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Abstract. This paper presents a new formalism and a new algorithm for verifying 
timed circuits. The formalism, called orbital nets, allows hierarchical verification 
based on a behavioral semantics of timed trace theory. We present improvements to 
a geometric timing algorithm that take advantage of concurrency by using partial 
orders to reduce the time and space requirements of verification. This algorithm 
has been fully automated and incorporated into a design system for timed circuits, 
and experimental results demonstrate that this verification algorithm is practical 
for realistic examples. 

1 Introduction 

Timing considerations are critical in circuit design: In the design of timed circuits, 
timing information is taken into account resulting in simpler circuits than their speed- 
independent counterparts in which gate delays are assumed to be unbounded [ 1 ]. Timing 
information must also be considered for designs with a mixed synchronous/asynchronous 
environment. Finally, even in speed-independent circuit design, timing must be consid- 
ered when verifying the isochronicfork and atomic gate assumptions [2] once the circuit 
is laid out and delay parameters can be estimated. 

Timed circuit verification is difficult both because circuit elements and circuit com- 
munication must be accurately modeled, and because timing considerations introduce 
another exponential factor of complexity. To address these problems, we start with 
a formalism of synchronized finite-state agents, modeled by labeled safe Petri nets, 
with structural constructions for receptiveness and failures. To this formalism, we add 
timing such that structural constructions on nets correspond to behavioral operations 
from timed trace theory. Finally, we introduce a new verification algorithm that allows 
efficient exploration of the entire timed state space. 

Untimed trace theory for circuit verification originated with Rem, Snepscheut, and 
Udding [3] and was extended by Dill [4]; we provide structural constructions and syn- 
tactic shorthands for labeled safe Petri nets that correspond to the behavioral semantics 
operations. Burch [5] extended trace theory semantics to timed circuits; we extend this 
work with an operational formalism that allows timing in the specification, and thus 
hierarchical timed verification. 
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Fig. 1. (a) A fast NAND gate with inputs a and 13 and output c, (b) a delay buffer with input c 
and output d, and (c) with timing requirements annotated b for behavior and c for constraint. 

Dill [6], Lewis [7], and Berthomieu and Diaz [8] originated geometric state space 
exploration, and it has become an active area of research [9, 10, 11]. We improve these 
techniques for systems with concurrency using partial orders and apply them to circuit 
verification. Recent work by Yoneda et. al. [12] also presented efficient verification 
through partial order considerations. Our work differs in that our formalism includes 
notions of specification, circuit composition, and receptiveness which enable us to 
perform efficient verification on nontrivial timed circuit examples; to our knowledge, 
neither timed automata nor Time Petri nets have been used in this fashion. Finally, our 
verification procedure computes a preorder conformance relation, allowing hierarchical 
verification. 

2 Orbital  Nets 

In this section, we describe orbital nets and show how timed trace theory can be used 
as a behavioral semantics for verification. For brevity, we assume the reader is familiar 
with Petri nets [13] and with trace theory [4]. 

Orbital nets are based on labeled safe Petri nets extended with automatic net con- 
structions and syntactic shorthands for composition and receptiveness [15]. The net 
constructions allow us to retain relatively straightforward operational semantics, while 
the syntactic shorthands allow us to compose the nets without an exponential blow- 
up in net size. Orbital nets also allow us to easily mix behavior and environmental 
requirements even at the gate model level. 

For a large class of speed-independent and delay-insensitive designs, any hazard is 
potentially fatal [ 14], so simple delay models that are easy to integrate into gate models 
suffice. With the more complex delay models required for modeling real-time circuit 
delay, such integration is no longer easy or straightforward. Labeling each transition in 
an orbital net with a (possibly empty) set of actions remedies this difficulty by separating 
the modeling of the function of a gate from its delay behavior. As an example, the net 
corresponding to an infinitely fast NAND gate is given in figure l(a). 
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2.1 Behavioral Semantics 

For behavioral semantics, we adopt trace theory as defined by Dill [4]. Using a frame- 
work of Petri nets with synchronization and receptiveness, implementing verification of 
trace structure conformance is straightforward. Determining whether an implementation 
conforms to a specification is reduced to determining if any of a specific set of failure 
transitions can be enabled. 

