
Automatic Verification of Timed Circuits

Tomas G. Rokicki* and Chris J. Myers**

Stanford University
Stanford, CA 94305

Abstract. This paper presents a new formalism and a new algorithm for verifying
timed circuits. The formalism, called orbital nets, allows hierarchical verification
based on a behavioral semantics of timed trace theory. We present improvements to
a geometric timing algorithm that take advantage of concurrency by using partial
orders to reduce the time and space requirements of verification. This algorithm
has been fully automated and incorporated into a design system for timed circuits,
and experimental results demonstrate that this verification algorithm is practical
for realistic examples.

1 Introduction

Timing considerations are critical in circuit design: In the design of timed circuits,
timing information is taken into account resulting in simpler circuits than their speed-
independent counterparts in which gate delays are assumed to be unbounded [1]. Timing
information must also be considered for designs with a mixed synchronous/asynchronous
environment. Finally, even in speed-independent circuit design, timing must be consid-
ered when verifying the isochronicfork and atomic gate assumptions [2] once the circuit
is laid out and delay parameters can be estimated.

Timed circuit verification is difficult both because circuit elements and circuit com-
munication must be accurately modeled, and because timing considerations introduce
another exponential factor of complexity. To address these problems, we start with
a formalism of synchronized finite-state agents, modeled by labeled safe Petri nets,
with structural constructions for receptiveness and failures. To this formalism, we add
timing such that structural constructions on nets correspond to behavioral operations
from timed trace theory. Finally, we introduce a new verification algorithm that allows
efficient exploration of the entire timed state space.

Untimed trace theory for circuit verification originated with Rem, Snepscheut, and
Udding [3] and was extended by Dill [4]; we provide structural constructions and syn-
tactic shorthands for labeled safe Petri nets that correspond to the behavioral semantics
operations. Burch [5] extended trace theory semantics to timed circuits; we extend this
work with an operational formalism that allows timing in the specification, and thus
hierarchical timed verification.

* Supported by a John and Fannie Hertz Fellowship and an ARCS fellowship. Currently at
Hewlett-Packard Laboratories, Palo Alto, CA 94306.

** Supported by an NSF Fellowship, ONR Grant no. N00014-89-J-3036, and research grants
from the Center for Integrated Systems, Stanford University and the Semiconductor Research
Corporation, Contract no. 93-DJ-205.

4 6 9

a-
b-,c+ -

b+
a+,c-

I-
(a)

[2,infJc [4,10]b

[4,10]b [2,inf]c

(b) (c)

Fig. 1. (a) A fast NAND gate with inputs a and 13 and output c, (b) a delay buffer with input c
and output d, and (c) with timing requirements annotated b for behavior and c for constraint.

Dill [6], Lewis [7], and Berthomieu and Diaz [8] originated geometric state space
exploration, and it has become an active area of research [9, 10, 11]. We improve these
techniques for systems with concurrency using partial orders and apply them to circuit
verification. Recent work by Yoneda et. al. [12] also presented efficient verification
through partial order considerations. Our work differs in that our formalism includes
notions of specification, circuit composition, and receptiveness which enable us to
perform efficient verification on nontrivial timed circuit examples; to our knowledge,
neither timed automata nor Time Petri nets have been used in this fashion. Finally, our
verification procedure computes a preorder conformance relation, allowing hierarchical
verification.

2 Orbital Nets

In this section, we describe orbital nets and show how timed trace theory can be used
as a behavioral semantics for verification. For brevity, we assume the reader is familiar
with Petri nets [13] and with trace theory [4].

Orbital nets are based on labeled safe Petri nets extended with automatic net con-
structions and syntactic shorthands for composition and receptiveness [15]. The net
constructions allow us to retain relatively straightforward operational semantics, while
the syntactic shorthands allow us to compose the nets without an exponential blow-
up in net size. Orbital nets also allow us to easily mix behavior and environmental
requirements even at the gate model level.

