N

N

A distributed garbage collector for active objects
Isabelle Puaut

» To cite this version:

Isabelle Puaut. A distributed garbage collector for active objects. [Research Report] RR-2134, INRIA.
1993. inria-00074538

HAL Id: inria-00074538
https://inria.hal.science/inria-00074538
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00074538
https://hal.archives-ouvertes.fr

ISSN 0249-6399

44 INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

A Distributed Garbage Collector
for Active Objects

| sabelle Puaut

N° 2134
Décembre 1993

PROGRAMME 1

Architectures paralléles,
bases de données,
réseaux et systemes distribués

apport
derecherche

%I NRIA

RENNES

A Distributed Garbage Collector
for Active Objects

Isabelle Puaut

Programme 1 — Architectures paralleles, bases de données, réseaux
et systemes distribués

Projet LSP

Rapport de recherche n* 2134 — Décembre 1993 — 24 pages

Abstract: This paper introduces an algorithm that performs garbage col-
lection in distributed systems of active objects (i.e., objects having their own
threads of control). The proposed garbage collector is made of a set of local
garbage collectors, one per node, loosely coupled to a global garbage col-
lector. The novelties of the proposed garbage collector come from the fact
that local garbage collectors need not be synchronized with each other for
detecting garbage objects, and that faulty communication channels are toler-
ated. The paper describes the proposed garbage collector, together with its
implementation and performance for a concurrent object-oriented language

running on a local area network of workstations.

Key-words: Garbage collection, concurrent object-oriented languages, dis-

tributed systems, active objects.

(Résumé : tsvp)

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex (France)
Téléphone: (33) 99 84 71 00 — Té écopie: (33) 99 38 38 32

Un Ramasse-Miettes Distribué
d’Objets Actifs

Résumé : Nous proposons dans ce document un algorithme de détection
des miettes adapté aux systemes distribués d’objets actifs (i.e., possédant
leurs propres fils de controle). Le ramasse-miettes proposé est constitué d’un
ensemble de ramasse-miettes locaux, un pour chaque nceud de 'architec-
ture, et d’un ramasse-miettes global au systeme. La principale originalité
de I'algorithme proposé réside dans le fait qu’il n’est pas nécessaire que les
ramasse-miettes locaux se synchronisent pour la détection des miettes. En
outre, les communications non-fiables sont supportées. Ce document décrit
I’algorithme de ramasse-miettes proposé, ainsi que sa mise en ceuvre et ses
performances pour un langage de programmation concurrent a objets s’exé-

cutant au dessus d’un réseau local de stations de travail.

Mots-clé : Ramasse-miettes, langages de programmation concurrents a

objets, systemes distribués, objets actifs.

A Distributed Garbage Collector for Active Objects 1

1 Introduction

Object-oriented languages are now recognized as powerful tools for the de-
sign of large and complex software. In particular, they provide a sound basis
to develop applications that are easy to maintain and reuse. Dynamic object
creation raises the issue of managing objects in memory. Freeing the memory
used by objects may either be done directly by the programmer (manual
memory management), or by the language run-time environment (automatic
memory management). In the former case, its the responsibility of the user
to decide when an object is no longer needed, and to free the resources is
uses, while in the latter case, the language run-time support provides a tool,
named garbage collector [1], which detects and reclaims unneeded objects
without the programmer’s intervention. As notably argued in [2], the pro-
vision of a garbage collector by the run-time support of an object-oriented
language helps the development of robust software for the following reasons.
Programmer-controlled memory management is notoriously error-prone: the
programmer may forget to free a resource that is no longer used, or free a
resource that is still used. Both mistakes are difficult to detect and recover
from, especially in systems managing persistent data. Moreover, the provision
of a garbage collector by the run-time support of an object-oriented language
makes programs shorter, as they are no longer concerned with memory ma-
nagement, and thus easier to maintain.

The increasing use of parallel and distributed architectures has motiva-
ted the integration of concurrency in object-oriented languages. There are
(at least) two ways for introducing concurrency in an object-oriented frame-
work: first, as notably discussed in [3], the process notion may be integrated
within the object notion, thus leading to active objects; second, as done for
example in Presto [4], parallelism may be introduced through system libra-
ries defining classes to be used for implementing concurrency control (i.e.,
thread and synchronization classes), thus leading to passive objects. As ar-
gued in [5], garbage collection in systems of active objects (actors in the
mentioned reference) is critical, as active objects not only consume memory
but also processor resources. Hence, it is imperative that garbage active ob-
jects are identified quickly. As developed later, this adds complexity to the
task of garbage collection compared to sequential systems, as both state and
activity of objects have to be considered. Furthermore, if the concurrent

object-oriented language runs on a parallel or distributed architecture [6],

2 Isabelle Puaut

providing garbage collection becomes crucial for the development of large
distributed software, since a distributed resource management scheme is har-
der to design and implement than a centralized one.

This paper proposes a garbage collection algorithm that applies to distri-
buted systems of active objects. The proposed garbage collector is composed
of a set of local garbage collectors, one per node, loosely coupled with a glo-
bal garbage collector. The local garbage collectors detect and reclaim garbage
objects of the node on which they are running by using only information lo-
cal to that node. Periodically, each local garbage collector sends information
to the global garbage collector through message passing; the global garbage
collector merges the informations sent by the local garbage collectors in order
to record a global snapshot of the system state relevant to garbage collec-
tion. The key novelty of our proposition is that the local garbage collectors
need not synchronize with each others for detecting garbage objects, even
when sending information to the global garbage collector. Moreover, the pro-
posed garbage collector can be easily extended to cope with an unreliable
environment. The remainder of this paper describes with more details our
proposition, and is organized as follows. Next Section sketches the specifics
of garbage collection in systems of active objects. Section 3 then presents
the proposed distributed garbage collector. In particular, its use in a large
scale distributed system with faulty communication channels is considered.
Its implementation within the distributed run-time system of a concurrent
object-oriented language, as well as performance measures, are given in Sec-
tion 4. The proposed garbage collector is compared with related work in

Section 5. Finally, conclusions are given in Section 6.

