
The Verification Prob lem for
Safe Replaceabi l i ty

V i g y a n S i n g h a l *
Computer Science Division

University of California
Berkeley, CA 94720

vigyan@ie, eecs. berkeley, edu

C a r l P i x l e y
Motorola Inc., MD OE321

6501 W m Cannon Drive West
Austin, TX 78735

pixley@math, sps. mot. com

Abs t r ac t . This paper addresses the problem of verifying that a sequen-
tial digital design is a safe replacement for an existing design without
making any assumptions about a known initial state of the design or
about its environment. We formulate a safe replacement condition which
guarantees that if an original design is replaced by a new design, the in-
teracting environment cannot detect the change by observing the input-
output behavior of the new design. Examples are given to show that safe
replacement (~) allows simplification of the state transition diagram of
an original design. It is showed that if D1 is a safe replacement for design
Do then every closed strongly connected component of D1 is contained
in Do. We present a decision procedure for determining whether a re-
placement design satisfies our safe replacement condition.

1 I n t r o d u c t i o n

This paper addresses the problem of implementat ion verification for synchronous
sequential designs. Although we will address the problem for gate-level designs,
our theory is equally applicable for designs at the state transition level. We want
to guarantee that if we replace a sequential design then no surrounding environ-
ment will be able to detect the change based on the input-output behavior of
the replacement (a safe replacement). The problem comes up because frequently
designers work separately on separate pieces of a large design, and the objective
is to modify one's design so that any of the interacting designs will not notice
the modification (Figure 1). The designers do not want to make any assumptions
about the surrounding designs outside their own, not even about any initializ-
ing sequence coming from outside when their design is powered up. Latches (or
memory elements) in the designs may not even have reset lines. In Figure 1, the
designer working on design DO would like to replace it by design D1 without
making any assumptions about the other interacting designs. In this paper, we
will refer to the design outside of DO as the environment of DO.

The problem of implementat ion verification for sequential designs is not a
new one. Efficient methods exist for the verification of sequential designs [3, 8, 1].

* Research supported by NSF/DARPA Grant MIP-8719546 and a summer internship
from Motorola, Inc.

312

I I I I I I I I I I I I I

?

I I I I I I I I I I I I I

Fig. 1. Replacement of a sequential design

However, these methods only work for designs where all latches have a reset line
which determines the designated initial state for the circuit. One key point where
our work differs from previous work on sequential verification is that we do not
assume any reset lines running to the latches. While it is well-known that data
pipeline and memory designs frequently have latches with no reset lines, it is
also true that many industry-level control designs have some latches or flip-flops
without reset lines. An important reason for having latches without reset lines
is the large saving in area by avoiding the routing of the reset lines all over the
design. Also, latches without reset lines cost less (consume fewer transistors) than
latches with reset lines. Since the latches can power-up in any state, we cannot
assume a designated start state for the design. For such designs, the question
that needs to be answered is "when can we replace a design with another, so
that while the replacement design can power up in any state, there is no way
the environment can detect the replacement"?

A notion of sequential hardware equivalence for designs which may not have
a designated initial state is presented in [7]. Efficient BDD-based techniques are
presented which verify this equivalence for two given designs. We will show that
for sub-designs embedded in a large design (or the environment), this notion of
equivalence is not always applicable.

In this paper, we will present our condition for safe design replacement.
Although this condition is strong enough so that the interacting environment
cannot detect the replacement, it does not require that every state in one design
be equivalent to one in the other design (the classical notion of machine equiva-
lence, as presented in [5]). Our condition also preserves possible interactions with
the environment during initialization. We also explore the methods which can
be used to verify the necessary and sufficient conditions for a new (replacement)
design to be a safe replacement for an old (existing) design.

An orthogonal problem to the verification problem is the problem of using our
replaceability notion to do sequential resynthesis on the existing design. We are
working on this problem and, based on preliminary work, the notion of replace-
ability does seem to provide sufficient flexibility to achieve some optimizations.

313

2 T e r m i n o l o g y a n d B a c k g r o u n d

Here we define some notation and a little background that we will need later in
this paper.

D e f i n i t i o n 1. A deterministic Finite State Machine (DFSM) M is a quintuple,
(Q, I, O, ~, 6), where Q is the set of states, I is the set of input values, O is the
set of output values, A is the output function, and 6 is the next state function.
The output function A is a completely-specified function from domain (Q • 1) to
range O. The next state function is a completely-specified function from domain
(Q • I) to range Q. A hardware design D is a DFSM with n input wires, m
output wires and t latches, Q has 2 t states, I has 2" values and O has 2 m values.

