the theoretical 
point of view, the decidability of existence of a finite invariant for open iterative 
systems needs to be studied. From the practical point of view, it would be useful 
to generalize the conditions for non-existence. This can be done by analyzing 
sequences of strings where not only a single element, but a whole substring 
is repeated many  times. It is also possible to construct cases where the non- 
existence can be proved by analyzing a sequence of sets of string, rather then 
just  a sequence of strings. Finally, in order to verify liveness properties, these 
results need to be extended to the au tomata  on infinite tapes. 
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