2 Garbage Collection in Systems for Active
Objects

As indicated in [5], the usual definition of garbage in systems managing pas-
sive entities, which is based on reachability from root cells [1], is not appro-
priate for systems dealing with active objects. Thus, after a presentation of
the considered active object model, the definition of garbage objects for this
computation model is given. Then, an existing solution in a non-distributed

setting, used by our proposition, is briefly described.

A Distributed Garbage Collector for Active Objects 3

2.1 Object Model

An object is an entity composed of data and of one or several threads of
control that operate on that data. An object’s data (or object state) is a
sequence of memory cells, each cell containing either an atomic value (e.g.,
an integer), or the name of another object (or reference). An object is said
to be running if at least one of its threads of control is running, while it is
said to be inactive when all its threads of control are blocked. An object O
may activate another object Oy, and thus make O, running, through either
blocking or non-blocking method calls. This arises when O; is running and its
state embeds a reference on O,. When activating O,, O; may send to Oy as
parameters a subset of its data. New objects may also be created, the creator
obtaining a reference on the newly created object. Notice that the computa-
tion model described above is quite general, and is used in many concurrent
object-oriented languages (for example [3]). Therefore, the proposed garbage
collector may be retained for a wide range of distributed run-time supports
for concurrent object-oriented languages based on active objects.

The state of a system with active objects can be depicted as a graph whose
nodes represents objects and whose directed edges represent references em-
bedded within objects. Figure 1 shows an example of such graph; in the figure,
running objects are drawn as circles, inactive objects are drawn as squares,
and active objects interacting with the external world, like for instance 1/O

devices or external naming objects, are drawn as triangles.

QM@ H

K

Figure 1: A System of Active Objects

The topology of the graph may change due to interactions between objects.
First, an object may become running if it is activated by another running
object: for instance in Figure 1, object D may be activated by object F.

Second, when activating an object, a running object may send it a subset of

4 Isabelle Puaut

its data, thus adding edges to the graph. For example in Figure 1, object C
may send to object B a reference on object A, thus adding an edge from B

to A in the graph. New edges may also result from object creation.

2.2 Detecting Garbage in Systems of Active Objects

Detecting garbage in systems of active objects was first addressed in the
framework of Actor-based languages [7], and detailed later in [5]. The reader
is referred to these two references for a detailed description of the issue of
garbage collection in systems of active objects: only an informal definition of
garbage is given here. Intuitively, an object is garbage if its absence from the
system cannot be detected through external observation, excluding memory
and processor resources consumption. Actual detection of garbage relies on
the introduction of root objects, depicted by triangles in Figure 1; these
objects are always needed, as they have the ability to directly interact with
the external world. Briefly stated, an object is garbage if it cannot potentially
neither call a root object, nor be called by a root object; in other terms, an
object is garbage if it cannot potentially interact with a root object.

Let us illustrate this definition on Figure 1. Object H embeds a reference
on the root object GG and is running, and thus it may call G; therefore, H
is not garbage. Similarly, C'is not garbage, since it may call the root object
A. Objects I,J and F are garbage, as they are insulated from the rest of the
object graph. K is inactive, and can not be activated in the future, because
no object embeds a reference on it; thus, K is garbage. Objects B, D and F
are not garbage, because they may be activated and then call a method on a
root object. For example, let us consider object B; if C calls a method on B
and gives it a reference on A as a parameter, B may then call the root object
A, and thus is not garbage.

Note that an object that cannot call a root object at a given time (either
because it is inactive or does not embed a reference on a root object) may
do so later since it may get a reference on a root object from another object
through parameter passing (e.g., see object B in Figure 1). Therefore, there
exists a set of transformations that changes the graph of objects from a re-
presentation of what can currently happen to what can potentially happen.
Note also that a key property of garbage objects is that they cannot become
non-garbage in the future (stability property). This is because an object be-

comes garbage only if there is no possibility of interaction between it and

A Distributed Garbage Collector for Active Objects 5

a root object. Therefore, once an object is garbage, there is no sequence of
transformation which could cause it to become non-garbage.

As detailed in [5], it is significantly more difficult to detect garbage objects
in systems of active objects as both the state and activity of objects have to be
considered. In particular, both the traditional mark and sweep and reference
counting techniques, that are based on reachability from root objects, are
not directly suited to systems of active objects. If mark and sweep were
used for the system depicted in Figure 1, all the non-root objects would be
incorrectly marked as garbage, because they are not reachable from a root
object. Similarly, if reference counting were used, objects £ and H would be
wrongly considered as garbage, as their reference count is zero. Moreover,
reference counting may miss garbage objects; for example objects [and J are

garbage even though their reference count is not zero.

2.3 An Existing Non-Distributed Solution

Two algorithms are proposed by Kafura in [5] for detecting garbage in non-
distributed systems of actors. The algorithms consist in marking the objects
using three colors (white, grey, and black) which, on marking termination,

have the following meanings:

- white: objects colored white can not interact with a root object.

- grey: objects colored grey could interact with a root object if they were
activated, but cannot become running.

- black: objects colored black are non-garbage. They are either root ob-

jects or can interact with a root object.

Underlying the marking algorithms is a set of five coloring rules, which
are applied until no new marking can be done. Furthermore, the colors of
objects can only be darkened. Initially, all objects are marked white, except
for root objects, which are marked black. Rule 1 marks black the objects that
can directly be activated by a black object. Rule 2 marks black the objects
that can directly activate a black object. Rule 3 marks black the objects that
can directly activate a grey object. Rule 4 marks grey the inactive objects
having a reference on a black object. Finally, rule 5 marks grey the inactive
objects that could (if they were activated) call a method on a grey object.