We will also use A and ~f to denote the output and next state functions
on sequences of inputs. So, if~r = a l . a 2 . a a . . . a p 6 I p is a sequence o f p
inputs, these functions are recursively defined as ~(s, ~r) = A(s, al)-A(6(s, al), ~r')
and 6(s, r) - 6(6(s, al) , ~d), where ~d -- a2 �9 a3 . . - ap . So, the range-domain
relationships are A : Q • I p --~ 0 p and ~f : Q • f f - , Q.

Two designs are said to be compatible with each other if they have the same
number of input and output wires. All notions of equivalence and replaceabil-
ity developed in this paper are meaningful only for pairs of compatible designs.
Henceforth, when talking about two different designs we will implicitly assume
compatibility of the two. In this paper we will assume that designs Do and D1 de-
note the quintuples (QDo, I, O, ADo, $Do) and (QD~ , I, O, Apt, 6DI), respectively.

D e f i n i t i o n 2 . A set of states, S C_ Q, is closed (under all inputs) if for each
state s 6 S, for each input a 6 I, ~(s,a) 6 S.

D e f i n i t i o n 3 . A set of states, S _C Q, is called a closed strongly connected com-
ponent (closed SCC) if S is closed and for any two states Sl, s~ 6 S, there exists
a finite input sequence ~r 6 I* such that 6(Sl, ~r) = s2. It is easy to show that for
any state s of design D, a closed SCC is reachable from s.

D e f i n i t i o n 4 . Given two states so 6 QDo and sl E QD1, state so is equivalent to
state sl (so ~ sl) if for any sequence of inputs ~r 6 I*, ADo (so, ~r) = ADa (sl, ~').
It can be easily shown that if So "~ sl, then for any input sequence ~r E I*,
6Do(SO, ~r) ~ $DI(Sl, ~r). We say that ~r distinguishes so and sl if ADo(SO, ~r)
A.a (sl,

We now give a classical notion of equivalence between two DFSM's [5, page
23].

D e f i n i t i o n 5 . Two DFSM's M1 and M2 are equivalent to each other (M1 -= M2)
if for each state s in M1 there is a state t in Ms such that s ~ t, and for each
state t in Ms there is a state s in M1 such that s ,~ t.

314

3 S e q u e n t i a l H a r d w a r e E q u i v a l e n c e (SHE)

In this section we will briefly review the work presented in [7] about the theory of
sequential hardware equivalence for equivalence between two gate-level hardware
designs without assuming any knowledge of initial state. When the design powers
up, the state it powers up in cannot be predicted. The desired input /output
behavior is achieved from the design by driving a fixed synchronizing sequence
of input vectors through the design after the power-up.

D e f i n i t i o n 6 . A sequence of inputs ~r E I* is called an essential reset sequence
(or a synchronizing sequence) if for any pair of states so, sl E QDo, boo(so, 7r)
6Do(S1,7r). A state s E QDo is called an essential reset state if there exists a
state so E QDo and a synchronizing sequence r such that 6(s0, ~r) ,,~ s. A design
which has an essential reset state is called essentially resettable.

D e f i n i t i o n 7 . A state pair (so, s t) E QDo • QD1 is alignable if there is a sequence
of inputs ~r E I* such that 6Do(Tr, so) ~ 6Dl(~r, Sl). The sequence 7r is called an
aligning sequence.

D e f i n i t i o n 8 . Designs Do and D1 are equivalent (Do ~ D1) if all state pairs are
alignable.

Definition 8 defines the notion of sequential hardware equivalence. The fol-
lowing results were shown in [7].

T h e o r e m 9. Do ~ D1 if and only if there is a single (but not necessarily unique)
aligning sequence that aligns all state pairs in QDo • QD,.

T h e o r e m 10. The relation ~ is symmetric and transitive, but not reflexive.

For the class of essentially resettable designs, the relation ~ is an equivalence
relation. The non-reflexivity of SHE comes from the fact that a non-essentially-
resettable design does not have an aligning sequence with itself. Thus the design
is not equivalent to itself. An example of such a design is shown in Figure 2 2. In
this design the state pair (10, 11) is not alignable.