For a large class of speed-independent and delay-insensitive designs, any hazard is
potentially fatal [14], so simple delay models that are easy to integrate into gate models
suffice. With the more complex delay models required for modeling real-time circuit
delay, such integration is no longer easy or straightforward. Labeling each transition in
an orbital net with a (possibly empty) set of actions remedies this difficulty by separating
the modeling of the function of a gate from its delay behavior. As an example, the net
corresponding to an infinitely fast NAND gate is given in figure l(a).

470

2.1 Behavioral Semantics

For behavioral semantics, we adopt trace theory as defined by Dill [4]. Using a frame-
work of Petri nets with synchronization and receptiveness, implementing verification of
trace structure conformance is straightforward. Determining whether an implementation
conforms to a specification is reduced to determining if any of a specific set of failure
transitions can be enabled.

Dill's trace theory is based on sequences of actions, but our nets allow transitions to be
labeled with sets of actions. A trace theory based on sequences of sets of actions yields a
conformance relation that distinguishes, for instance, interleaved and concurrent actions.
In addition, composing a net that uses interleaving on a pair of actions with another net
that has those same actions labeling one transition may lead to an unintended deadlock,
We do not attempt to resolve the complexities that arise in use of such a trace theory.
Instead, we define conservative structural conditions on the use of labels consisting of
sets of actions that allow us to use Dill's trace theory. For instance, we cannot perform
a trace theory analysis of the fast NAND gate given above, but when we compose that
model with the simple buffer given in figure 1 (b) and hide the internal wire, the resulting
net is conformation equivalent to the model Dill presents in [4].

2.2 Timing Requirements

Timing is associated with an orbital net place as a timing requirement consisting of a
lower bound, an upper bound, and a type (min, max, type). The lower bound is a non-
negative integer and the upper bound is an integer greater than or equal to the lower
bound, or c~. Since real values can be expressed as rationals within any required accu-
racy, restricting the bounds of timing requirements to be integers does not decrease the
expressiveness of orbital nets. Since there are only a finite number of timing parameters,
if any are rational, we can multiply all of them by the least common denominator.

There are two types of timing requirements: constraint and behavior. If any transi-
tions in the postset of a place are labeled with an input action, then the timing requirement
is of type constraint, otherwise it is of type behavior. Informally, the distinction between
behavior and constraint timing requirements follows precisely the difference between
input and output actions. The net for the untimed buffer shown in figure l(b) only
describes the successful traces, which are all the prefixes of (c - , d- , c+, d+)*. The
receptiveness construction adds failure traces caused by an input event that deviates
from this pattern. The net generates only successful output sequences, but it accepts
all input sequences, dividing them into success and failure traces. Consider now the
buffer pictured in figure l(c), in which our buffer model has been extended with timing
requirements. The behavioral place labeled [4, 10] indicates that an output will occur
between 4 and 10 time units after the preceding input occurs; no traces violating this
requirement will be generated by the net. The constraint places labeled [2, (x)] indicate
that, while the net will accept any timing between an output event and the succeeding
input event, only those that have a delay of 2 time units or more are successful traces.

The delay model just described is an extremely simple delay model that suffices
for many types of circuits. More complex delay models can and have been constructed,

471

modeling more accurately the behavior of a gate under hazard conditions; for these,
separation of gate models into combinational function and delay behavior is essential.

Each transition can have at most one behavior place in its preset. The intent is that
each behavior place represents a single nondeterministic choice of delay that cannot
be affected by external state or other behavior places. Since behavior places precede
outputs and each wire can be an output for only a single model, circuit composition
satisfies this naturally if each component model does. In general, this restriction does
not limit expressiveness; other timing semantics can be simulated with appropriate net
constructions.

2.3 Timed Operational Semantics

Each token that resides in a constraint or behavior place has a time-valued age parameter
which advances with time and describes how long the token has resided in the place. The
function max-advance on a marking is defined as the minimum value of (max - age)
for all marked behavior places, or oo if there are no marked behavior places. This upper
limit on time advancement maintains the ages of all behavior place tokens below the
maximum allowed by their range. Time is advanced by increasing the ages of all tokens
in timed places by precisely the same amount.