Dill's trace theory is based on sequences of actions, but our nets allow transitions to be 
labeled with sets of actions. A trace theory based on sequences of sets of actions yields a 
conformance relation that distinguishes, for instance, interleaved and concurrent actions. 
In addition, composing a net that uses interleaving on a pair of actions with another net 
that has those same actions labeling one transition may lead to an unintended deadlock, 
We do not attempt to resolve the complexities that arise in use of such a trace theory. 
Instead, we define conservative structural conditions on the use of labels consisting of 
sets of actions that allow us to use Dill's trace theory. For instance, we cannot perform 
a trace theory analysis of the fast NAND gate given above, but when we compose that 
model with the simple buffer given in figure 1 (b) and hide the internal wire, the resulting 
net is conformation equivalent to the model Dill presents in [4]. 

2.2 Timing Requirements 

Timing is associated with an orbital net place as a timing requirement consisting of a 
lower bound, an upper bound, and a type (min, max, type). The lower bound is a non- 
negative integer and the upper bound is an integer greater than or equal to the lower 
bound, or c~. Since real values can be expressed as rationals within any required accu- 
racy, restricting the bounds of timing requirements to be integers does not decrease the 
expressiveness of orbital nets. Since there are only a finite number of timing parameters, 
if any are rational, we can multiply all of them by the least common denominator. 

There are two types of timing requirements: constraint and behavior. If any transi- 
tions in the postset of a place are labeled with an input action, then the timing requirement 
is of type constraint, otherwise it is of type behavior. Informally, the distinction between 
behavior and constraint timing requirements follows precisely the difference between 
input and output actions. The net for the untimed buffer shown in figure l(b) only 
describes the successful traces, which are all the prefixes of ( c - ,  d- ,  c+, d+)*. The 
receptiveness construction adds failure traces caused by an input event that deviates 
from this pattern. The net generates only successful output sequences, but it accepts 
all input sequences, dividing them into success and failure traces. Consider now the 
buffer pictured in figure l(c), in which our buffer model has been extended with timing 
requirements. The behavioral place labeled [4, 10] indicates that an output will occur 
between 4 and 10 time units after the preceding input occurs; no traces violating this 
requirement will be generated by the net. The constraint places labeled [2, (x)] indicate 
that, while the net will accept any timing between an output event and the succeeding 
input event, only those that have a delay of 2 time units or more are successful traces. 

The delay model just described is an extremely simple delay model that suffices 
for many types of circuits. More complex delay models can and have been constructed, 
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modeling more accurately the behavior of a gate under hazard conditions; for these, 
separation of gate models into combinational function and delay behavior is essential. 

Each transition can have at most one behavior place in its preset. The intent is that 
each behavior place represents a single nondeterministic choice of delay that cannot 
be affected by external state or other behavior places. Since behavior places precede 
outputs and each wire can be an output for only a single model, circuit composition 
satisfies this naturally if each component model does. In general, this restriction does 
not limit expressiveness; other timing semantics can be simulated with appropriate net 
constructions. 

2.3 Timed Operational Semantics 

Each token that resides in a constraint or behavior place has a time-valued age parameter 
which advances with time and describes how long the token has resided in the place. The 
function max-advance on a marking is defined as the minimum value of (max - age) 
for all marked behavior places, or oo if there are no marked behavior places. This upper 
limit on time advancement maintains the ages of all behavior place tokens below the 
maximum allowed by their range. Time is advanced by increasing the ages of all tokens 
in timed places by precisely the same amount. 