4 S e q u e n t i a l R e p l a c e a b i l i t y

Here we start by justifying why the notion of sequential hardware equivalence,
discussed in Section 3, does not work for safe replacement of sequential designs.
Then we present our new notion of sequential replaceability, followed by some
properties of this new notion.

2 We will frequently represent designs by state transition graphs (STG's). A label a/b
on an edge denotes that under input a, the source state outputs b. The destination
of the edge denotes the next state for that input. The t-bit binary-valued label on a
state denotes that in the design the state is implemented by that assignment of the t
latches. Notice that because a combinational function can be implemented in many
different ways, the design-to-STG transformation is a many-to-one mapping.

315

1/1
0/0

0to

Fig. 2. Example of a design which does not have an essential reset sequence

4.1 P r o b l e m s w i t h S e q u e n t i a l H a r d w a r e Equivalence

From Theorem 9, two designs are considered equivalent if there exists a universal
aligning sequence. This sequence is a synchronizing sequence for either design.
However, in the design process, often the designer does not know the synchroniz-
ing sequence for his/her design DO. Even if they can determine such a sequence
r for their design, it may not be possible for the environment to generate 7r. So,
for a safe replacement of DO we need to preserve all initializing sequences, and
not just one.

The notion of SHE does not place any constraints on the outputs of the de-
signs during the synchronization phase. However, we claim that this condition is
too weak for a safe replacement 3. A priori, we cannot assume that the external
environment is not sensitive to the outputs during the synchronization phase.
This is especially important because there may be another interacting design
whose synchronizing sequence may be driven by an output of design DO, and af-
fecting the outputs of DO during synchronization may destroy that synchronizing
sequence.

Finally, the notion of S H E does not work for designs which are not essen-
tially resettable. As Theorem 10 states, such designs are not even equivalent to
themselves. It will be presumptuous on our part to assume that such designs
do not exist in real designs, and to present a theory which fails to replace such
designs even by themselves. There can be two classes of real designs which are
not essentially resettable. First, if the environment has some flexibility for the
inpu t /ou tpu t behavior it can accept from the design, the design may have mul-
tiple non-equivalent closed SCC's (for example, Figure 2). In this example, the
environment has a don't care condition so that the design is acceptable as long as
it always toggles the input (state 11) or always outputs the input (state 10), after
the synchronization phase. For the second class, consider the design in Figure 3.
It can be seen that there is no synchronizing sequence for this design, and hence
this design is not essentially resettable. However, once the design powers up, its
state can be determined from its outputs, and based on the outputs the design
can be driven to state 0. Thus, the behavior of this design can be controlled.

3 We are indebted to Dr. Richard Rudell of Synopsys, Inc. for comments about se-
quential replacement.

316

oto ~ o / 1

Fig. 3. Example of a design which does not have an synchronizing sequence

4.2 C o n d i t i o n s f o r Val id R e p l a c e m e n t

Here we present our new condition for safe replacement of a sequential design.
We assume that no latches have any reset lines 4. Since it cannot be predicted
which state the design powers up in, we can safely assume that no matter which
state the original design powers up in, the subsequent input /output behavior
of the design is acceptable to the environment. This motivates the following
condition (the safe replacement condition):

D e f i n i t i o n l l . Design D1 is a safe replacement for design Do (D1 ___ Do) if
given any state sl E QD1 and any finite input sequence ~r E I*, there exists
some state so E QDo such that the output behavior AD1 (81,71") = ADo(So, 7~).

For example, consider the design Do in Figure 4 consisting of 1 input wire, 1
output wire and 3 latches. Design D1 in Figure 5 satisfies the safe replacement
condition (D1 -< Do). States 00, 11 and 11 in D1 behave like states 000,011 and
101, respectively, in Do for all input sequences. The remaining state 10 in D1
behaves like state 010 for all input sequences starting with 0, and like state 101
for all input sequences starting with 1.

1/I lt0

Fig. 4. Example design Do

We would like to emphasize some interesting properties of the safe replace-
ment condition:

4 If some latches do have a reset line, they can be modeled by a latch without a reset
line if we treat the reset line as another primary input.

317

Fig. 5. Replacement design DI

R e m a r k 1: If D1 ~ Do, then there may be states so E QDo and to E QD1
such that for all states s E QDo and t E QD1, so 7 ~ t and to 7 ~ s. For example,
state 111 in Do (Figure 4) is not equivalent to any state in D1 (Figure 5); also,
state 10 in D1 is not equivalent to any state in Do. Thus classical machine
equivalence [5], that requires that every state in each design be equivalent to be
some state in the other design, is not necessary for safe replacement, although
it is sufficient.