A transition is untimed-enabled if all places in its preset have tokens. A transition
is timed-enabled if it is untimed-enabled and if any input place with a behavior timing
requirement has a token with age > min. Transition firings are assumed to be instan-
taneous; any number of transitions can fire without time advancing. Before firing a
transition, the constraint places in the entire net are checked, and if any contains a token
with age > max, this firing is marked as a failure. The tokens in the places in the preset
of the fired transition are removed. The ages of the tokens removed from constraint
places are checked, and if age < min, this firing is marked as a failure. Tokens are then
put into the places in the postset of the fired transition, and all tokens put into timed
places are assigned an age of zero. After the firing of a transition, every marked behavior
place must have a transition in its postset that is untimed-enabled in the new state; if
this condition is not satisfied, the firing is a failure. This requirement ensures that every
token in a behavior place is consumable in all states in which its timing conditions are
met, and thus the age at which the token is consumed cannot be controlled by external
state.

With these semantics, untimed constructions for receptiveness and synchronization
apply unchanged to the timed case. In addition, the trace theory operation of mirroring
is also preserved, allowing hierarchical verification.

To discuss the verification procedure, we define a timed firing sequence to be a
sequence of pairs of transition firings and time values. For simplicity, we shall assume the
time value represents a non-negative duration since the last transition firing. Executing
a timed firing sequence c~ on an orbital net results in the timed state fire(a). The set
of legal firing sequences is defined recursively as follows. The empty sequence is a
legal firing sequence. For a legal firing sequence c~ and for every value of r such that
v <__ max-advance(fire(c~)), then c~, (r 7-) is a legal firing sequence, where r represents
an 'empty' firing. In addition, if transition t is timed-enabled, then c~, (t, 0) is also a
legal firing sequence.

472

10 I O t A A A / W V V V V I ~ 10'
. V V V V V V V V V V l
. ~ / V I / k I q A A A A A
~ 1 7 6 V V V V V ~ X V ~ / V ~

~ 1 7 6 1 7 6 l / V V l l ~ l ~ l V ~

. V V V V V V V V I A A �9 ~ 1 7 6 1 7 6 1 7 6 1 7 6

, , , ~ 1 7 6 1 7 6

OI 1 ~ OoI/VV~/VVVVV]: O(
10 10

(a) ~) (c)

~ 2. (a) D i s c ~ , ~) unit cube, and (C) geometric timed s ~ space ~p~sen~tions.

We define an untimed state to be an orbital net marking ignoring the ages of the
tokens. The function untime returns an untimed firing sequence from a timed firing
sequence by stripping the timing and removing any ~b firings. The reachable state space
is the range of the function fire over the legal firing sequences.

3 Discrete and Unit-Cube Time Verification

The basic idea behind finite-state verification is that, if the reachable state space is finite
or has a finite representation, only a finite subset of the firing sequences needs to be
considered to compute the set of reachable states. In our timing semantics, the ages of
tokens can be real values, so the state space is infinite. In order to perform finite-state
verification, we must either restrict the set of values that these ages can attain, or group
the timed states into a finite number of equivalence classes. Discrete time verification
uses the first approach, while Alur's unit-cube technique uses the second. (Infinite upper
bounds are easily handled; we shall omit the details here [15].)

The first approach is justified by the proof that considering only integer event times
gives a full characterization of the continuous time behavior of an orbital net [15]. This
proof is similar to one given by Henzinger, et. al. in [16] for timed transition systems.
With this result and the operational semantics given above, finite-state verification
techniques can now be employed. Indeed, this discrete time approach was taken by
Burch for verifying timed circuits [5].

