
C o m p o s i t i o n a l s e m a n t i c s of ESTEREL and
verification by compositional reductions.

R. de S imone and A. Ressouche

INRIA Sophia-Antipolis
B.P.93

06902 Sophia-Antipolis Cdx
F R A N C E

A b s t r a c t . We present a compositional semantics of the ESTEREL syn-
chronous reactive language, in the process algebraic style of Structured
Operational Semantics. We then s tudy its interplay with various reduc-
tional transformations on the underlying au tomata model, focusing on
compositionality and congruence properties. These properties allow early
nested reductions to take place at intermediate stages during the con-
struction of a (reduced) model, a key point in cutt ing down the combi-
natorial explosion which plagues verification of parallel programs.
We consider the following transformations: bisimulation minimisation
(state quotient), hiding of signals made invisible (abstraction), t r imming
of behaviours disallowed from external context (filtering). We il lustrate
par t of the approach on a simple hardware bus arbiter specification. The
verification method was implemented in STRL-MAUTO, a version of the
AUTO tool customized to the "synchronous reactive" structure of actions.

1 Introduction

Verification of parallel systems is often plagued by the famous combinatorial blow-up
arising in the representation of the global s tate space model. Many approaches have
been proposed to cut down this complexity. One of the most fruitful is compositional
reduction, by which subsystems minimisation is carried as early as possible along the
process structure. This is made possible when the parallel systems are expressed in
a process algebraic syntax and endowed with a compositional form of Structured Op-
erational Semantics. Such an approach has been followed for the "classical" process
algebras CCS, MEIJE, LOTOS amongst others, leading to tool support .

We want here to adapt these techniques -known as verification by reductions- to
the specific case of synchronous reactive systems, and more specifically to the ESTEREL
language (in its abstract, process-algebraic form). The main distinction in terms of
transition system interpretat ion in between such formalisms and usual process alge-
bras lays in the structure of action labels, which are now triples of: necessarily present
signals; necessarily absent signals; emit ted signals (reaction). An event needs to obey
certain coherency properties, but must not necessarily be complete, in the sense tha t
some signals may remain undetermined in it, indifferently present or absent. This al-
lows economic representation of several possible input flows at once. We call reactive

* This work was par t ly supported by the ESPRIT BRA project Concur2

442

automata the finite transition systems bearing such type of labels. They correspond
esentially to a rephrasing of multiple input/output sequential machines to an algebraic
formulation of behaviour labels.

We provide the behavioural semantic interpretation of ESTEREL into reactive au-
tomata in a SOS style that matches our compositional purposes. This semantics differs
in presentation from the original [1]. Here the input flow is synthesized upward from
components to parallel products, rather than inherited by subprocesses from a global
one. A keypoint in this compositional approach resides in the proper definition of well-
caused processes, answering the well-known problem of signals being emitted as a result
of their own presence/absence. To this end we add to each transition of reactive sys-
tems a causal relation, to remain acyclic, thereby completing the full definition of our
reactive automata.

Next we define a number of reduction transformations on reactive automata, in-
cluding signal hiding (abstraction), symbolic bisimulation (equivalence quotient), and
context filtering (extended restriction), and study their compositional properties w.r.t.
our operational semantics. We take compositionality in a broader sense, wondering how
much reduction can actually be distributed along components prior to composition by
a language operator (typically the p a x a l l e l construct).

Symbolic bisimulation of reactive automata is more refined than usual plain bisimu-
lationi and as a new notion seems very interesting in its own rights: consider the simple

i?.o! i#.o!
case of a state p, with p ~ pl and p ~ p2 while pl and p2 are bisimulating
each other (here i ~ means: i is tested as absent). This state p is somehow bisimilar to
the one with a single transition labeled simply o! leading to a state equivalent to pl
and p2, as any presence value for i has the same effect.

Finally we illustrate part of the approach on a simple hardware bus arbiter modeled
in our language.

2 S O S b e h a v i o u r a l s e m a n t i c s o f ESTEREL

We now provide a compositional structured operational semantics for a large subset of
(pure) ESTEREL. Extension to the full language is straightforward. We start by defin-
ing events, to become then the behavioural labels of reactive automata's transitions.
A structural interpretation of the process algebraic operators into reactive automata
transformers is then given.