R e m a r k 2: As is obvious from Definition 11, the relation ~ is reflexive and
transitive. However, the relation __< is not symmetric. Although D1 __ Do, it is
not true that Do -< D1 because the state 110 in design Do produces an output
sequence of 1 �9 0 on the input sequence 1 �9 1 and there is no state in DI which
exhibits this behavior. However, an equivalence relation can easily be defined
from a transitive and reflexive one.

Defini t lon12. Designs Do and D1 are replacement equivalent if Do ___ D1 and
D1 -< Do.

Consider the equivalence classes of designs modulo replacement equivalence-
a design D belongs to an equivalence class [Do] if and only if it is replacement
equivalent to Do. We say that [D1] ~ [Do] if and only if D1 ~ Do. Now, ~ is a
partial ordering on these design equivalence classes (since it can be easily shown
that it is reflexive, transitive and anti-symmetric).

R e m a r k 3: Although the replacement design has to be compatible with the
original design (same number of inputs and outputs), it does not have to the
same number of latches (for example, Do in Figure 4 has 3 latches whereas the
replacement design Dt in Figure 5 has only 2 latches).

R e m a r k 4: While the theory of sequential hardware equivalence Section 3
cannot be applied to designs which are not essentially resettable, our safe re-
placement conditions work for any designs. For essentially resettable designs,
sequential replaceability is a stronger condition than SHE (sequential replace-
ability implies svIE, because as the following Theorem 13 shows, if D1 -4 Do, any
synchronizing sequence for Do can align all state pairs in QDo x QD1.

T h e o r e m 1 3 . If D1 -< Do and p is a synchronizing sequence for Do then p is
also a synchronizing sequence for D1 and for any states so E QDo and Sl E QD~,
e-o(S0, p) ~ 6.1 (Sl, p).

318

Proof. Pick a state s' E QDo. For the proof, we just need to show that for any
state t E QD,, (hD~ (t, p) ~ 6Do (S', p). Suppose not: Then 5D~ (t, P) 7 ~ (~Do (S', p).
There exists a sequence r such that AD, (6D1 (t, p), ~r) # ADo(6Do (S', p), ~r). How-
ever, since D1 ~ Do, there exists a state s E QDo such that AD~(t,p. r) =
ADo (s, p . 7r). This also means that AD, (501 (t, p), ~r) = ADo (600 (s, p), r) . How-
ever, since p is a synchronizing sequence for Do, 6Do(s, p) "~ 500 (s', p). Thus,
ADx (69, (t, p), 7r) ---- ADo (600 (8, p), 7r) : ADo (500 (8 t, p), 71"), which is a contradic-
tion. �9

R e m a r k 5: The idea of safe replacement implicitly uses the fact that the
original design Do can power up in any state. Power-up states are generally
beyond the control of designers for physical reasons. It may be possible that, by
design, Do cannot power up in some states or that the likelihood of powering
up in some states is so remote that Do is never observed to do so. The notion
of safe replacement still applies with replacing QDo and QD~, in Definition 11,
by the power-up states of Do and D1, respectively.

N e c e s s a r y C o n d i t i o n s for a Safe R e p l a c e m e n t Even though there is some
flexibility for the implementation of the replacement design, it cannot have arbi-
trarily few states; in fact, as the following results show, each closed SCC in the
replacement design must be equivalent (Definition 5) to some closed SCC in the
original design.

L e m m a l 4 (L e m m a 2 in [2]). Suppose that DFSM's Mo and M1 have no
equivalent states then there is an input sequence r such that for any states so of
Mo and sl of M1, AMo(SO,lr) # AM,(Sl,lr).

L e m m a l h . I f D1 ~ Do, and t E QD1 lies in a closed SCC olD1, then there
exists state s E QDo such that s ,,~ t.

Proof. (by contradiction). Assume that D1 _ Do. Let M be a closed SCC of
D1. Then M is a DFSM. Suppose that no state of M is equivalent to any state
of Do. By Lemma 14, there is a sequence r that differentiates every state of M
from every state of Do. A fortiori, 7r differentiates a particular state, say s of M
from every state of Do. Therefore, the assumption that D1 ~ Do is false. �9

T h e o r e m l 6 . I f D1 "4 Do, and M1 is a closed SCC in design D1, then there
must be a closed S C C Mo in design Do such that Mo =- AQ.