Let us assume the number of distinct untimed states in an orbital net is ISl. If the
maximum value of any timing requirement is k, and there are at most n timed tokens in
any state (this value is trivially bounded by the size of our safe net), the size of the state
space represented by discrete points, as in figure 2(a), is ISI (k + 1) ~

If the equivalence between discrete and continuous time does not hold for a particular
formalism, it is still possible to perform finite-state real-time verification, using Alur's
unit-cube technique [17]. He considers equivalence classes of timed states with the
same integral clock values and a particular linear ordering of the fractional values of the
clocks. For the two-dimensional case, the equivalence classes are pictured in figure 2(b);
every point, line segment, and interior triangle is an equivalence class. The worst-case
size of the state space for his method is asymptotically

ISl i ~ i-~ 4 1 / k '

473

which is worse than the discrete time method by more than n! [15].
Both of these techniques, however, are of little more than theoretical interest, because

the size of the state space increases exponentially with the maximum value of the timing
requirements. In general, during verification, every possible integer firing time must be
considered for every transition from each state. For a circuit with timing values accurate
to two significant digits, with up to six independent concurrent pending events, the state
space is easily in excess of 1012 states--well beyond the capabilities of most finite-state
verification techniques. Our experimental results indicate that the number of discrete
states can be astronomical.

4 Geometric Timing Verification

In this section, we discuss a known time verification technique, geometric timing, that
usually performs well in practice, even though the worst-case performance is much
worse than either the discrete or the unit cube approaches [6, 7, 8, 9, 10, 11].

4.1 Geometric Regions

Rather than consider at each step a single discrete timed state, or a minimum equivalence
class of timed states, the geometric timing method considers a large number of timed
states in parallel. Specifically, convex geometric regions of timed states represented by
upper and lower bounds on specific clock values and on the differences between pairs of
specific clock values are used as the representation of the timed state space. Two sample
regions are given in figure 2(c). The set of such constraints is usually represented by a
matrix a, where the constraints on clocks {Cl ...c,~} are of the form ci - cj < aji. A
fictitious clock co that is always exactly zero is introduced so that upper and lower limits
on a particular clock can be represented in the same form [6].

For any convex region that can be represented by such a matrix, there are many
matrices that represent the same convex region. The process of canonicalization [6]
can be performed to yield a matrix such that every constraint is maximally tight; if the
constraint system represented by the matrix has any solutions, then there is precisely one
canonicalized matrix representing that region. This canonicalization can be performed
with Floyd's algorithm, which runs in time O(n3). In general, since only incremental
changes are made to the matrix during verification, specializations of Floyd's algorithm
that run in time O(n 2) suffice [15].

4.2 Geometric Regions as Aggregates of Discrete Timed States

Since integer-valued timed sequences accurately model the behavior of orbital nets, it
is sufficient to show that verification with geometric regions considers precisely the
same set of states that discrete verification does. This is accomplished by giving the
correlation between each operation in discrete time verification and in geometric timing
verification. We do not discuss the aspects of verification that do not consider time, since
they are the same in both cases. For simplicity, we consider each geometric region as a

474

collection of discrete timed states that are handled in parallel. While such a perspective
is not necessary, it may be conducive to an understanding of the method.

The geometric region technique operates over an untimed firing sequence a, calcu-
lating directly the full set of timed states reachable from all timed firing sequences fl that
satisfy untime(fl) = a. Thus, rather than separately considering every possible occur-
rence time for a particular transition in c~ during verification, in one step the geometric
region method considers all possible occurrence times. We describe how it works for a
single transition occurrence, assuming it works for the predecessor sequence; the trivial
base case and structural induction on sequences completes the proof for all sequences.

With discrete time verification, determining whether a particular transition is timed-
enabled entails comparing the token ages with known constants. With geometric regions,
we determine the subset of the timed states in the region for which the particular
transition is enabled. This can be performed by introducing the enabling conditions on
the transition as additional constraints on the region and recanonicalizing. For orbital
nets, these conditions describe a convex region in the appropriate form, and it is easy
to show that the intersection of two such convex regions is a convex region of the same
form. Canonicalization by definition does not reduce the set of timed states represented.