2.1 Reactive 8z broadcast structure of actions

In ESTEREL, as other synchronous reactive formalisms, behaviours are composed of
events: an event E consists of a set of occurring input signals together with a set of
output signals emitted back in reaction, synchronously with the inputs. Input signals
not occurring in an event are supposed to be absent. We shall depart from this usual
representation in that our events will explicitly specify absent inputs in addition to
present ones, and leave unspecified signals when their presence value is immaterial for
the transition to be taken. It should be clear that this approach allows to factor many
possible input behaviours in a single transition description.

Signals will be supposed in the sequel to belong to some finite interface set .4. We
use a predefined specific signal _exit to indicate (sequential) termination, which is thus
dealt with internally much as other signal. Still, it can only be emitted, never received.

443

Definition 2.1 An event E is a triple (I, J ,O) E 2`4 x 2 ̀4 x 2`4 such that I and J
are disjoint, and (0 \ (_exit}) C I. An event consists of: received signals in I (which
were tested as present in the course of the transition); forbidden signal in J (tested as
absent); emitted signals in O. We let g be the set of events.

An event is called saturated if I U J = ,4.
An input event is simply a couple (I, J) E 2`4 x 2`4 with I n J = $. We let ZE be

the set of input events.

Notat ion 2.1 We typically write E = I? .J#.O! instead of (I , J, O) to reinforce type
discrimination, and further, e.g. Q?.i2?.j• instead of { i l , i2}?.{ j}#.$! (the product
notation indicates simultaneity). We note E C E I when I C F, J C jr, 0 C 0 r, and
E \ {S} for (I \ {S})Z.(g \ {S})# . (O \ {S})!.

We chose to include O in I. As an alternative one could use I' = I \ 0 instead.
This lat ter representation is more compact, but certain logical analogies we shall need
in the sequel fit bet ter the first choice.

ESTEREL (introduced below) is an imperative language containing an explicit paral-
lel operator. This operator is synchronous, in the sense tha t both subprocesses proceeds
at the same pace. Actions are broadcast, so that a given signal must be perceived consis-
tent ly (as present or absent) by all parallel processes. At the event level, this introduces
a specific definition of simultaneous product.

Definition 2.2 Two events E1 = I1?.J1#.01! and E2 = I2?.J2#.02! are compatible,
noted E1 T E2 iff:

(J1 n 12) ---- 0 -- (J2 n I1)

The simultaneity product of two compatible events E1 and E2, noted El.E2 is the event
E ---- (/1 U I2)?-(J1 U J2)#. (01 \ (_exit} U 02 \ (_exit} U ((_exit} N 01 n 02))

The t reatment of _exit in products insures distributed termination: a parallel process
terminates only when both sides do. Note in part icular that (E C E') ~ (E T E') and
El , E2 C El.E2.

With a logical and interpretat ion of product, the input part of an event (the I and
J sets) builds exactly a characteristic propositional formula for saturated input events,
as a conjunction of literals and negated literals. The simultaneity product respects this
interpretation. On the other hand the analogy is much less clear on the output part of
the event: a signal not in 0 is not irrelevant (it is certainly not emit ted yet), but not
incompatible in simultaneous product with this emission on the other part . We shall
pursue this logical interpretat ion further, but on signal receptions only.

Definition 2.3 A logical event expression is a couple (f , O) where f is a propositional
formula (based on input signal names as atomic propositions), and 0 is a finite set of
emitted signals. We note L`4 the class of logical event expressions on .,4.

A logical event expression represents a finite set of reactive events (as a characteris-
tic function). They can be retrieved back by simple prenex disjunctive normal form
expansion of f , under simultaneous product interpretat ion of each summand.

D e f i n i t i o n 2.4 By extension, an event E : I ? . J # . O is called compatible with a
saturated imput event E0 = I0?.J0~ / f I0 n J : O = (J0 n I) \ O

In short, compatibil i ty here only allows E to suppose m o r e present signals than pro-
vided from outside, and only when emit ted by the process itself, which builds par t ly
its own environment.

444

2.2 R e a c t i v e a u t o m a t a

Def in i t ion 2.5 A reactive automaton is a structure (Q,.A, T, init) where Q is a (fi-
nite) Set of states, init E Q is the initiM state, .,4 is a (finite) signal interface (or sort),
and T C (Q x EvA x Q) is a transition relation labeled by reactive events on ,4.

A logical reactive automaton is the similar structure, only with the transition labels
in LA instead of EvA.