Proof. Consider a state t in M1. From Lemma 15, we know that there exists
a state s E QDo such that s ,~ t. We will show that if M0 is any closed SCC
reachable from s then M0 is equivalent to M1.

Consider any state s ~ in M0. Let 7r be an input sequence such that 5Do(S, v) =
s'. Since M1 is closed under all inputs, t ~ = 6D~(t, 7r) lies in M1. Also, since s ~ t,
we have s' ~ t'.

Similarly, consider any state t" in M1. Let p be an input sequence such that
6D~ (t', p) = t". Again, s" = 6Do (s', p) lies in Mo, and s" .-~ t".

319

Thus, DFSM's M0 and M1 are equivalent. �9
As remarked previously, the equivalence classes modulo replacement equiva-

lence are partially ordered by safe replacement (_) . Theorem 16 shows that each
closed SCC of design Do defines a minimal element that is _~ to the equivalence
class [Do]. Designs with unique minimal predecessors are therefore ones with
unique closed SCC's, or ones where all SCC's are equivalent to each other.

S p e c i a l C a s e - K n o w n In i t i a l i z ing S e q u e n c e Set

Sometimes, the designer knows the initializing sequences for the design and does
not need a replacement condition as strong as in Definition 11. The designer
knows that whenever the design powers up, one of sequences from an initializing
sequence set H is applied and the design is reset to some desired behavior.
The designer does not care about the outputs while an initializing sequence is
applied 5, and knows that the design "works" as long as some sequence from H
is applied after power-up. As an example, consider a design with two input lines
a and b. The designer knows that after power-up the input a will be set at 1 for
the first 2 clock cycles to initialize the design. For this example, the initializing
set H -- {(10 �9 10, 10.11, 11 �9 10, 11 �9 11}, where a represents the first input and
b the second input. For an initializing sequence set / / w e can modify our safe
replacement condition from Definition 11 to the following:

D e f i n i t i o n 1 7 . Design D1 is a safe replacement for design Do under the ini-
//

tializing sequence set / / (D 1 ~ Do) if given any state sl E QDI, an initializing
sequence 7rl E H, and any finite input sequence p E I*, there exists some state
so E QDo and an initializing sequence ~r0 E H such that the output behavior
AD. (sl, p) = (Do (so, P).

We can also derive the following result (the proof is similar to that of Theo-
rem 16 and is omitted for brevity).

H
T h e o r e m l 8 . I f D1 -~ Do and M1 is a closed SCC in design D1, then there
must be a closed SCC Mo in design Do such that Mo - 1141.

It should be noted that for a single design a designer may have more than
one set of initializing sequences. Each of these set might be used to initialize
the design to a different behavior. For such a situation the designer would like
to verify that the replacing design is a safe replacement under each initializing
sequence set.

4.3 V e r i f i c a t i o n for S e q u e n t i a l R e p l a c e a b i l i t y

Although we have safe replacement conditions in Definitions 11 and 17, we still
need a decision procedure to verify if a replacement design satisfies these condi-
tions. In this section we develop two methods to answer this verification question.

5 If the designer does care about the outputs during the initialization phase, it is easy
to modify our safe replacement condition for such a case also.

320

M e t h o d I - F i n d i n g a D i s c r i m i n a t i n g S e q u e n c e

The following procedure decides whether (new) design D1 is a safe replacement
for (original) design Do, i.e, if D1 _~ Do. If D1 is not a safe replacement for
Do then this algorithm finds a state sl of D1 and an input sequence ~r that
distinguishes sl from every state of Do.

We construct a multiple rooted, acyclic directed graph whose nodes are la-
beled by pairs of the form (s, A) where s is a state of D1 and A is a subset of
states of Do. Nodes are either marked or unmarked; the markings may be FAIL,
J U M P (N) or S U C C E E D , where N is another node. Edges of the graph are
labeled by a single input a E I. We presume that the equivalent state pairs of
Do and D1 have already been computed, see [7].

The roots of the digraph are pairs of the form (so, QDo) where so is a state
of D1, QDo is the set of all states of Do and so is not equivalent to any state in
QDo. If the set of roots is empty, then clearly D1 -~ Do.

l o o p until some leaf is marked F A IL or all leaves are marked J U M P or
S U C C E E D :

Choose a node N labeled (sl, A) of the existing tree that has no J U M P
or S U C C E E D mark and choose an input a such that no edge out of N has the
label a.