After selecting an enabled transition, firing that transition involves removing some
set of timed tokens and introducing new timed tokens. In the discrete case, removing
timed tokens involves discarding their ages. With geometric regions, removing timed
tokens involves projection of the system of constraints to eliminate a particular set of
variables. Introducing new timed tokens in the discrete case sets the ages of these tokens
to zero; in the geometric region case, we introduce a new set of variables equal to zero.

After firing a transition, we allow time to advance; this corresponds to ~b firings.
In the discrete case, advancing time involves adding some number t to all token ages.
In the geometric case, advancing time involves extruding the geometric region in the
cl = c2 = �9 �9 �9 = cn direction, subject to max-advance, which itself is a convex region.

The other operations, such as checking for constraint place violations, involve simple
inspections of the geometric region; since each inequality is maximally constrained,
there exists some solution for which that inequality is an equation.

4.3 Performance of Geometric Timing Verification

Verification based on geometric regions can be very efficient. In particular, if a timed
system does not exhibit much concurrency, our examples show that there is often very
close to one geometric region for every untimed state. The circuit examples in the first
part of table 1 illustrate this; for these examples, standard geometric timing runs very
rapidly, even when the timing parameters are very large.

On the other hand, some examples require an extreme number of geometric regions.
The adverse example a d v 4 x 4 0 shown in figure 3, using standard geometric timing
techniques, generates an incredible 219,977,777 distinct geometric regions. This is
more than either the number of discrete timed states or unit-cube equivalence classes.

475

L_W , L_ o. L__7 -0.

Ng.3. The adverse example advZlx40 with n = 4 and k = 40.

5 Partial Order Timing Verification

We improve this method for systems with concurrency using partial order timing. The
major source of blow-up in the adverse example is the way the standard geometric
timing algorithm calculates exactly the set of timed states reachable from a sequence of
transition firings; the transition firings are linearly ordered, even if they are concurrent
in the system being evaluated. That is, if two concurrent transitions start clocks, the
constraints between the ages of the two clocks will reflect the linear order that the
transitions were fired in the original sequence. In general, if there are n concurrent
transitions that reset clocks visible in the resulting timed state, there are n! different
sequences that need to be considered, each of which leads to a distinct geometric region.
For this reason, it is important to distinguish the causal ordering of transitions from the
non-causal ordering caused by the selection of a particular firing sequence.

5.1 Concurrency, Causality, and Processes

A process is an acyclic, choice-free net created from a Petri net and a firing sequence.
The process reflects the causality and concurrency inherent in that firing sequence.
Initially, it contains a single transition with places in its postset corresponding to each
token in the initial marking. Transitions are added in the same order as they occur in
the firing sequence. For each transition in the firing sequence, a correspondingly labeled
transition is added to the process. A set of arcs into the transition are connected from
the most recently added places in the process corresponding to places in the preset of
the transition in the original Petri net. Finally, a new set of places corresponding to the
places in the postset of the transition in the original net are added, and these places are
connected to the new transition. The function process takes a sequence and returns the
corresponding process. The resulting process for the firing of the sequence [a+, b+] in
our adverse example is shown in figure 4.

Every place and every transition in the created process, except the first, correspond
to some place and some transition in the original net. Every place and every transition
in the original net correspond to zero or more places and transitions in the process. A
process explicitly represents the concurrency in a particular firing sequence. That is, a
particular process corresponds to many different firing sequences that differ only in the
interleavings of concurrent transitions; every such firing sequence fires the same set of
transitions and leads to the same final untimed state. Thus, the process shown in figure 4
corresponds both to the trace [a+, b+] and to the trace [b+, a+].

476

11,40]b

,IL
()I,,,o,o

b+
() [,,4O,b

~[1,40]b ~ [1,40]b

Fig. 4. One process from the adverse example.