Reactive automata are tightly linked to sequential machines in hardware theory, or
various models of reactive formalisms [3]. Sequential machines are automata equipped
with two functions, Out and Next , mapping respectively a couple (State, IE) , I E E Es
to a (synchronous) output event and to a next state. Our reactive automata, while
modeling in essence the same objects, insist on algebraic structure of events in a way
that will prove useful to define the semantics. A reactive automaton defines executions,
from saturated input events describing the environment's offer as follows: a compatible
input event occurring in an outgoing transition is selected, which sets an output event
and a resulting state, these of the transition. A specific form of determinism is called
for here.

Def in i t ion 2.6 A reactive automaton is input-deterministic iff two distinct transitions ~
leaving the same state cannot be compatible. Formally:

Vp e Q, yt = (p ,E ,p l) , t ' = (p,E' ,p2) E T,-~(E T E')

Defin i t ion 2.7 A reactive automaton is input-complete iff it can react to any in-
coming input event, up to the fact that the process can itself partly build its own
environment, by raising signals. Formally:

E
VE0 saturated E s BE, (p ,), E T E o

One should note that input-determinism does no t imply the uniqueness of such E in the
definition of input-completeness (different solutions may not be mutually compatible),
Uniquenes will be gained from additional causality requirements later.

2 .3 S y n t a x o f ESTEREL as a P r o c e s s A l g e b r a

Esterel is a programming language designed for structured modeling of reactive sys-
tems (or sequential machines), as described in the previous section. Reactive systems
are open systems, with successive event reactions taking place in (discrete) instants of
time. The main novel features of Esterel are: explicit signM handling (raising/testing);
explicit parallelism for modular decomposition; explicit atomicity defining successive
(logical discrete) instants; internal cooperation by local signaling; priority handling by
watchdog constraints (again on the signals themselves). Therefore Esterel turns the
concept of signals, central to the model, into its main structuring paradigm for pro-
gramming. Apart from these novel features, Esterel contains more classical procedural
constructs, sequential composition and loops. General recursion is disallowed to guar-
antee the finite state model property. We left out the t r a p / e x i t and value-passing
mechanisms of the full language.

The syntax of the Esterel algebra is the following:

P = s top [noth ing I emit S [P H P [P;P t.present S then P e l s e P end [(P)

I do P watching S I s igna l S in P end I loop P end I P[S/S]

445

where S figures a syntactic class of mere signal names, to be instantiated in .A..
Formal semantics is provided below. We give now some informal concerns that led

to its design. First of all, sequential composition is no t an atomicity operator; a module
can proceed in sequence inside the same instant. In Esterel jargon it is said that semi-
colon is infinitely fast. This assumption corresponds in hardware circuits to the fact
that, at this logical-gate level of description, the output(s) of a gate is synchronous
with its input(s), and can be "instantly" wired to other gates. Given this, each module
is possibly endowed with quite complex behaviours in a single atomic step, raising and
testing several signals in causal fashion. An informal reaction description may start like:
provided signal I occurs, then test signal J, and if J is here then emit 0 in answer,
else if K Of course signals may also be tested independently, if in parallel. As a
limitation to this interpretation, it must discard ill-caused modules, in which a signal
emission would result from its own presence value. This corresponds to races in circuits.

The s top construct implements atomicity. A module, or better said all its paral-
lel branches, will maximally progress in sequence until next s top points, providing a
common end-of-reaction. The do/watching construct implements priority preemption:
the body is executed at successive instants until the guarding signal occurs, killing the
body. For technical reasons this preemption is not active at the very same instant when
control reaches this (sub)term.

2.4 I l l - c a u s e d p r o c e s s e s

As already mentioned, internal signal chatters may cause ill-caused situations. We de-
scribe below three generic pathological examples, which must be eliminated as causally
incorrect. This calls for the introduction of an additional dependence relation in between
signals, which must be kept acyclic as a strict partial order.

s i g n a l S i n (presen t S then emit S e l s e emit a) This process has two external
behaviours: @ and a!, depending on non-causal choices about S below the signal
declaration. It is therefore not input-deterministic;

s i g n a l S in (presen t S then noth ing e l se emit S) This process has no external
behaviour, as S is emitted iff it is not here! It is therefore not input-complete;

signal S in signal T in (present S else emit TI~ present T else emit S)

One cannot find here any notion of smaller or greater fixpoint solution, due to
possible reaction to signal absence.