Let s~ = ~Dl(Sl,a) and A' = {s' I for some s in A, s' = 6Oo(S,a) and
�9 AD,(sx,a) = ADo(s,a)}. If a node labeled (s~,A') already exists, say node N' ,

create an edge labeled a from N to N ~, and goto the beginning of the loop: Else,
create a new edge out of N labeled a and pointing to a new node N ~ labeled
(s i ,J ') .

Mark the new node N ~ as follows:
1. If A ~ is empty, mark the new node N F A I L and exit the program.
2. If s~ is state equivalent to any state in A ~, mark N S U C C E E D ,

and go to the beginning of the loop.
3. If there exists a node N " labeled (s ~ A'~ such that A" 1, J C A I, mark

N ~ as J U M P (N ") , and go to the beginning to the loop.
4. For each node N ' labeled (s~,A') such that A" D A', mark N" as

3 U M P (N ') .
End l o o p

Proof. Termination: Each node must have a distinct label and there can only
be finitely many labels. ~ l r thermore each node has an upper bound on the
number of edges emanating from it - the number of primary input combinations.
Therefore the program must terminate.

If the program terminates because a F A I L node is created, any path from
a root (s, QDo) to the FAIL node gives a sequence that distinguishes s from
any state of QDo. If there is no FAIL node then all leaf nodes are marked
S U C C E E D or J U M P .

C la im: If all leaf nodes are marked S U C C E E D or J U M P then no input
sequence will distinguish a state of D1 from all the states of Do.

O b s e r v a t i o n : We first observe that there cannot be loop of J U M P nodes--
N1 - J U M P (N 2) - * N2 - J UMP(N 3) --~ . . . - + Nk - J U M P (N 1) - + N1 because

321

each J U M P reduces the cardinality of the second coordinate of the label of a
node.

The proof of the claim is by contradiction. Suppose there were a state sl of
Dt and an input sequence ~r = al �9 a2 "" �9 a k that distinguishes sl from all states
of Do. Let No = (Sl, QDo). Notice that node No cannot be marked S U C C E E D ,
because then sx would be equivalent to a state in Do, a contradiction. Construct
the sequence of nodes No, N1, . . . , Nk, none of which is marked S U C C E E D , by
applying the following procedure recursively. If node Ni is unmarked then node
Ni+l is the node reached by traversing the edge labeled ak+l from g i . Otherwise,
Ni is marked J U M P (N) ; jump to N and keep jumping nodes until a node N ~
is reached which is not marked J U M P (see the observation above). This node
cannot be marked S U C C E E D . [This is because nodes marked S U C C E E D
have their left hand component equivalent to some state in their right hand
component. But then Ni would have the same property and would have been
marked S U C C E E D rather than J U M P which is a contradiction.] Now, Ni+l
is the node reached by traversing the edge labeled ak+l from N ~.

Node Ni+l labeled (si+l, Ai+l) cannot be marked S U C C E E D , because si+l
cannot be equivalent to any state in Ai+l. [If it was so, by backtracking the edges
traversed, we can find a state in QDo that cannot be distinguished from sl .] Since
there are no nodes marked FAIL, the last node Nk labeled (sk,Ak) must have
a non-empty set A~. But then by choosing a state in Ak, and backtracking the
edges traversed in constructing the sequence of nodes, one can find an element
of QDo that is not distinguished from Sl by ~r. �9

Before we execute the above algorithm, we could check to see if each closed
SCC of D1 has a state equivalent to some state of D0. If not, then by Theorem 16,
D1 2~ Do. Otherwise, if there is no state outside the closed SCC's of D1, then
D1 _ Do and we are done. If there is state outside the closed SCC's of D1, we
use the method outlined above knowing that each root (.so, QDo) of the digraph
is such that so is outside all closed SCC's of D1. Thus, if the number of states
outside closed SCC's is small compared to the the number of states which lie
in closed SCC's, we can probably expect our algorithm to be efficient. Also,
note that the algorithm would be correct if we did not mark any states J U M P
(remove substeps 3 and 4 in the marking step). Marking states as J U M P is just
a way to prune the search space, and make the algorithm more efficient.