5.2 Verification with Partial Order Timing

In general, for a process with simple timing constraints between pairs of transitions,
we may calculate the minimum and maximum separation between all pairs of transi-
tions in time O(rt 3) using Floyd's algorithm. If none of the places are timed, then the
process is a partial order on the events. That is, an untimed place p introduces only
the constraintfire-time(*p) < fire-time(p*). Because the constraint places do not af-
fect the firing of transitions, such places introduce the same kind of causality relation.
On the other hand, for each behavior place p in the resulting process with a timing
requirement of (rain, max, behavior), two constraints are introduced. The first reflects
the minimum separation,fire-time(ep) - f ire- t ime(pc) < -min . The second reflects the
maximum separation, fire-time(pc) - f i re- t ime(ep) < max. All constraints introduced
in this fashion for a given process must be satisfied.

Performing this operation on the process in figure 4 determines that a+ can follow
the initial transition by between 1 and 40 time units, and b+ can also follow the initial
transition by between 1 and 40 time units. The time separation between a+ and b+ must
be between -39 and 39 time units, inclusive.

From this information, the full set of geometric regions reachable with this process
is calculated. Specifically, for two clocks ci and cj created by the firing Of transitions ti
and tj, the constraint on cj - ci, or entry aij in our constraint matrix, is the maximum
separation from tj to ti. The minimum and maximum ages of the clocks are derived
from the previous process in the same manner as for the geometric method.

The partial order technique operates over an untimed firing sequence a, calculating
directly the full set of timed states reachable from any timed firing sequence)3 such
that process(untime()3)) = process(a). Thus, rather than separately considering every
interleaving of concurrent transitions, in one step the partial order method considers
all possible interleavings. For untimed verification, different interleavings result in the
same state. For timed verification, different interleavings usually result in different sets of
timed states, with different future behavior, leading to a combinatorial explosion of timed
regions for each untimed state. Representing, as a single constraint matrix, the union
of all timed states reachable from all possible interleavings, therefore, dramatically
reduces the size of the state space representation. In fact, the partial order method
typically reduces the number of timed regions for each untimed state to a value close to
one.

Verification proceeds just as it does for the previous methods based on sequences,
except that, for each sequence, the algorithm constructs the corresponding process. With

477

depth-first search, this is done incrementally. The algorithm also incrementally calculates
a constraint matrix that stores the firing time relationship among the transitions. The
algorithm then calculates the geometric region corresponding to this process by adding
the upper and lower bounds on the clocks; after canonicalizing this matrix, it has
produced the full set of reachable states for that process.

Our process calculation can never introduce states that are not reachable by a se-
quence, since for any timed state in the process, some ordering of the transitions in
the process is a sequence that generates the same timed state. In addition, because the
algorithm considers the firing of every transition enabled in every reachable geometric
region, it visits all successors and thus the entire timed state graph. Therefore, the same
set of reachable states is obtained using process-based region calculations as is obtained
using sequence-based region calculations.

5.3 Efficiency Considerations

The number of transitions in the process is equal to the length of the firing sequence
plus one, and it increases with the depth of our search. Calculating the minimum
separations between the occurrence times in our process, even with our incremental
O(n 2) approach, becomes prohibitively expensive as the firing sequence lengthens. In
addition, the algorithm needs a constraint matrix for each step; this would require a
tremendous amount of storage during depth-first search.

To keep n bounded as the depth of our search increases, the algorithm determines
what prefix, if any, of our process can safely be ignored. The algorithm can eliminate
any transitions that no longer affect future calculations. In general, the algorithm can
eliminate a variable from any set of equations or inequalities whenever it has produced
the full set of equations or inequalities that use that variable. Since all constraints
introduced through the firing of a transition are associated with places connecting the
new transition to the old, once a transition in our process no longer has any places in its
postset which do not have a transition in their postset, it is eliminated from our constraint
matrix. Thus, our n is--at most--the number of tokens in the original net at any given
time, plus one for the current transition.

This technique has a more expensive transition firing computation, so for the simplest
examples with little concurrency, it is slower; but, it dramatically reduces the number
of interleavings considered and also the number of geometric regions for each untimed
state when there are concurrent transitions. Because the number of geometric regions
is typically small, a further optimization is possible. Rather than backtracking only
when an identical geometric region is found, verification can backtrack whenever a new
geometric region is a subset of a previously seen geometric region. Comparing two
geometric regions for inclusion can be performed in O(n 2) time.