Events and dependencies could be represented in a single, partially commutative
structure. We prefer our interpretation using separate events~dependence relations ob-
jects since the dependence flow relation is not based on signals names, but occurrences
of them (that is, the dependence may vary from transitions to transitions). Also, suffi-
cient criteria for uniform causal correctness are known at static semantic level, which
solve in practice the causality problem (by approximation) at a different level. We shall
not enter details here.

In the sequel we let R be a binary relation on signals, and R + its non-reflexive tran-
sitive closure. Only a signal emitted as a consequence of its own testing will introduce
reflexive couples in R +, breaking the partial strict order property.

2 .5 S O S b e h a v i o u r a l s e m a n t i c s o f ESTEREL as a P r o c e s s A l g e b r a

We let S, T, . . . be variables ranging over signal names in ~4.. We let P, Q , . . . be variables
ranging over programs (syntaxic states), and E, El , E~ range over events. The sets I,

446

J and O always refer implicitly to an event E, possibly with matching subscripts:
E , R

The deduction rules will "prove" behaviours of the shape P , Q in a natural
deduction style.

We now proceed with the semantic rules for each language construct.

07.0#.0~, o
stop ~ nothing

0?.0#.{_exit}!, 0
nothing , nothing

{s}?.0#.{s, _e=~t}!, 0
emit S

P

P

nothing

E , R
i p ' , _ e x i t r
E , R

P ; Q - , P';Q

E1 , R1 E2 , R2
P', Q , Q', _exit 6 01 , E1 T E2 , 02 fq I1 = 0

(El \ {_exit}).E2 , (n l U R2 U ((I1 U J1) x 02) +)
P;Q -

,Q'

(I)

(2)

(3)

(4)

(~)

E1 , R1 E2 , R2
P * P ' , Q , Q', E11"E2

E,.E2 , (R1 U R2) +
PHQ ' P'IIQ'

E , R
P , P ' , S • J #

(I u {s})?.g#.o! , (n u ({s} x o)) + (7)
present S then P else Q end) P'

E,R
Q) Q', s r

I?.(J U {S})#.O! , (R U ({S} x O)) + (8)
present S then P else Q end) Q'

E,R
P , P', ($61?~S60!), -~R+(S,S) (9)

(6)

E\{S}, R \ ({ S } x , 4 U , 4 x { S })
signal S in P

E , R
P ~ P', _ e x i t r

E , R
loop P end , P';ioop P end

E, R
p ,~ p'

signal S in P'

E , R

(10)

(11)

do Pwatch ingS present S thennothing else do P' watching S

The form of rule 9 is sufficient because all operators maintain coherency of events,
implying already that (S 6 J #) =~ -~(S 6 O!). Rules 10 and 11 only perform unfolding,
in a tail-recursion way that respects rationality, and thus finite state representation�9
The loop construct assumes its body not to terminate in its initial reaction, to avoid
unguardedness�9 The watching construct does not become active at the instant the
instruction gets control�9

447

The previous semantics associates a (finite) reactive automaton P with every pro-
cess term P.

D e f i n i t i o n 2.8 An ESTEREL process is well-caused i f for all deduction of a global
transition in the reactive automaton, the causal relation R + remains acyclic at all
nodes o / the deduction tree.

This definition in essence asks for R to remain a strict part ial order for all subterms of
a given precess, except for those which are never used in deductions (dead code).

P r o p o s i t i o n 2.1 Let P be a well-caused ESTEREL process and P its associated te-
E

active automaton. Then Vp state of P, VEo saturated input event , 3E unique, p ---*
and E T Eo. Then of course P is in particular input-complete and input-deterministic.

P r o o f (s k e t c h) By structural case analysis. The proof uses the following lemma

L e m m a 2.1 Let (E , R) , (E ' , R') label transitions outgoing from the same state in P.
Suppose 3s E A , E = s # . (S \ {s}), S ' = s?.s! .(S' \ {s}) and (S \ {s}) T (S ' \ {s}).
Then either s is a minimal point in both R and R', or R' has a cycle on s

The lemma allows to settle the problem of input-determinism for the s i g n a l dec-
laration operator. Other cases of interest are the p r e s e n t test operator, where it is
proved that to refute input-completeness in the global automaton, one must run into
a cycle in the dependence because of the phenomenon encountered in the previous
counterexamples.