A transition is untimed-enabled if all places in its preset have tokens. A transition 
is timed-enabled if it is untimed-enabled and if any input place with a behavior timing 
requirement has a token with age > min. Transition firings are assumed to be instan- 
taneous; any number of transitions can fire without time advancing. Before firing a 
transition, the constraint places in the entire net are checked, and if any contains a token 
with age > max, this firing is marked as a failure. The tokens in the places in the preset 
of the fired transition are removed. The ages of the tokens removed from constraint 
places are checked, and if age < min, this firing is marked as a failure. Tokens are then 
put into the places in the postset of the fired transition, and all tokens put into timed 
places are assigned an age of zero. After the firing of a transition, every marked behavior 
place must have a transition in its postset that is untimed-enabled in the new state; if 
this condition is not satisfied, the firing is a failure. This requirement ensures that every 
token in a behavior place is consumable in all states in which its timing conditions are 
met, and thus the age at which the token is consumed cannot be controlled by external 
state. 

With these semantics, untimed constructions for receptiveness and synchronization 
apply unchanged to the timed case. In addition, the trace theory operation of mirroring 
is also preserved, allowing hierarchical verification. 

To discuss the verification procedure, we define a timed firing sequence to be a 
sequence of pairs of transition firings and time values. For simplicity, we shall assume the 
time value represents a non-negative duration since the last transition firing. Executing 
a timed firing sequence c~ on an orbital net results in the timed state fire(a). The set 
of legal firing sequences is defined recursively as follows. The empty sequence is a 
legal firing sequence. For a legal firing sequence c~ and for every value of r such that 
v <__ max-advance(fire(c~)), then c~, (r 7-) is a legal firing sequence, where r represents 
an 'empty'  firing. In addition, if transition t is timed-enabled, then c~, (t, 0) is also a 
legal firing sequence. 
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We define an untimed state to be an orbital net marking ignoring the ages of the 
tokens. The function untime returns an untimed firing sequence from a timed firing 
sequence by stripping the timing and removing any ~b firings. The reachable state space 
is the range of the function fire over the legal firing sequences. 

3 Discrete and Unit-Cube Time Verification 

The basic idea behind finite-state verification is that, if the reachable state space is finite 
or has a finite representation, only a finite subset of the firing sequences needs to be 
considered to compute the set of reachable states. In our timing semantics, the ages of 
tokens can be real values, so the state space is infinite. In order to perform finite-state 
verification, we must either restrict the set of values that these ages can attain, or group 
the timed states into a finite number of equivalence classes. Discrete time verification 
uses the first approach, while Alur's unit-cube technique uses the second. (Infinite upper 
bounds are easily handled; we shall omit the details here [15].) 

The first approach is justified by the proof that considering only integer event times 
gives a full characterization of the continuous time behavior of an orbital net [15]. This 
proof is similar to one given by Henzinger, et. al. in [16] for timed transition systems. 
With this result and the operational semantics given above, finite-state verification 
techniques can now be employed. Indeed, this discrete time approach was taken by 
Burch for verifying timed circuits [5]. 

Let us assume the number of distinct untimed states in an orbital net is ISl. If  the 
maximum value of any timing requirement is k, and there are at most n timed tokens in 
any state (this value is trivially bounded by the size of our safe net), the size of the state 
space represented by discrete points, as in figure 2(a), is ISI (k + 1) ~ 

If  the equivalence between discrete and continuous time does not hold for a particular 
formalism, it is still possible to perform finite-state real-time verification, using Alur's 
unit-cube technique [17]. He considers equivalence classes of timed states with the 
same integral clock values and a particular linear ordering of the fractional values of the 
clocks. For the two-dimensional case, the equivalence classes are pictured in figure 2(b); 
every point, line segment, and interior triangle is an equivalence class. The worst-case 
size of the state space for his method is asymptotically 

ISl i ~  i-~ 4 1 / k '  
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which is worse than the discrete time method by more than n! [15]. 
Both of these techniques, however, are of little more than theoretical interest, because 

the size of the state space increases exponentially with the maximum value of the timing 
requirements. In general, during verification, every possible integer firing time must be 
considered for every transition from each state. For a circuit with timing values accurate 
to two significant digits, with up to six independent concurrent pending events, the state 
space is easily in excess of 1012 states--well beyond the capabilities of most finite-state 
verification techniques. Our experimental results indicate that the number of discrete 
states can be astronomical. 