When no new marking can be done, all black objects are non-garbage, while

6 Isabelle Puaut

grey and white objects are garbage. Notice that an object is marked at most
twice: once grey and once black; the termination of marking follows.

The two marking algorithms proposed in [5] and based on the above mar-
king rules both have a worst case time complexity of O(p*), and a space
complexity of O(p), where p is the total number of objects in the system.

3 A Distributed Garbage Collector of Ac-
tive Objects

In the following is proposed an extension of the above garbage collection al-
gorithm to a distributed framework. The description focuses on the detection
of garbage, which is the most critical part of garbage collection; reclaiming
the resources used by a garbage object consists in stopping the threads of
control running within an object, and then freeing the memory used by the
object. The issue of reclaiming the resources occupied by an object is tack-
led in Section 4. First, the assumptions made on the underlying system are
given. The two components of the garbage collector, namely local and global
garbage collectors are then described in turn. The properties of the resulting

protocol are sketched. Finally, some extensions of the protocol are proposed.

3.1 Overview of the Proposed Garbage Collector

The system that is considered is made of a collection of machines, or nodes,
connected by a communication network. In a first approach, communication
channels are assumed to be reliable and FIFO (two successive messages sent
from a node N to a node M are received by M in the order sent); these
restrictions will be removed in Section 3.5. It is also assumed that nodes do
never crash.

Each object resides at a particular node, which is the owner of the object;
the object is said to be local to that node. Objects are referred to uniformly
regardless of their location by using names that are unique in time and space.
References to non-local objects are called remote references, and refer to ob-
jects via their unique name. Objects can contain both remote references and
references on local objects. Each node N keeps track of the names of the
following objects it owns: objects embedding remote references, remotely re-

ferenced objects, and root objects, by means of the three following respective

A Distributed Garbage Collector for Active Objects 7

tables: Out_Table, In_Table, and Root_Table. Figure 2 depicts the system of

active objects given before, where the objects are now distributed on two

nodes N and M.

A

In_Table
Out_Table
Root_Table

1B
I
A

In_Table
E Out_Table
Root_Table

J
D,J
G

T
@/g D FO '

e e k.

K

Node N Node M

Figure 2: A Distributed System of Active Objects

Objects interact through message passing on the communication network.
Due to parameter passing on object activations, messages may embed object
unique names. When a message containing references is sent from one node
to another, In_Table and Out_Table are updated accordingly. An object name
remains stored in In_Table or Out_Table until the garbage collector finds it
to be no longer needed, as detailed later.

Our strategy for garbage collection consists in having nodes responsible
for doing local garbage collection and managing the resources for the objects
it owns. A local garbage collector is associated to each node N and detects
garbage by using only local information (garbage objects detected by the
local garbage collector are called local garbage objects). A centralized garbage
collection service, called global garbage collector, gathers information sent by
the local garbage collectors in order to detect the remaining garbage objects
(called global garbage objects). Both the local and global garbage collectors
use the marking algorithm presented in Section 2. Marking is done without
halting the computation. For space considerations, we do not consider this

aspect, which is tackled in [8].

8 Isabelle Puaut

3.2 Local Garbage Collector

A local garbage collector is running on each node N, and is both responsible
for detecting local garbage and for sending information to the global garbage

collector. The following paragraphs focus on these two points.

3.2.1 Detection of local garbage

In order to detect local garbage at node N, objects that may interact with
remote nodes must always be retained, since it is not known if they are able
to interact with root objects owned by other nodes. Let us consider an object
x owned by a node N that is (potentially) referenced by an object y owned
by another node (2’s name is stored in In_Table at node N). Object # must
be retained even if it is inactive because it may be activated by y. A running
object whose name is stored in Out_Table must be retained because it may
activate a remote object. An inactive object containing a remote reference
must be retained only if it can potentially be activated.

Consequently, the marking rules presented in the previous section are
used in the following way. Initially, root objects of N, as well as objects
whose names are stored in In_Table, and running objects whose names belong
to Out_Table are marked black. Inactive objects whose names are stored in
Out_Table are colored grey. All the other objects of node N are colored white.
When marking is complete, all white and grey objects are garbage and can
be reclaimed. If an inactive object whose name is stored in Out_Table is found

to be garbage, its name is removed from Out_Table.

Node N | Node M
Initialization: black | {A,B,I} {J,G}
grey {} {D}
white {C,K} {H,E,F}
End of Local Collection: black | {A,B,C,I} | {D,E,GH,J}
grey {K} {}
white {} {F}
Local Garbage {K} {F}

Progress of local garbage collection for the two nodes of Figure 2 is shown
above. At the end of marking, objects K and F' are identified as garbage and

can be reclaimed.

A Distributed Garbage Collector for Active Objects 9

3.2.2 Collaboration to the detection of global garbage

The objects needed for detecting global garbage are the objects that can
potentially communicate with remote objects, either directly or indirectly.
Periodically, a local garbage collector running on a node N identifies these
objects, and then sends the objects references, as well as references contained
within them, to the global garbage collector, that processes them asynchro-
nously.