6 Experimental Results

The verification procedure described in the previous section has been automated in the
tool Orbits. This tool has been incorporated into the design system for timed circuits
ATACS described in [1]. Experimental results are given in table 1. The left four columns

478

Table 1. Experimental results. Time values are given in seconds. An entry of time indicates
that the verification did not complete within two hours, and an entry of s p a c e indicates that the
verification ran out of space before completing.

Startup Net Untimed Discrete Geometric timing Partial order
Examples time nodes states states regions time regions I time

MMUopt 0.31 293 22 734
MMUunopt 0.24 212 33 3245
dram 1.16 1335 96 5697
pipe 0.16 126 15 11657
scsic~l 0.18 248 16 200
scsil 12.67 15477 170 1247
scsilBRK 14.35 15674 197 1481
scsi2 10.31 11496 155 1029
scsi2BRK 10.14 11372 159 1052
sc~3BRK 12.67 14866 492 10319
tsbm 2.84 4115 292 46212
tsbmBRK2 0.78 730 392 1.33e7
tsbmBRK4 0.68 782 312 1.14e7

adv3x40 0.05 6 1 68921
adv4x40 0.03 8 1 2.83e6
adv50x40 0.27 100 1 4.36e80
phil3 0.19 1491 144 27806
phil4 0.22 197~ 1152 9.82e5
phil5 0.25 245 9840 3.47e7
seitz 0.41 355 344 2.92e13
seitz2 0.55 624 4572 5.48e19
kyy5 2.46 1484 5266 >le20
kyyl5 1.97 1484 18357 >le20

28 0.021 22
43 0.04 33

120 0.36 96
18 0.01 15
21 0.03 16

294 3.49 170
351 9.47 205
186 6.69 159
193 6.64 163

1123 27.11 653
965 2.65 443

1789 3.60 550
1047 2.71 476

1.52e5] 164.99 11
space 11
space 1

7581 0.77 188 I
time 1541
time 14039

3234] 5.48i 416
space 5820
space 6083
space 20250

0.04
0.06
0.39
0.02
0.03
3.69

10.46
6.81
6.7(

28.42
2.58
1.83
1.95

0.01
0.01

60.21
0.3~
6.98

159.4C
1.22

29.7~
56.74

321.47

indicate values that are the same for geometric and partial order timing. The startup time
is the time required to parse the input and construct the appropriate orbital net. The
number of net nodes is the sum of the places and transitions in the resulting orbital
net. The third column gives the number of untimed states. The fourth column gives
the number of discrete states, after all timing parameters are divided by their greatest
common divisor. The next four columns give the number of geometric regions and the
run time in seconds for verification using standard geometric timing and partial order
timing, respectively.

The first half of table 1 consists of circuits created by ATACS taken from examples
in [1] and [18]. These examples do not exhibit much concurrency, and the number of
geometric regions created by the geometric region method is close to the number of
untimed states. These circuits are composed of typically less than a dozen complex
gates, but some of these gates have as many as ten inputs; it is these large gates that
cause large orbital nets.

479

din ~ dout

reqin I
out

Fig. 5. The Seitz queue element, a small timed circuit.

The second half of the table consists of other circuits and systems that exhibit a high
degree of concurrency. For example, s e i t z l is pictured in Figure 5; s e i t z 2 is two
connected copies of this circuit. The k y y examples [19] have thirty-seven gates and
timing parameters given to three significant digits. Where the examples ran out of time
or space using the geometric method, often the verification was far from done. For the
s e i t z 2 example, after one hour of CPU time, only 1,404 of the 4,572 untimed states
have been seen, yet 473,202 distinct geometric regions have been encountered. One
particular untimed state has 13,275 distinct geometric regions at this point. Partial order
timing for this example finds the entire state space as 5,820 geometric regions in one
half minute of CPU time. Examples were run on an HP9000/735 with 144 megabytes
of memory using CScheme 7.3.