4 Geometric Timing Verification 

In this section, we discuss a known time verification technique, geometric timing, that 
usually performs well in practice, even though the worst-case performance is much 
worse than either the discrete or the unit cube approaches [6, 7, 8, 9, 10, 11]. 

4.1 Geometric Regions 

Rather than consider at each step a single discrete timed state, or a minimum equivalence 
class of timed states, the geometric timing method considers a large number of timed 
states in parallel. Specifically, convex geometric regions of timed states represented by 
upper and lower bounds on specific clock values and on the differences between pairs of 
specific clock values are used as the representation of the timed state space. Two sample 
regions are given in figure 2(c). The set of such constraints is usually represented by a 
matrix a, where the constraints on clocks {Cl ...c,~} are of the form ci - cj < aji. A 
fictitious clock co that is always exactly zero is introduced so that upper and lower limits 
on a particular clock can be represented in the same form [6]. 

For any convex region that can be represented by such a matrix, there are many 
matrices that represent the same convex region. The process of canonicalization [6] 
can be performed to yield a matrix such that every constraint is maximally tight; if the 
constraint system represented by the matrix has any solutions, then there is precisely one 
canonicalized matrix representing that region. This canonicalization can be performed 
with Floyd's algorithm, which runs in time O(n3). In general, since only incremental 
changes are made to the matrix during verification, specializations of Floyd's algorithm 
that run in time O(n 2) suffice [15]. 

4.2 Geometric Regions as Aggregates of Discrete Timed States 

Since integer-valued timed sequences accurately model the behavior of orbital nets, it 
is sufficient to show that verification with geometric regions considers precisely the 
same set of states that discrete verification does. This is accomplished by giving the 
correlation between each operation in discrete time verification and in geometric timing 
verification. We do not discuss the aspects of verification that do not consider time, since 
they are the same in both cases. For simplicity, we consider each geometric region as a 



474 

collection of discrete timed states that are handled in parallel. While such a perspective 
is not necessary, it may be conducive to an understanding of the method. 

The geometric region technique operates over an untimed firing sequence a,  calcu- 
lating directly the full set of timed states reachable from all timed firing sequences fl that 
satisfy untime(fl) = a. Thus, rather than separately considering every possible occur- 
rence time for a particular transition in c~ during verification, in one step the geometric 
region method considers all possible occurrence times. We describe how it works for a 
single transition occurrence, assuming it works for the predecessor sequence; the trivial 
base case and structural induction on sequences completes the proof for all sequences. 

With discrete time verification, determining whether a particular transition is timed- 
enabled entails comparing the token ages with known constants. With geometric regions, 
we determine the subset of the timed states in the region for which the particular 
transition is enabled. This can be performed by introducing the enabling conditions on 
the transition as additional constraints on the region and recanonicalizing. For orbital 
nets, these conditions describe a convex region in the appropriate form, and it is easy 
to show that the intersection of two such convex regions is a convex region of the same 
form. Canonicalization by definition does not reduce the set of timed states represented. 

After selecting an enabled transition, firing that transition involves removing some 
set of timed tokens and introducing new timed tokens. In the discrete case, removing 
timed tokens involves discarding their ages. With geometric regions, removing timed 
tokens involves projection of the system of constraints to eliminate a particular set of 
variables. Introducing new timed tokens in the discrete case sets the ages of these tokens 
to zero; in the geometric region case, we introduce a new set of variables equal to zero. 

After firing a transition, we allow time to advance; this corresponds to ~b firings. 
In the discrete case, advancing time involves adding some number t to all token ages. 
In the geometric case, advancing time involves extruding the geometric region in the 
cl = c2 = �9 �9 �9 = cn direction, subject to max-advance, which itself is a convex region. 

The other operations, such as checking for constraint place violations, involve simple 
inspections of the geometric region; since each inequality is maximally constrained, 
there exists some solution for which that inequality is an equation. 