The objects needed for the detection of global garbage are identified by
applying the marking rules given in Section 2. Initially, running objects whose
names belong to In_Table, together with objects whose names are stored
in Out_Table are marked black. Inactive objects whose identifiers belong to
In_Table are marked grey. The other objects are marked white. When marking
is finished, the structure of black objects is used to detect global garbage
(objects A, B, C' and [for the node N of Figure 2). The references on
black objects, as well as the references contained in these objects form a
subgraph of the node’s object graph. The subgraph is sent to the global
garbage collector as a list of edges, where each edge is sent as a pair (s,d)
that identifies the source and destination objects of a reference embedded
in a black object; the source and destination objects are identified by their
unique name and their activity attribute (i.e., running, inactive or root).
In our example, we get for node N the list (< A,root >< B,inactive >).
(< C,running >< A,root >).(< I,running >< J,unknown >). As it is not
known on node N whether object J is running or not, the activity attribute
of J is sent as unknown to the global garbage collector. The actual activity
attribute of J will be known by the global garbage collector when merging

the informations sent by all the local garbage collectors.

3.3 Global Garbage Collector

The global garbage collector is a logically centralized service that maintains
global snapshot of the system’s state relevant to garbage collection. This
global snapshot is built by merging the subgraphs sent by the local garbage
collectors. Since local garbage collectors do not synchronize with each other
when sending information to the global garbage collector, the global garbage
collector must be able to detect whether GG represents a consistent vision of
the system state. This issue is examined before giving a detailed description

of the global garbage collector.

10 Isabelle Puaut

3.3.1 Global consistent states and garbage collection

Let us consider a distributed system composed of n processes p;, 1 <1< n
communicating through message passing on reliable communication channels
¢ij, 1 < 1,7 < n, where ¢;; denotes the communication channel between p;
and p;. Message transmission is assumed to be finite, but not necessarily
bounded. Each process p; has a private local state. The state of any commu-
nication channel is the set of messages sent by process p; and not yet received
by process p;. The execution of a process consists of a sequence of events. The
events are classified according to three categories: send, receive, and internal
where internal events modify only the process local state. A global system
state is comprised of the processes local states and the communication chan-
nels states. A global state is said consistent (also called global snapshot [9, 10])
if for each message captured as received in a process local state, the message
is captured as sent in the sender local state. An interesting feature of global
snapshots is that they can be used to detect stable properties [9]: if a stable
property P holds in a global snapshot, it holds in the current state of the
system.

Consistency of a global system state may be determined by timestam-
ping events using vector timestamps [10, 11]. Each process p; has a clock
VT; consisting of a vector of length n, where n is the number of processes.
With each event of process p;, VT; ticks by incrementing its own com-
ponent of its clock, VT;[¢]. Clock tick is considered to occur before any
event; the timestamp of an event is the clock value after ticking. Each mes-
sage carries a timestamp which is the sender’s clock. The receiver p; of
the timestamped message updates its clock with the componentwise maxi-
mum of its clock and the timestamp contained in the message, that is,
VT, := sup(VT;,t), where t is the timestamp of the message and sup(C,C’) =
[maz(C[1],C'[1]),...max(C[n], C'[n])]. Figure 3 shows an example of events
timestamping using vector timestamps (arrows denote message transmis-
sion). Assuming that V'T; corresponds to the clock of process p; timestamping
its local state ls;, a global state is consistent [10] if Ve ¥y VTi[i] > VT}[e].

For instance, in Figure 3, the system state in C} is a consistent state, while
the system state in C3 is not consistent (V73[2] > VT5[2]): the message sent
from py to ps is captured as received in p3’s state and not yet sent in py’s

state.

A Distributed Garbage Collector for Active Objects 11

o, G2
[1,0,0] [2,0,0] 1 133,0]
Process p; \ -
2.4 0]
P] | W
rocess po [0.1,0] [2,2,0] [2,3,0]/
Process p3

[5,0,1] [0},0,2] [2,4,3]

Figure 3: Vector timestamps

3.3.2 Protocol for detecting global garbage

The principle of the protocol used for detecting global garbage is to record a
global snapshot of the state of the system relevant to garbage collection. The
local garbage collectors communicate data used for obtaining this snapshot
though message passing. Two types of messages are used for the detection of
global garbage objects: an Info message is sent by a local garbage collector to
the global garbage collector, and contains the information needed to detect
global garbage; a Delete message is sent by the global collector to a local
garbage collector to notity that some objects are garbage. Events on each
node are timestamped by using vector timestamps.

The global garbage collector maintains a global snapshot of the system
state by recording a global graph G, which is the union of the subgraphs Gt
sent by the local garbage collectors, as well as the timestamps VT'1, ..., VTy of
the last information received from the local garbage collectors. GG is recorded
as a set of edges labelled with the node that sent them. An edge is a tuple
(< tdy, acty >< idy, acty >), where td; and td; are object names and acty
and acty are object activity attributes (i.e. running, inactive or root).

An Info message sent from node N to the global collector contains N,
Edges, Trans, and VT, where Edges is the list of references for the subgraph
sent by N; Trans is the state of the communication channels, required for ha-
ving a global system state; finally, VT is the timestamp defining the compu-
tation time of the Info message. Upon receipt of Info(N,Edges, Trans,V Ty),
the global garbage collector replaces the edges of GG that are labelled with NV
by the edges contained in Trans and Edges. The timestamp of the old sub-
graph sent by N is replaced by V1. The global garbage collector then checks

12 Isabelle Puaut

whether G represents a consistent state of the system (i.e. Ve V5 VT;[i] >
VT;[i]). If G is not consistent, nothing is done (the global garbage collec-
tor waits until a consistent state is detected). Otherwise, the global garbage
collector processes G using the centralized marking algorithm described in
Section 2, where initially only root objects are marked black. On marking
termination, white and grey objects are garbage. The names of white and
grey objects labelled with node N are gathered in a list [. A Delete message
containing [is then sent to V.

Upon receipt of a Delete message, the local garbage collector running on
node N removes from In_Table and Out_table every object ¥ whose name is
contained in the message. Thus, z will be deleted on the next activation of

the local garbage collector.