3 Compositionality of reductions

3.1 G e n e r a l f r a m e w o r k

We now introduce 3 distinct types of reductions/ transformations on reactive automata,
and study the corresponding compositionality properties of the language constructs.
We take here the word compositionality in a broad sense: our reductions will in general
include parameters, and these will adapt from global processes to subterms. In fact
the study of compositionality will largely amount to the characterisation of parame-
ter transformations which allow "good" subautomata reductions prior to composition.
These transformations may also rely on static semantics information gathered from the
subterms themselves (typically, their external signal interface). A formal definition of
opt imal i ty of reductions in general is out of scope. Instead we will argue in each case.

While compositionality will indicate where reductions may take place to simplify
subsystems before combining them, there is a general trade-off between the expected
gain and the time spent in the reduction phase. In general the parallel constructs are
the most critical syntaxic locations where prior simplification is helpful, while other
operators will only pass transformed parameters down the syntax tree. We will not
s tudy further such strategies.

We now introduce our three classes of reductions:

b e h a v i o u r a b s t r a c t i o n identifying similar (sets of sequences of) behaviours, for in-
stance by hiding signals. In this paper we shall only deal with this la t ter special
case. The parameters are thus sets of signals (to retain visible). Different choices
of visible signals will provide different partial views of a system.

448

s t a t e m i n i m i s a t i o n according to behavioural equivalences, or bisimulations [6]. This
reduction does not involve parameters.

b e h a v i o u r f i l t e r ing constraining (sequences of) behaviours according to some en-
vironment, itself described as a finite state structure. Here parameters are quite
complex, consisting of au tomata with logical event acceptors as labels.

3 .2 H i d i n g a n d C o m p o s i t i o n a l i t y

Let V be a set of visible signals, and Hv the transformation function which erases
signals not in V from transition events. Obviously Hv may decrease the number of
transitions by merging these which only differ on invisible signals. I t can also loose
determinism, and keeps the number of states unchanged.

The basic compositionality problem with this transformation is tha t a signal de-
clared hidden could in general be tested several t imes in the deduction tree of a given
transition. Identical choices are imperat ive then, so the signal should be reintroduced
as visible (but only in the necessary scope).

A signal is called free when occurring outside the scope of a local declaration signal
S in .We note Ep (respectively Op) the sets of free signals occurring in a p r e s e n t S
or watching S subterm of P(respectively in an emit S).

We let Corn(P, Q) =--deI ((Zp O On) N ZQ) U ((IQ U OQ) A Zp). This auxiliary func-
tion provides the list of signals whose presence value is shared by P and Q.

P r o p o s i t i o n 3 . 1

Hv(stop)
Hv (nothing)
Hv (emit S)

H v (l o o p P)
Hv(signal S in P)

Hv(PIIQ)

Hv(P;Q)
Hv(do P watching S)

Hv(present S then Pelse Q)

= s t o p

= no th ing

= no th ing if S ~ V
emit S otherwise

= loop Hv(P)
= Hv (s i ~ s in Hv(P))

= Hv (H~oCo~(~,q)(P)lIH~ocom(P,q)(Q))

= Hv (Hvuco,Kp, Q)(P);Hvuco,~(p,Q)(Q))
= do Hv(P) watching S i /S ~ (Zp UOp)

n v (do ~vo(s) (P) watching S) othe.~ise
= p r e s e n t S then Hv(P)else Hv(Q)

ils ~ (zp uop uzQ uoq)
Hv (present S then Hvu{S } (P)else Hvu{S } (q))
otherwise.

According to these identities, one may choose to descend some hidings down the syntax
tree. I t may come as a surprise tha t s i g n a l S construct does not add S to V, but this
shall in general be dealt with by nested parallel constructs. A related problem lies in
the "best binary" parallel division of n subterms in parallel, which we shall ignore in
this paper.

449

3.3 Symbolic Bisimulation and Compositionality

Plain strong bisimulation on automata is simply the coarsest equivalence in between
states that respects event abilities. I t is now a well-established notion, see e.g. [6].
Plain strong bisimulation is trivially a congruence w.r.t, all ESTEREL operators, as
their semantics is given in a purely behavioural format. Also it permutes with the
hiding reduction defined above, and is compatible with non-determinism.