4.3 Performance of Geometric Timing Verification 

Verification based on geometric regions can be very efficient. In particular, if a timed 
system does not exhibit much concurrency, our examples show that there is often very 
close to one geometric region for every untimed state. The circuit examples in the first 
part of table 1 illustrate this; for these examples, standard geometric timing runs very 
rapidly, even when the timing parameters are very large. 

On the other hand, some examples require an extreme number of geometric regions. 
The adverse example a d v 4 x 4  0 shown in figure 3, using standard geometric timing 
techniques, generates an incredible 219,977,777 distinct geometric regions. This is 
more than either the number of discrete timed states or unit-cube equivalence classes. 
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Ng.3. The adverse example advZlx40 with n = 4 and k = 40. 

5 Partial Order Timing Verification 

We improve this method for systems with concurrency using partial order timing. The 
major source of blow-up in the adverse example is the way the standard geometric 
timing algorithm calculates exactly the set of timed states reachable from a sequence of 
transition firings; the transition firings are linearly ordered, even if they are concurrent 
in the system being evaluated. That is, if two concurrent transitions start clocks, the 
constraints between the ages of the two clocks will reflect the linear order that the 
transitions were fired in the original sequence. In general, if there are n concurrent 
transitions that reset clocks visible in the resulting timed state, there are n! different 
sequences that need to be considered, each of which leads to a distinct geometric region. 
For this reason, it is important to distinguish the causal ordering of transitions from the 
non-causal ordering caused by the selection of a particular firing sequence. 

5.1 Concurrency, Causality, and Processes 

A process is an acyclic, choice-free net created from a Petri net and a firing sequence. 
The process reflects the causality and concurrency inherent in that firing sequence. 
Initially, it contains a single transition with places in its postset corresponding to each 
token in the initial marking. Transitions are added in the same order as they occur in 
the firing sequence. For each transition in the firing sequence, a correspondingly labeled 
transition is added to the process. A set of arcs into the transition are connected from 
the most recently added places in the process corresponding to places in the preset of 
the transition in the original Petri net. Finally, a new set of places corresponding to the 
places in the postset of the transition in the original net are added, and these places are 
connected to the new transition. The function process takes a sequence and returns the 
corresponding process. The resulting process for the firing of the sequence [a+, b+] in 
our adverse example is shown in figure 4. 

Every place and every transition in the created process, except the first, correspond 
to some place and some transition in the original net. Every place and every transition 
in the original net correspond to zero or more places and transitions in the process. A 
process explicitly represents the concurrency in a particular firing sequence. That is, a 
particular process corresponds to many different firing sequences that differ only in the 
interleavings of concurrent transitions; every such firing sequence fires the same set of 
transitions and leads to the same final untimed state. Thus, the process shown in figure 4 
corresponds both to the trace [a+, b+] and to the trace [b+, a+].  
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Fig. 4. One process from the adverse example. 

5.2 Verification with Partial Order Timing 

In general, for a process with simple timing constraints between pairs of transitions, 
we may calculate the minimum and maximum separation between all pairs of transi- 
tions in time O(rt 3) using Floyd's algorithm. If none of the places are timed, then the 
process is a partial order on the events. That is, an untimed place p introduces only 
the constraintfire-time(*p) < fire-time(p*). Because the constraint places do not af- 
fect the firing of transitions, such places introduce the same kind of causality relation. 
On the other hand, for each behavior place p in the resulting process with a timing 
requirement of (rain, max, behavior), two constraints are introduced. The first reflects 
the minimum separation,fire-time(ep) - f ire- t ime(pc)  < -min .  The second reflects the 
maximum separation, fire-time(pc) - f i re- t ime(ep)  < max. All constraints introduced 
in this fashion for a given process must be satisfied. 

Performing this operation on the process in figure 4 determines that a+  can follow 
the initial transition by between 1 and 40 time units, and b+ can also follow the initial 
transition by between 1 and 40 time units. The time separation between a+  and b+ must 
be between -39 and 39 time units, inclusive. 