3.3.3 Recording the state of the communication channels

The global garbage collector needs to record the states of the communica-
tion channels in order to establish a global state of the system. The only
information relevant to garbage collection is the list of references carried by
in-transit messages. Hence, as far as recording the state of the communica-
tion channels is concerned, this is the only information to be sent from the
local garbage collectors to the global garbage collector. Note that a reference
on an object x contained in a message may be considered as in-transit in the
global snapshot recorded by the global garbage collector although it is recei-
ved in the real state of the system, without incorrect behavior of the global
garbage collector. Indeed, this implies only that G has an extra-edge contai-
ning a reference on x which results in a delayed detection of x as garbage.
Consequently, each reference carried by a message need not be acknowled-
ged by its receiver immediately upon receipt. Each time a message is sent,
references contained in the message are recorded in Trans. They are removed
from Trans (and the corresponding memory is freed) once there is no doubt
the message is received. Assuming, FIFO channels, a message m sent from NV
to M is received when M has acknowledged a message sent by N later than
m. The protocol that is used to acknowledge references consists in piggyba-

cking on each message from M to N the acknowledgment of the last message

received by M from N.

A Distributed Garbage Collector for Active Objects 13

3.4 Properties of the Protocol

It is important to show that the proposed protocol does not detect an ob-
ject as being garbage when it is not (correctness), and that every garbage
object is eventually detected (liveness). Correctness of the base marking al-
gorithm proposed by Kafura in [5] being shown, proving correctness of our
algorithm boils down to showing the correctness of the global garbage col-
lector. Informally, correctness comes from the stability property of garbage
(see Section 2), and from the fact that the global garbage collector operates
on a global snapshot [9, 10]. Assuming liveness of local garbage collectors,

showing that progress is made needs to ensure the following properties:

(P1) In-transit references are eventually known to be received;
(P2) A consistent state is eventually detected
by the global garbage collector.

Due to the technique that is used for keeping track of possibly in-transit
references, the first property is ensured if the time interval between two
successive exchanges of messages from each node N to each node M is finite.
However, if a node N stops sending messages to node M after the receipt of
a message m from M, M will never know m was received. In order to satisfy
(P1), each node periodically multicasts a message to each node to which it
did not communicate since the previous multicast.

Although the local garbage collectors send data to the global garbage col-
lector periodically, ensuring that a consistent state is eventually detected by
the global garbage collector is not directly satisfied by the proposed protocol.
A practical approach for detecting a global snapshot in a reasonable delay
is for the local garbage collectors to send information to the global garbage
collector at predetermined physical time intervals. The nodes are in this case
loosely synchronized to send information to the global garbage collector. Ho-
wever, although this technique is realistic from a practical point of view (see
Section 4 for a confirmation), it still does not ensure that a consistent state
is eventually detected. Hence, a panic mode of the global garbage collector is
defined. In panic mode, all the nodes synchronize with each other for building
a global snapshot. The global garbage collector records for each node a panic
threshold PT. PT is the maximum allowable number of Info messages sent by
a node to the global garbage collector before a consistent state is obtained.

When the number of messages sent to the global garbage collector exceeds

14 Isabelle Puaut

PT without obtaining a consistent state, the global garbage collector enters
the panic mode and initiates the computation of a global snapshot. The pro-
tocol given in [10] can be used for that purpose. In this way, the system can

balance garbage collection costs against the urgency of its need for storage.

3.5 Extensions

In this paragraph, the proposed garbage collector is extended for considering
features of real distributed systems. In particular, the protocol is extended for
coping with unreliable communication channels and large scale distributed

systems.

3.5.1 Supporting unreliable communications

Until now, we have assumed reliable and FIFO communication channels bet-
ween nodes. In true distributed systems, additional features must be taken
into account. A message may be lost, duplicated or arrive our of order. By-
zantine failures are ruled out: message contents are not altered during trans-
mission. Delivered messages arrive in finite (but not necessarily bounded)
time. When considering that messages may be lost, it is assumed that trans-
mission of sufficiently many messages will eventually cause at least one to be
received. Two kinds of messages exist in our system: messages sent by the
application and garbage collection messages, the latter being used for the
detection of global garbage (Info and Delete messages). It is assumed that
the application knows how to deal with unreliable channels (e.g. by sending
again lost messages and removing duplicates). Our algorithm tolerates mes-
sage loss, duplication and non-FIFO ordering independently of the solutions

adopted by the run-time support of applications.

Message loss: As the local garbage collectors send information periodi-
cally to the global garbage collector, the loss of a message Info will only
cause a delay in the detection of global garbage. The loss of a message De-
lete notifying node N that object z is to be removed is also tolerated since
garbage objects remain garbage: the global garbage collector will still detect
x as garbage during its next marking phase. The loss of an application mes-
sage will not cause the incorrect deletion of objects. The only objects that
could be incorrectly identified as garbage are the objects whose references

are contained in the lost message. All references contained in a message m

A Distributed Garbage Collector for Active Objects 15

sent from N to M are considered to be in transit until M has acknowledged
a message sent by N after m (m is either received or lost). Thus, no object
is incorrectly identified as garbage. If m contains the last reference on object
z, x will eventually be detected as garbage (as soon as N will detect that m

is either received or lost).

Non-FIFO ordering: Our use of timestamps to guard against possibly
in-transit references works well if channels are FIFO, 7.e. if messages are re-
ceived in the order sent (if at all). With a small extension, our algorithm can
cope with out of order messages. Non-FIFO ordering of messages is tolerated
if the following acceptance condition is added for receiving application mes-
sages: a message m sent from N to M is rejected, i.e. considered as being
lost, if it arrives after a message sent from N to M after m (all late ap-
plication messages are considered lost). Late Info messages received by the
global garbage collector are also eliminated, because they carry out-of-date
information. An Info message sent by a node N is accepted if the following
acceptance condition is verified: VT < VTy, where VT is the timestamp
of the last information sent by N and VT is the time stamp of the Info
message. Non-FIFO ordering of Delete messages are harmless since garbage

objects remain garbage.