In reactive automata, an event may represent several possible reactions due to
unsaturated input signals. This makes room for a new symbolic (strong) bisimulation,
when different combination of events would actually build up plain bisimulation on
saturated reactions.

As an example, consider the very simple reactive automaton
P = ({so, Sl }, so, {i, o}, T = {(so, i?.o!, 81), (so, i#.o!, Sl)}).
Its output and resulting state are the same no mat ter which transit ion is taken, no
mat te r which presence value the signal i may take. We want to identify P with the
simpler
Q = ({sO,Sl} ,So,{ i ,o} ,T = {(s0, o!, 81)}).
About the dependence relation here: any potential dependence (i, o) should be dis-
carded. As Q is equally determisitic or complete as P , this is harmless, and can only
safely allow more processes to be causally "correct".

This example can be generalized to all cases where transitions have labeling events
with identical outputs and symbolic bisimilar resulting states (not just identical). Then
the input events can be grouped in sums of products, and more generally into proposi-
tional formulas (justifying the introduction of logical reactive automata). The equality
problem for propositional boolean functions have been of course extensively studied,
either recently through Binary Decision Diagrams's canonical forms, or in the past
with Prime Implicants theory.

N o t a t i o n 3.1 Let B be a (symmetric) binary relation on states. We note IEB,o,po
the function S ~ :Ts defined by

I? .J#.O!
IEB,O,po(P) = { I ? . J # / 3p', B(po,p') and p ~ p'}

D e f i n i t i o n 3.1 Let A = (S, s i ~ , EvA, T) be a reactive automaton. A (symmetric)
binary relation B C S x S is a symbolic bisimulation iff:

v(p,q) e B, VO c Ao. , ,Vr e S, Z , ? .g ,# = Ik ?.Jk #
Ik ?.Jk~EIEB,O,r(p) lk ?.Jk #EIEB,O,r(q)

Proposition 3.2 (Strong) Symbolic Bisimulation is a congruence with respect to all
operators of ESTEREL on well-caused processes.

Logical reactive automata have canonical form w.r.t, symbolic bisimulation up to
equivalence of boolean formula, and the corresponding minimisation is compositional
w.r.t, all operators of ESTEREL (on well-caused processes).

As already mentioned, BDDs provide a framework where equivalence of boolean for-
mulae becomes identity. The situation is more complex for simple reactive automata ,
since there is no unique minimal "sum of products" form for a boolean formula.

450

3 .4 C o n t e x t F i l t e r i n g a n d C o m p o s i t i o n a l i t y

Often in practice one is only interested to the behaviour of a given reactive system
according to a supposed context, representing all possible reaction offers from a sup-
posed environment. Such features are part ial ly provided in ESTER~L or LUSTRE [2] at
programming level.

Also, when put t ing two reactive processes in parallel, it can be highly beneficial
to first create each only in a context compatible with the other, to limit the size of
subcomponents. This involves a creative step, where one guesses context properties of
sibling processes. Nevertheless our approach will formally validate these assumptions
in a second phase.

D i s t r i b u t i n g g l o b a l c o n t e x t s Context-dependent bisimulations [4] introduced a
notion of relativity of behaviours in a process algebraic setting. Similarly, so-called
Don'tCare sets provided relativity of behaviours, this t ime for hardware circuit descrip-
tions. Inspiring from these two sources, we introduce context filterin 9 as a reduction of
behaviours.

Definit ion 3.2 A reactive context C is an automaton (S, sinit,.A, T) where the transi-
tion labels are (satisfiable) propositional formulae based on the basic predicates S?, S E
.Ai,~ and S!, S E .Ao~t

Thus, the only difference with logical reactive au tomata is the symmetric t reatment
of output and input signals. In part icular a context may impose that a signal cannot
be emitted in a given reaction. We do not require a reactive context in general to be
input-complete or input-deterministic.

W e now proceed to define the F c filtering transformation.

Defini t ion 3.3 Let C be a context and P a logical reactive automaton. The filtering
of P by C (noted F c (P)) is the automaton defined by the SOS rule:

(f,O~) P' ~ C' P , C (f A g/O) satisfiable

(f ^ g/o, 09
Fc(P) , Fc, (.P')

where g /O is the propositional formula in which all basic predicates S! have been re.
placed by: t r u e if S E 0 , f a l s e otherwise.