K n o w n I n i t i a l i z i n g S e q u e n c e Set First, based on Theorem 18, we check if
each closed SCC of D1 has a state equivalent to some state of Do. If this check
fails, we know that D1 is not a safe replacement for Do under the initializing
sequence set H. Otherwise, we compute sets Q0 = {sl there exists so C QDo
and ~r E H such that ~Do(S0, r) = s}, and Q1 = {s[there exists sl E QD1 and
7r ~ H such that ~Do (sl, r) = s}. Now, we can use the same digraph-construction
method described above, except that the roots of the digraph are pairs of the
form (s, Q0) such that s E Q1 and s is not equivalent to any state in Q0. The
proof of correctness is similar to the one above, and is omitted for brevity.

322

M e t h o d II - U s i n g L a n g u a g e C o n t a i n m e n t

D e f i n i t i o n l 9 . A non-deterministic finite automaton (NFA) is a 5-tuple A =
(Q, ,U,~, I, F), where Q (the set of states) and Z (the alphabet) are finite non-
empty sets and ~ : Q x Z ~ 2 Q is the transition relation, I C Q is the set
of non-deterministic initial states, and F C Q is the set of final states. The
language of A, denoted by ~:(A), is a set of finite strings of the alphabet, and is
defined as in [6].

Given the original design Do and the new design D1, we will construct two
NFA's A0 = (QDo, ~7, ~Ao, IAo, FAo) and A1 = (QD,, •, ~Al, IA1, FAt) such that
D1 --< Do if and only if L:(A1) C Z(A0). Here Z = I x O. For i E {0, 1},
3A,(S, (a, b)) = t if and only if *D,(S, a) = t and AD,(S, a) = b. Also, FA, = QD~
and IA, = QD,.

However, since the problem of language containment between two NFA's is
PSPACE-complete [41 page 265], this approach is not likely to be more efficient
that Method I. Although Method I may also be inefficient in the worst case, we
can probably hope to terminate with S U C C E S S or FAIL without exploring
the entire search space, especially if D1 has been derived from Do using some
synthesis algorithms.

5 Conclusions

We have defined a notion of safe replaceability (_-<) that is independent of initial
states of a design, is independent of the intended environment of a design, and
applies to all sequential designs, resettable or not. This notion accomplishes
for sequential designs what the notion of boolean equivalence accomplishes for
combinational designs. We have shown by example that this notion is strictly
weaker than the property that every state of the replacement design is equivalent
to some state of the original design. We observed that safe replaceability is a
reflexive and transitive relation (i.e., a partial ordering of designs). Finally, we
gave two algorithms for deciding whether one design is a safe replacement for
another.

6 Acknowledgements

We would like to thank the CAD research groups at the University of Colorado
at Boulder, Motorola Austin and the University of California at Berkeley for
many useful comments on this work.

References

1. H. Cho, G. D. Hachtel, S.-W. Jeong, B. Plessier, E. Schwarz, and F. Somenzi.
ATPG Aspects of FSM Verification. In Proc. Intl. Conf. on Computer-AidedDesign,
pages 134-137, 1990.

323

2. H. Cho, S.-W. Jeong, F. Somenzi, and C. Pixley. Synchronizing Sequences and
Symbolic Traversal Techniques in Test Generation. Journal of Electronic Testing:
Theory and Applications, 4(12):19-31, 1993.

3. O. Coudert, C. Berthet, and J. C. Madre. Verification of Sequential Machines Based
on Symbolic Execution. In J. Sifakis, editor, Proc. of the Workshop on Automatic
Verification Methods for Finite State Systems, volume 407 of Lecture Notes in Com-
puter Science, pages 365-373, June 1989.

4. M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman and
Co., 1979.

5. J. Hartmanis and R. E. Stearns. Algebraic Structure Theory of SequentialMachines.
Intl. Series in Applied Mathematics. Prentice-Hall, Englewood Cliffs, N.J., 1966.

6. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, 1979.

7. C. Pixley. Introduction to a Computational Theory and Implementation of Sequen-
tial Hardware Equivalence. In E. M. Clarke and R. P. Kurshan, editors, Proc. of the
Conf. on Computer-Aided Verification, volume 531 of Lecture Notes in Computer
Science, pages 54-64, June 1990.

8. H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Im-
plicit State Enumeration of Finite State Machines using BDD's. In Proc. Intl. Conf.
on Computer-Aided Design, pages 130-133, November 1990.