Duplicated messages: The duplication of an Info message is already ta-
ken into account by the acceptance condition of messages on the global gar-
bage collector, given in the previous paragraph. The duplication of a Delete
message is treated by making the action executed when this message is recei-
ved idempotent: #’s name is remove from In_Table and Out_Table on node N
only if the name still belongs to In_Table or Out_Table. Since object identi-
fiers are not reused, there can be no confusion of object identifiers. If object
names were reused, stronger assumptions, like bounded transmission delay

would have to be done.

3.5.2 Supporting large scale systems

Due to the increasing speed of communication networks, it becomes realis-
tic to execute parallel applications on distributed architectures composed
of more and more machines. In order to adapt the proposed garbage col-

lector to a large scale distributed system, the bottleneck of the centralized

16 Isabelle Puaut

garbage collection service has to be removed, both for having the garbage
collector more available and for avoiding making global garbage collection
for the whole system. Due to the structure of the proposed garbage collector,
more availability can be obtained by replicating the global garbage collector.
A local garbage collector then sends information to a single replica of the
global garbage collector (the global garbage collector is seen by its user as
a centralized service). Information is propagated to all other replicas in the
background. This permits garbage to be collected even if some of the replicas
are unavailable. In order to avoid doing garbage collection on a system wide
basis, the proposed garbage collector structure can be extended from a two
level hierarchy (i.e. global and per-node garbage collection) to a multi-level
hierarchy. Following [12], instead of having exactly one global garbage col-
lector for the whole system, a global garbage collector is now associated to a
logical memory space; it detects garbage within this memory space and sends
information to the upper level global garbage collector, which is associated
to the enclosing logical memory space. For instance, for a system composed
of two interconnected local area networks, there can be one local garbage
collector per node, one global garbage collector per network, and at the top
of the hierarchy one global garbage collector for the whole system.

4 Implementation

The proposed distributed garbage collector was implemented in the distribu-
ted run-time system of the concurrent object-oriented language Arche [13].
The next two paragraphs focus on the implementation and performance of
the garbage collector.

4.1 Implementation of the Garbage Collector

As far as garbage collection is concerned, Arche adheres to the active ob-
ject model: an object embeds atomic values, references on other objects, and
threads of control. The run-time system of Arche is built above the Mach
micro-kernel [14] and runs on a 10Mb/s Ethernet network of SUN 3 worksta-
tions and PC-compatible machines. It is implemented through a set of Mach
multithreaded servers communicating through reliable message passing. In
order to reduce the response time of Arche applications, the run-time sys-

tem implements a dynamic processor allocation strategy. Object states are

A Distributed Garbage Collector for Active Objects 17

accessed though virtual memory, and are swapped to disk when they have
not been used for a too long time. Objects are universally named by their
address in virtual memory (virtual memory addresses are not reused).

A local garbage collector runs each node and does garbage collection for
the objects stored on the node. Root_Table notably contains the name of
the root of an external naming system, which allows connecting user-defined
symbolic names to objects. In order to scan the contents of objects’ states,
objects’ stacks and messages sent between nodes, the Arche compiler gene-
rates garbage collection templates. A garbage collection template is a null-
terminated array of integers: a positive value X states that X bytes of data
have to be skipped before finding the next reference, while a negative value
-X indicates that the X following values are references on objects. Both the
local and garbage collector are activated periodically at given physical time
intervals. The global garbage collector stores the global graph G as lists of
edges accessed through a hash table. When the global garbage collector noti-
fies one node that one object is garbage, the object is removed from In_Table
and Out_Table, so that it will be detected as being garbage on the next local
garbage collector activation. When an object is to be deleted by the local
garbage collector, its internal threads of control are first stopped; the virtual

memory region and corresponding swap space are then freed.

4.2 Performances

Costs of the proposed distributed garbage collector is considered in two steps:
first, an evaluation of the requirements of the algorithm in terms of number
of messages, computation time and memory space is done; second, results of

measures on the implemented algorithm are given.

4.2.1 Performance evaluation

From the standpoint of communication requirements, the only foreground
messages that have to be sent are those needed for communicating with
the global garbage collector. Assuming messages with unbounded size, and
assuming that a consistent state is detected, if N is the number of nodes in
the system, only N+1 messages are required to detect an object z as being
garbage (N Info messages and one Delete message). In actual systems, where
messages have bounded size, more than one message may be required for

sending information to the global garbage collector.

18 Isabelle Puaut

Memory space is required for local marking, global marking, timestam-
ping, and storing the global graph. Two bits per object are required for local
and global marking, as three colors have to be coded. Memory requirements
for timestamps are of NV integers per node, where N is the number of nodes.
Most of the memory requirements of the proposed garbage collection tech-
nique comes from the memory space required for storing the global graph G.
It strongly depends on the degree of locality exhibited by the running applica-
tions and on the selected representation for G (e.g., matrix, list); real figures
with a representation of G as a list are given in the following paragraph.

Concerning computation time, mainly three factors have to be conside-
red: local marking, collecting information for the global collector, and global
marking. The algorithm used for performing marking [5] has a worst case
time complexity of O(p?), where p is the number of objects in the graph that
is marked.

4.2.2 Performance measures

Performance of the local and global garbage collectors is measured on a nu-
merical application which is cyclic. During each cycle, two matrix objects
both containing one hundred integers chosen at random are created; a ma-
trix object is created and is filled with the product of the two matrixes; its
contents is then printed on the screen. At the end of each cycle, the three
matrix objects are garbage. Initially, fifty objects are registered within the

external naming system.