Notice that while filtering may restrict transitions and reachable states, it constructs
an automaton based on the cartesian product of the process with the context. The
definition could be carried to simple reactive au tomata by expanding the resulting
labels into sums of products, then sums into several transitions.

Our compositionality concern now is to distr ibute C along the structure of the
process. Due to the complexity of the parameters here (operational contexts), we shall
only show how a context C cart be distr ibuted from a parallel process to a context
L e f t (C) for its left subcomponent (Ri9ht case is symmetric). The transformation uses
static information on the right components (its output sort, noted Onight).

We call a basic predicate in positive position in a propositional formula if it appears
inside an even number of negations.

451

D e f i n i t i o n 3 .4
Le f t (C) = (S, si,,t, A, T')

where T' is deduced from T by replacing in each labeling formula all basic predicates in
ORight in positive position by t rue .

In essence, our definition consists in weakening the demand for outputs, to those which
may not be left to the other side to emit.

We briefly sketch the transformation for other operators. Distributing contexts
alongside sequential products is hard somehow: the head process should live with the
same context, while the tail processes should respect any postfix part of it (making any
context state potentially initial). Positive outputs are dealt with in the same fashion as
for parallel construct. The presen t test operator selects parts of the context according
to compatibiliy of the initial transitions. The watching operator "cuts" the context
after non-initial transitions assuming presence of the signal.

L o c a l c o n t e x t s As previously mentioned, providing "local" contexts for subcompo-
nents in parallel can be very efficient in cutting down complexity (an illustration for
the Bus arbiter example described below is provided in figure 4). But validity of these
"creative" local assumptions must then be checked

A general way to check this validity, proposed by Larsen, is to keep track of -
only- these transitions which cross from the "allowed" part to the "inaccessible" part
of the filtered reactive automaton. These transitions are recorded without their target
states (and further behaviours). The validity check consists in verifying that no such
transitions is then used as part of a filtered global behaviour.

Formally, we complete the specification of Fc with another rule.

D e f i n i t i o n 3.5 Let C be a context and note R e f e (for "refused by C") be the formula

-~V gi, over all gi such that C
state. Then

(f ,O!)
P

gi
. Let Error be a new distinguished "syntactic"

P' (f A R e f c / O) satisfiable
(f / x R e f c / O , 0!)

Fc(P) > Error

Checking for presence of constant Error in the global system will then indicate inap-
propriate local context assumptions.

In the deterministic, causally correct reactive case an even simpler solution exists: if
a behaviour which could effectively be part of a global behaviour is improperly filtered
at a subsystem level, then no other global behaviour can make up for the loss, so that
the global reactive automaton becomes input-incomplete. This provides a simple test,
to be performed only once, for the validity of local filter applications. Of course the
determinacy requirements implies that this improved method cannot be combined with
hiding for instance.

3 .5 A B u s A r b i t e r e x a m p l e

" G a t e - L e v e l " d e s c r i p t i o n The purpose of this synchronous circuit is to select a
single output AckOuti amongst possibly several Request lnj inputs received from n
users. It chooses basically the one of lowest index, but ensures fairness through use of a

452

token ring: the owner of the ring gets priority over the regular previous selection system,
which it must therefore disallow (or "override"). The circuit "Gate-Lever' description is
provided in figures 1 (for the basic component) and 2 for the ring, here of 4 components
(n = 4). The 0ve r r i d e (In / 0u t) wire design instantly propagates down the cells and,
in the end, aborts the GraatIn signals through an auxiliary S i g a a l I n v e r t e r module.
Another auxiliary I n i t module provides the seminal Token.

Overddeln TokenOut

Tokenln

errideOut

~ GrantOut

AckOut

Fig. 1. The basic element

The programs in figure 3 provides a~ ESTEREL encoding of the description. We
shall not carry the equivalence proof here, which would require recalling the formal
definition of sequential machine interpretation of circuits. We added derived constructs
to ESTEREL for sake of concision:
halt ~ loop stop end,
do P watching immediate S -- present S then nothing else do P watching S,
await [immediate] S----do halt watching [immediate] S,

every S do P -- await S; loop (do (P;halt) watching S).

Also, the keyword run introduces non-recursive module instantiation, possibly involving
alphabetic renaming.