From this information, the full set of geometric regions reachable with this process 
is calculated. Specifically, for two clocks ci and cj created by the firing Of transitions ti 
and tj,  the constraint on cj - ci, or entry aij in our constraint matrix, is the maximum 
separation from tj to ti. The minimum and maximum ages of the clocks are derived 
from the previous process in the same manner as for the geometric method. 

The partial order technique operates over an untimed firing sequence a, calculating 
directly the full set of timed states reachable from any timed firing sequence )3 such 
that process(untime()3)) = process(a).  Thus, rather than separately considering every 
interleaving of concurrent transitions, in one step the partial order method considers 
all possible interleavings. For untimed verification, different interleavings result in the 
same state. For timed verification, different interleavings usually result in different sets of 
timed states, with different future behavior, leading to a combinatorial explosion of timed 
regions for each untimed state. Representing, as a single constraint matrix, the union 
of all timed states reachable from all possible interleavings, therefore, dramatically 
reduces the size of the state space representation. In fact, the partial order method 
typically reduces the number of timed regions for each untimed state to a value close to 
one. 

Verification proceeds just as it does for the previous methods based on sequences, 
except that, for each sequence, the algorithm constructs the corresponding process. With 
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depth-first search, this is done incrementally. The algorithm also incrementally calculates 
a constraint matrix that stores the firing time relationship among the transitions. The 
algorithm then calculates the geometric region corresponding to this process by adding 
the upper and lower bounds on the clocks; after canonicalizing this matrix, it has 
produced the full set of reachable states for that process. 

Our process calculation can never introduce states that are not reachable by a se- 
quence, since for any timed state in the process, some ordering of the transitions in 
the process is a sequence that generates the same timed state. In addition, because the 
algorithm considers the firing of every transition enabled in every reachable geometric 
region, it visits all successors and thus the entire timed state graph. Therefore, the same 
set of reachable states is obtained using process-based region calculations as is obtained 
using sequence-based region calculations. 

5.3 Efficiency Considerations 

The number of transitions in the process is equal to the length of the firing sequence 
plus one, and it increases with the depth of our search. Calculating the minimum 
separations between the occurrence times in our process, even with our incremental 
O(n 2) approach, becomes prohibitively expensive as the firing sequence lengthens. In 
addition, the algorithm needs a constraint matrix for each step; this would require a 
tremendous amount of storage during depth-first search. 

To keep n bounded as the depth of our search increases, the algorithm determines 
what prefix, if any, of our process can safely be ignored. The algorithm can eliminate 
any transitions that no longer affect future calculations. In general, the algorithm can 
eliminate a variable from any set of equations or inequalities whenever it has produced 
the full set of equations or inequalities that use that variable. Since all constraints 
introduced through the firing of a transition are associated with places connecting the 
new transition to the old, once a transition in our process no longer has any places in its 
postset which do not have a transition in their postset, it is eliminated from our constraint 
matrix. Thus, our n is--at most--the number of tokens in the original net at any given 
time, plus one for the current transition. 

This technique has a more expensive transition firing computation, so for the simplest 
examples with little concurrency, it is slower; but, it dramatically reduces the number 
of interleavings considered and also the number of geometric regions for each untimed 
state when there are concurrent transitions. Because the number of geometric regions 
is typically small, a further optimization is possible. Rather than backtracking only 
when an identical geometric region is found, verification can backtrack whenever a new 
geometric region is a subset of a previously seen geometric region. Comparing two 
geometric regions for inclusion can be performed in O(n 2) time. 

6 Experimental  Results 

The verification procedure described in the previous section has been automated in the 
tool Orbits. This tool has been incorporated into the design system for timed circuits 
ATACS described in [1]. Experimental results are given in table 1. The left four columns 
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Table 1. Experimental results. Time values are given in seconds. An entry of time indicates 
that the verification did not complete within two hours, and an entry of s p a c e  indicates that the 
verification ran out of space before completing. 