30

N
o

Performance degradation (%)
=
5

10 20 30 40 50 60 70
Activation period (s)

Figure 4: Performance degradation for local garbage collection

Figure 4 shows the percentage of processing power spent in local garbage

collection: an average of 8% of the total execution time is spent in local gar-

A Distributed Garbage Collector for Active Objects 19

bage collection for the selected application. Furthermore, the figure shows
that a high performance degradation (up to 15%) results from a very short
activation period of the local garbage collector; all the processing power is
then spent in scanning the contents of the external naming system. Finally,
the figure shows that the performance degradation due to local garbage col-
lection increases when the interval between two successive activations of the
local garbage collector becomes long; this comes from the fact that objects
have been swapped out to disk, so marking involves loading these objects
into main memory.

Performance measures of the global garbage collector are given for a dis-
tributed system composed of four nodes, running the matrix product appli-
cation. As the performance of the global garbage collector depends on the
locality of references exhibited by applications, let us model it by the sharing
rate of objects, which is defined as follows: a sharing rate of 0 means that all
objects are created on the same node, which executes the whole computa-
tion; a sharing rate of 7 means that objects are distributed randomly on the
nodes; finally, a sharing rate of n/p means that a percentage of p-n/p object
is created on one node, while the remaining percentage of n/p is exported
to other nodes. The processor allocation facility of the run-time environment
permits to make the objects’ sharing rates vary.

Sending information to the global garbage collector periodically at fixed
physical time intervals turns out to be realistic: when the objects sharing rate
is inferior to 0.75, measures showed that only one message per node is requi-
red in order to obtain a global snapshot. Furthermore, even when the sharing
rate of objects is 1, only 2% of messages sent to the global garbage collector

by a local garbage collector do not lead to the detection of a consistent state.

1200

1050
0—=o0 Curve 1 (Interval 1s)

900 o—0 Curve 2 (Interval 2s)

750

600

450

Size of G (bytes)

300

0w , | , | , | ,
0.00 0.25 0.50 0.75 1.00
Objects sharing rate

Figure 5: Memory requirements for the global garbage collector

20 Isabelle Puaut

Figure 5 shows the volume of information of the global graph G, where
G is stored as a list of edges accessed through a hash table. Curve 1 (resp.
curve 2) corresponds to a configuration where data is sent to the global
garbage collector every second (resp. 2 seconds). The figure shows that the
memory requirements for G highly depends on the locality of references of
the application. Moreover, it shows that the larger is the interval between
two successive global garbage collections, the greater is the memory space

required for storing G.

5 Related Work

Numerous garbage collectors have been proposed since the birth of the first
programming languages with dynamic memory allocation. Most of them ap-
ply only to non-distributed passive objects (see [1] for a survey of existing
propositions). Fewer collectors have been developed for distributed systems
(see [15, 16] for examples), but the vast majority of them focus on deter-
mining object reachability which, as seen before, is too weak a criterion for
detecting garbage in a system of active objects. In particular, as mentioned
earlier, algorithms based on reference counting (like for instance [17], which
supports unreliable communications), are not suited because they only consi-
der object reachability. Few algorithms detect garbage in distributed systems
of active objects [18, 19, 20]; they are compared with our proposition below.

A distributed garbage collector similar to the one proposed in this paper
is the garbage collector described in [19] for a distributed system of actors.
Like our garbage collector, this technique relies on independent local gar-
bage collectors and a global garbage collector, both using the marking algo-
rithm described in [5]. However, unlike our proposition, the garbage collector
of [19] enforces global synchronization to detect global garbage, and assumes
reliable communications. Another related garbage collector was developed
for the EMERALD object-based programming system [18]. While EMERALD
provides active objects, the garbage collector designed for this system is ba-
sed exclusively on object reachability (all running objects are designated as
being root objects). Thus, an object is deleted once and only once it stops
executing; unlike our proposition, no running object is detected as being gar-
bage. Like our proposition, the algorithm proposed in [20] detects garbage
in a distributed system of active objects by building a global snapshot of

A Distributed Garbage Collector for Active Objects 21

the system state. The difference between the two propositions is the way the
global snapshot is obtained: in [20], a two dimensional grid architecture is
considered and properties concerning message routing on the grid topology
are used for detecting a consistent system state; in our proposition, times-
tamping of events is used for this purpose, and no assumption is made on
the underlying architecture.

Our proposition has some similarities with garbage collection algorithms
designed for distributed systems of passive entities. Like the algorithm des-
cribed in [21], our global garbage collector is based on (possibly out-of-date)
information on inter-node references that permits the elimination of global
synchronization when detecting global garbage. Unlike [21], node crashes and
crash recovery are not considered. Only node unavailability is supported. Ho-
wever, in contrast to [21], we detect garbage in a system of active objects and
require neither synchronized clocks nor bounded message transmission delay.
We borrow to [12] the hierarchic structure of the garbage collector for its
extension to a large scale distributed system. The distributed fault-tolerant
garbage collector described in [22] is based on reference counting and works
in a system with unreliable nodes and communication channels. In contrast
to our proposition, two separate mechanisms are used to detect unneeded
computations (computations that become unneeded due to a node crash)

and to detect unneeded data structures.