7 Conclusion

We have introduced orbital nets which extend safe Petri nets to provide an efficient for-
malism for modeling timed circuit behavior. Discrete methods provide the best known
worst-case complexity for timed verification, but generally fail in practice due to expo-
nential blowup on the timing parameters. Geometric methods work well in practice, but
fail for highly concurrent systems. Thus, we improve upon geometric methods using
partial order timing. Our examples show that partial order timing can handle much larger
examples than the standard geometric methods.

Acknowledgments

We would like to thank David Dill, Jerry Burch, Daniel Weise, Peter Beerel, and Teresa
Meng of Stanford University and Ludmila Cherkasova and Vadim Kotov of Hewlett-
Packard Laboratories for their discussions and comments during the development of
Orbits.

480

References

1. Chris J. Myers and Teresa H.-Y. Meng. Synthesis of timed asynchronous circuits. 1EEE
Transactions on VLSI Systems, 1(2):106-119, June 1993.

2. Alain J. Martin. Programming in VLSI: From communicating processes to delay-insensitive
VLSI circuits. In C.A.R. Hoare, editor, UT Year of Programming Institute on Concurrent
Programming. Addison-Wesley, 1990.

3. Martin Rem, Jan L. A. van de Snepscheut, and Jan Tijmen Udding. Trace theory and the
definition of hierarchical components. In R. Bryant, editor, Third Caltech Conference on
VLSI, pages 225-239. Computer Science Press, Inc., 1983.

4. David L. Dill. Trace theory for automatic hierarchial verification of speed-independent
circuits. ACM Distinguished Dissertations, 1989.

5. Jerry R. Burch. Trace Algebra for Automatic Verification of Real-Time Concurrent Systems.
PhD thesis, Carnegie Mellon University, 1992.

6. David L. Dill. Timing assumptions and verification of finite-state concurrent systems. In
Proceedings of the Workshop on Automatic Verification Methods for Finite-State Systems,
June 1989.

7. Harry R. Lewis. Finite-state analysis of asynchronous circuits with bounded temporal un-
certainty. Technical report, Harvard University, July 1989.

8. Bernard Berthomieu and Michel Diaz. Modeling and verification of time dependent systems
using time petri nets. IEEE Transactions on Software Engineering, 17(3), March 1991.

9. R. Alur, C. Courcoubetis, D. Dill, N. Halbwachs, and H. Wong-Toi. An implementation of
three algorithms for timing verification based on automata emptiness. In Proceedings of the
Real-Time Systems Symposium, pages 157-166. IEEE Computer Society Press, 1992.

10. Thomas Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Symbolic model-
checking for real-time systems. In Proceedings of the 7th Symposium Logics in Computers
Science. IEEE Computer Society Press, 1992.

11. Nicolas Halbwachs. Delay analysis in synchronous programs. In Costas Courcoubetis,
editor, Computer Aided Verification, pages 333-346. Springer-Vedag, 1993.

12. Tomohiro Yoneda, Atsufumi Shibayama, Bemd-Hologer Schlingloff, and Edmund M.
Clarke. Efficient verification of parallel real-time systems. In Costas Courcoubetis, edi-
tor, Computer Aided Verification, pages 321-332. Springer-Vedag, 1993.

13. James L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall, 1981.
14. Peter A. Beerel and Teresa H.-Y. Meng. Semi-modularity and testability of speed-

independent circuits. INTEGRATION, the VLSljournal, 13(3):301-322, September 1992.
15. Tomas G. Rokicki. Representing and Modeling Circuits. PhD thesis, Stanford University,

1993.
16. Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. What good are digital clocks? In

1CALP 92: Automata, Languages, and Programming, pages 545-547. Springer-Vedag, 1992.
17. Rajeev Alur. Techniques for Automatic Verification of Real-Time Systems. PhD thesis,

Stanford University, August 1991.
18. Chris J. Myers andTeresa H.-Y. Meng. Automatic hazard-freedecomposition ofhigh-fanin

gates in asynchronous circuit synthesis. To be published.
19. Ken Yun. Private communication, 1993.