Startup Net Untimed Discrete Geometric timing Partial order 
Examples time nodes states states regions time regions I time 

MMUopt 0.31 293 22 734 
MMUunopt 0.24 212 33 3245 
dram 1.16 1335 96 5697 
pipe 0.16 126 15 11657 
scsic~l 0.18 248 16 200 
scsil 12.67 15477 170 1247 
scsilBRK 14.35 15674 197 1481 
scsi2 10.31 11496 155 1029 
scsi2BRK 10.14 11372 159 1052 
sc~3BRK 12.67 14866 492 10319 
tsbm 2.84 4115 292 46212 
tsbmBRK2 0.78 730 392 1.33e7 
tsbmBRK4 0.68 782 312 1.14e7 

adv3x40 0.05 6 1 68921 
adv4x40 0.03 8 1 2.83e6 
adv50x40 0.27 100 1 4.36e80 
phil3 0.19 1491 144 27806 
phil4 0.22 197~ 1152 9.82e5 
phil5 0.25 245 9840 3.47e7 
seitz 0.41 355 344 2.92e13 
seitz2 0.55 624 4572 5.48e19 
kyy5 2.46 1484 5266 >le20 
kyyl5 1.97 1484 18357 >le20 

28 0.021 22 
43 0.04 33 

120 0.36 96 
18 0.01 15 
21 0.03 16 

294 3.49 170 
351 9.47 205 
186 6.69 159 
193 6.64 163 

1123 27.11 653 
965 2.65 443 

1789 3.60 550 
1047 2.71 476 

1.52e5] 164.99 11 
space 11 
space 1 

7581 0.77 188 I 
time 1541 
time 14039 

3234] 5.48i 416 
space 5820 
space 6083 
space 20250 

0.04 
0.06 
0.39 
0.02 
0.03 
3.69 

10.46 
6.81 
6.7( 

28.42 
2.58 
1.83 
1.95 

0.01 
0.01 

60.21 
0.3~ 
6.98 

159.4C 
1.22 

29.7~ 
56.74 

321.47 

indicate values that are the same for geometric and partial order timing. The startup time 
is the time required to parse the input and construct the appropriate orbital net. The 
number of  net nodes is the sum of  the places and transitions in the resulting orbital 
net. The third column gives the number of untimed states. The fourth column gives 
the number of  discrete states, after all timing parameters are divided by their greatest 
common divisor. The next four columns give the number of  geometric regions and the 
run time in seconds for verification using standard geometric timing and partial order 
timing, respectively. 

The first half of table 1 consists of  circuits created by ATACS taken from examples 
in [1] and [18]. These examples do not exhibit much concurrency, and the number of 
geometric regions created by the geometric region method is close to the number of  
untimed states. These circuits are composed of  typically less than a dozen complex 
gates, but some of  these gates have as many as ten inputs; it is these large gates that 
cause large orbital nets. 
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din ~ dout 

reqin I 
out 

Fig. 5. The Seitz queue element, a small timed circuit. 

The second half of the table consists of other circuits and systems that exhibit a high 
degree of concurrency. For example, s e i t z l  is pictured in Figure 5; s e i t z 2  is two 
connected copies of this circuit. The k y y  examples [19] have thirty-seven gates and 
timing parameters given to three significant digits. Where the examples ran out of time 
or space using the geometric method, often the verification was far from done. For the 
s e i t z 2  example, after one hour of CPU time, only 1,404 of the 4,572 untimed states 
have been seen, yet 473,202 distinct geometric regions have been encountered. One 
particular untimed state has 13,275 distinct geometric regions at this point. Partial order 
timing for this example finds the entire state space as 5,820 geometric regions in one 
half minute of CPU time. Examples were run on an HP9000/735 with 144 megabytes 
of memory using CScheme 7.3. 

7 Conclusion 

We have introduced orbital nets which extend safe Petri nets to provide an efficient for- 
malism for modeling timed circuit behavior. Discrete methods provide the best known 
worst-case complexity for timed verification, but generally fail in practice due to expo- 
nential blowup on the timing parameters. Geometric methods work well in practice, but 
fail for highly concurrent systems. Thus, we improve upon geometric methods using 
partial order timing. Our examples show that partial order timing can handle much larger 
examples than the standard geometric methods. 
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