6 Concluding remarks

In this paper was described a distributed garbage collector suited for systems
of active objects. Autonomous local garbage collectors detect and reclaim lo-
cal garbage without communicating with other nodes. A global garbage col-
lector detects remaining garbage by building a global snapshot of the system
state, built by merging data sent asynchronously by the local garbage col-
lectors. The key advantage of the proposition is that local garbage collectors
need not synchronize with each other when sending information to the global
garbage collector. However, this weak synchronization between the local gar-
bage collectors is done at the expense of the time taken for detecting global
garbage. As the garbage collector is based on marking, garbage objects belon-
ging to cycles, even if they span multiple nodes, are detected. Moreover, the

proposed algorithm can be easily extended to cope with unreliable commu-

22 Isabelle Puaut

nication channels and large scale distributed systems. The proposed garbage
collection algorithm was implemented within the distributed run-time sup-
port of a concurrent object-oriented language. Performance measures show
that the approach undertaken for the global garbage collector is realistic if
the applications exhibit good locality of references.

As far as time complexity is concerned, the proposed algorithm, as well as
other garbage collection algorithms dealing with active objects, has higher
worst case time complexity than algorithms dealing with passive entities
(see [5] and [1] for an evaluation of the time complexities of both classes of
algorithms). This comes from the fact that for detecting whether an active
object is garbage or not, both data and activity of objects have to be consi-
dered. If an algorithm suited for passive entities was used, less time overhead
would result from garbage collection, but no execution would be stopped,
thus consuming processing power. Moreover, more work would be left to the
programmer, who would be responsible for stopping executions that he/she

decides to be unneeded.

Acknowledgments

Thanks to Valérie Issarny and Michel Banatre for their careful readings of

earlier versions of this document.

References

[1] J. Cohen. Garbage collection of linked data structures. ACM Computing Surveys,
13(3):341-367, September 1981.

[2] B. Meyer. Object-Oriented Software Construction. Prentice-Hall International, 1988.

[3] P. America. Pool-T : A parallel object-oriented language. In Object-Oriented Concur-
rent Programming, pages 199-220. MIT Press Series in Computer Systems, 1987.

[4] B. N. Bershad, E. D. Lazowska, and H. M. Levy. Presto: A system for object-oriented
parallel programming. Software Practice and Ezperience, 18(8):713-732, 1988.

[5] D. Kafura, D. M. Washabaugh, and J. Nelson. Garbage collection of actors. In Proc.
of the 1990 ECOOP/OOPSLA Conference, pages 126—133, 1990.

[6] Roger S. Chin and Samuel S. Chanson. Distributed object-based programming sys-
tems. ACM Computing Surveys, 23(1):91-124, March 1991.

[7] G. Agha. Actors : A Model of Concurrent Computation in Distributed Systems. MIT
Press, 1986.

A Distributed Garbage Collector for Active Objects 23

(8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

I. Puaut. Distributed garbage collection of active objects with no global synchro-
nisation. In 1992 International Workshop on Memory Management, volume 637 of
Lecture Notes in Computer Science, pages 148-164, Saint Malo, France, September
1992. Springer Verlag.

K. M. Chandy and L. Lamport. Distributed snapshots : Determining global states of
distributed systems. ACM Transactions on Computer Systems, 3(1):63-75, February
1985.

F. Mattern. Virtual time and global states in distributed systems. In Proc. Int. Conf.
on Parallel and Distributed Algorithms, pages 215-226. North-Holland Publishing,
1988.

C.J. Fidge. Timestamps in message-passing systems that preserve the partial orde-
ring. In Proc. 11th Australian Comp. Conf., February 1988.

B. Lang, C. Queinnec, and J. Piquer. Garbage collecting the world. In Proc. of
19th Annual Symposium on Principles of Programming Languages, pages 39-50, Al-
buquerque, New Mexico, January 1992.

M. Benveniste and V. Issarny. Concurrent Programming Notations in the Object-
Oriented Language Arche. Research report 1822, inria, Rennes, France, 1992.

M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young.
Mach: A new kernel foundation for Unix development. In Proc. of Useniz 1986
Summer Conference, pages 93-112, July 1986.

P. Watson and I. Watson. An efficient garbage collection scheme for parallel com-
puter architectures. In Proc. of PARLE Conference, volume 259 of Lecture Notes in
Computer Science, pages 432-443, Eindhoven, 1987. Springer Verlag.

L. Augusteijn. Garbage collection in a distributed environment. In Proc. of PARLE
Conference, volume 259 of Lecture Notes in Computer Science, pages 75-93, Eindho-
ven, 1987. Springer Verlag.

M. Shapiro, P. Dickman, and D. Plainfossé. Robust, distributed references and acyclic
garbage collection. In Symposium on Principles of Distributed Computing, pages 135—
146, Vancouver (Canada), August 1992.

E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained mobility in the Emerald
system. ACM Transactions on Computer Systems, 6(1):109-133, February 1988.

D. M. Washabaugh and D. Kafura. Distributed garbage collection of active objects.
In Proc. of 11th International Conference on Distributed Computing Systems, pages
369-376, May 1991.

N. Venkatasubramanian and G. Agha aand C. Talcott. Scalable distributed garbage
collection for systems of active objects. In 1992 International Workshop on Memory
Management, volume 637 of Lecture Notes in Computer Science, pages 134-147, Saint
Malo, France, September 1992. Springer Verlag.

24 Isabelle Puaut

[21] B. Liskov and R. Ladin. Highly-available distributed services and fault-tolerant dis-
tributed garbage collection. In Proc. of 5th International Symposium on Principles
of Distributed Computing, pages 29-39, Alberta, Canada, August 1986.

[22] L. Mancini and S. K. Shrivastava. Fault-tolerant reference counting for garbage col-
lection in distributed systems. The Computer Journal, 34(6):503-513, May 1991.

JINRIA

Unité derechercheINRIA Lorraine, Techndpole de Nancy-Brabois, Campus scientifique,

615 rue de Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unité derechercheINRIA Rennes, IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité derecherche INRIA Rhone-Alpes, 46 avenue Félix Vialet, 38031 GRENOBLE Cedex 1
Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité derecherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
ISSN 0249-6399