4 Conclusions

We presented a compositionM semantics of ESTEREL and studied its combination with
several transformation and reductions operations on labeled transition systems, allow-
ing the same verificational approach on reactive systems as we knew worked well on
"classical" CCS-like process algebras. We obtained this through a structure of be-
haviours taking signal absence into account. This work could be compared with com-
positional semantics of ARGOS [5], a formalism close to STATECHARTS. Our approach
allows non-determinism in some constructions.

The structural syntax of ESTEREL allows to state (a~d solve) the problem of com-
positional reduction, and thus to deal with state explosion in a way orthogonal to sym-
bolic model-checking techniques. These symbolic structures (BDDs) could still serve to

453

RequestIn4

Requestln3

Requestln2

Rcquesflnl

~~~n TokenOut Ovcrri~GramOut ~AckOut4 
Cell AckOut 

T•kenln ('h/errideOtl! ~ n t l n  

Y l - - y R ~ q ~ ' m '  ~ .  . ,,* 

y I-ys~q~,.. Cell . . ., AckOut ~ - ~  i;kOutl 

F i g .  2. The Token ring network 

implement event labels in processes and contexts, and support symbolic bisimulation 
checking. 

Finally we should stress that during our early experiments the local filterings 
proved perhaps the most efficient technique for cutting down complexity, while not 
automatically sound. There we started viewing our approach as a useful user-guided 
proof-assistant, with human creativity providing extra assumptions (on local signals) 
to speed up construction and cut down space requirements, while the system still per- 
forms quite fancy semantic automatic reductions (such as bisimulation minimisation 
or signals hiding abstraction). 

References  

1. 

2. 

3. 
4. 

5. 

6. R. Milner. 

G. Berry and G. Gonthier. The Esterel synchronous programming language: design, 
semantics, implementation. Science of Computer Programming, 1992. 
N. Halbwachs, F. Lagnier, and C. Ratel. An experience in proving regular networks 
of processes by modular model checking. Acta Informatica, 1992. 
D. Harel. Statecharts: A visual approach to complex systems. SCP, 1987. 
K. Larsen. Context-dependent Bisimulation between Processes. PhD thesis, Edin- 
burgh University, 1986. 
F. Maxaninchi. Operational and Compositional Semantics of Synchronous Automa- 
ton Generation. In CONCUR'Y2, volume LNCS 630, 1992. 

Communication and Concurrency. Prentice Hall, 1989. 



454 

module Cell: 
input RequestIn, GrantIn, TokenIn, OverrideIn; 
output GrantOut, TokenOut, AckOut, OverrideOut; 
every immediate GrantIn do 

present RequestIn then emit AckOut else emit GrantOut end 
end 
11 
loop 

await immediate TokenIn; 
present RequestIn then emit AckOut; emit OverrideOut end; 
await t i c k ;  emit TokenOut 

end 
II 
every immediate Overr ideIn do emit OverrideOut end 

module Init: 
output  Token; 
emit Token 

module SignalInverser: 
input Override; 
output Grant; 
loop 

present Override else emit Grant end; 
await tick 

end. 
module Arb i te r4 :  
input RequostInl, RequestIn2, RequestIn3, Requestln4; 
output  AckOutl, AckOut2, lckOut3, AckOut4; 
signal G1, G2, G3, G4, 01, 02, 03, 04, T1, T2, T3, T4, Gnull, Onull in 

run Init[siEnal T1/Token] 
]I run SignalInverser[signal Of/Override, G1/Grant] 
II run Cell[signal RequestInl/RequestIn, AckOutl/AckOut, 

G1/GrantIn, G2/GrantOut, T1/TokenIn, T2/TokenOut, 
01/OverrideOut, 02/OverrideIn] 

[i run Cell[signal RequestIn2/RequestIn, AckOut2/AckOut, 
G2/GrantIn, G3/GrantOut, T2/TokenIn, T3/TokenOut, 
02/OverrideOut, 03/OverrideIn] 

[[ run Cell[signal RequestIn3/RequestIn, AckOut3/AckOut, 
G3/GrantIn, G4/GrantOut, T3/TokenIn, T4/TokenOut, 
03/OverrideOut, 04/OverrideIn] 

[I run Cell[signal RequestIn4/RequestIn, AckOut4/AckOut, 
G4/GrantIn, Gnull/GrantOut, T4/TokenIn, T1/TokenOut, 
04/OverrideOut, Onull/OverrideIn] 

end. 

Fig.  3. Elementary modules and 4-cells network. 


