
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Datarol-II: A fine-grain massively parallel
architecture

Kawano, Tetsuo
Department of Intelligent Systems, Kyushu University

Kusakabe, Shigeru
Department of Intelligent Systems, Kyushu University

Taniguchi, Rin-ichiro
Department of Intelligent Systems, Kyushu University

Amamiya, Makoto
Department of Intelligent Systems, Kyushu University

https://hdl.handle.net/2324/5711

出版情報：Lecture Notes in Computer Science. 817, pp.781-784, 1994-07. Springer
バージョン：
権利関係：(c) 1994 Springer

D a t a r o l - I I : A F i n e - G r a i n M a s s i v e l y P a r a l l e l
A r c h i t e c t u r e

Tetsuo KAWANO, Shigeru KUSAKABE,
Rin-ichiro TANIGUCHI and Makoto AMAMIYA

Department of Information Systems, Graduate School of Engineering Sciences,
Kyushu University

Abstract . In this paper, we introduce the Datarol-II processor, that c a n

efficiently execute a fine-grain multi-thread program, called Datarol. In
order to achieve the efficient multi-thread execution by reducing context
switching overhead, we introduce an implicit register load/store mecha-
nism in the execution pipeline. A two-level hierarchical memory system
is also introduced in order to reduce memory access latency. The sim-
ulation results show that the Datarol-II processor can tolerate remote
memory access latencies and execute a fine-grain multi-thread program
efficiently.

1 Introduction

In a massively parallel computer, one of the most important problems is latencies
caused by remote memory accesses and remote procedure calls. Therefore, to
eliminate the PEs' idling time caused by these latencies~ a new architecture~ that
realizes more efficient context switching among fine-grain concurrent processes,
should be developed.

We propose the Datarol-II processor architecture, that can perform fast con-
text switching so that the latencies can become tolerable.

2 Architecture of Datarol-II Processor

Fig.1 shows the structure of the Datarol-II processor element (PE).

F U (Function Unit) executes the Datarol-II assembly instructions.
M U (Memory Unit) stores operand data for each instance 1.
A C (Activation Controller) controls the activation of threads.
CU (Communication Unit) handles input packets from other PEs.
RQ (Ready Queue) stores waiting threads.
S M U (Structure Memory Unit) offers I-structure memory access.

In Datarol architecture~ each instance has its own logical registers. MU holds
these register values for each instance in Operand Memory (OM). FU has several

1 An instance in Datarol corresponds to a process

782

RQ

]

~
" ~

1
l

Fig. I. The Datarol-II Processor Element

physical register sets. Before each thread execution, FU has to read logical regis-
ter values from MU and store them into one of the register sets. In each physical
register, there is a presence bit that is checked every time FU reads the register
value. If the presence bit is off, the register value is not read from the physical
register, but from MU. Since this register loading mechanism is embedded in the
FU pipeline, FU does not have to issue load instructions to load logical register
values into physical registers. Moreover, when the physical register values are
overwritten, these changes are automatically reflected to MU, therefore there is
no need for explicit store instructions. Since this implicit load/store mechanism
considerably reduces context switching overheads, the Datarol-II processor can
perform efficient context switching among fine-grain threads.

In addition, a high speed memory, called Register Buffer (RB), is introduced
in MU to reduce memory access time. The register values of several instances
are loaded into RB by RQ request before being accessed from FU. By means of
this mechanism, when FU starts a new thread, it can read the register values
very quickly from RB.

3 Evaluation

To evaluate the Datarol-II processor, we developed a software simulator. In this
section, we show the simulation results of a Datarol-II machine consisting of
Datarol-II PEs connected to a 2-D torus network. We used the Mat r ix bench-
mark program : a 64 • 64 matrix multiplication program executed by 16 x 16
PEs. The innermost loop corresponds to each instance, so there are 64 x 64
concurrently executed instances (4 x 4 instances for each PE).

783

Explicit

Implicit

Execution time (clock)

1 Ok 20k 30k 40k
I

execution FU cycle

MU cycle

lOa/l s t o r e u u

Fig. 2. Effect of implicit register load/store mechanism

Ef fec t o f Imp l i c i t R e g i s t e r l o a d / s t o r e : In a Datarol-II processor, register
values are loaded from MU and also automatically stored into MU at execution
time. Now, we show the effect of this implicit register load/store mechanism by
comparing the results with those of explicit load/store instructions(See Fig.2) .
In the explicit case, load/store instructions are inserted in the program, then
every thread loads the register values from MU by means of load instructions at
the head of the thread, and stores the required register values into MU at the
end of the thread. On the other hand, in the implicit case, register values are
loaded and stored automatically by a hardware mechanism without load/s tore
instructions. In Fig.2, we can see that in the explicit case the load/store in-
structions account for a considerable increase in execution time. On the other
hand, in the implicit case, MU accesses are executed in the FU pipeline, over-
lapping with the thread execution. Therefore, the context switching overhead
caused by load/store instructions, is eliminated, and the total execution time is
significantly shorter.

L a t e n c y T o l e r a n c e : To confirm the latency tolerance of Datarol-II, we vary
both the throughput of the PE-PE connection links and the minimum latency
needed to sent a packet to an adjacent PE. Fig.3 shows the utilization ratio of
the execution units with varying network parameters. To estimate the execution
of the M a t r i x program, a throughput of 0.4 packets per clock 2 is needed for
each PE-PE connection, and the maximum tolerance of remote memory access
latency is also estimated to be 300 clocks 3 to keep the execution units utilization
ratio high. From the left chart, it can be seen that the utilization ratio of the
execution units is high, when the throughput is sufficient. In the right chart,
we significantly increase the latencies and observe the utilization ratio of the
execution units. When the average remote memory access latency is less than

Each iteration has 20 instructions including 2 remote memory accesses. The average
remote memory access distance is 8 hops, and there are 2 links per PE. Then, a
throughput of (2 • 8/2)/20 packets per clock is needed.

3 Each PE executes 16 instances concurrently. Then the maximum tolerable latency
is estimated to be 20 x (16 - 1) clocks.

784

100

90

80

70

" 6 0

50

"t4o
~ 3 0

20

10

~ r n i n = 1 I th max
....... ly min = 21 th max

ly min ffi 3 / th max
ly rain = 4 / th max

ly min = M i n i m u m latency
between adjoining PEs)

I I I I l

0 0.2 0.4 0.6 0.8 1,0
Maximum throughput between adjoining PEs

th max (packetJclock)

100

90

80

~ 70

~ so

40

3O

2O

10

th max = 1.00
....... thmaxffi 0.50

th max = 0.40
th max = 0.33

th max: Maximum throughput
(between adjoining PEs)

t I ~ I
100 200 300 400

Average remote memory access latency
LYav e (clock)

Fig. 3. Datarol-II performance with varying network parameters

200 clocks 4 and the throughput is sufficient, the utilization of execution units
is high. According to these results, it is clear that Datarol-II has good latency
tolerance.

4 C o n c l u s i o n s

In this paper, we proposed the Datarol-II processor architecture, which can elim-
inate the processors' idling time caused by remote memory access latency by
performing more efficient context switching. We have evaluated the Datarol-II
processor architecture with a software simulator. The simulation results showed
that (1) the implicit register load/store mechanism eliminates the overhead of
context switching, (2) when the network throughput is sufficient for the target
program, the Datarol-II processor tolerates latencies, and its execution is highly
efficient.

R e f e r e n c e s

1. M.Amamiya and R.Taniguchi, "Datarol: A Massively Parallel Architecture for
Functional Language", Proc. SPDP, pp.726-735, (1990)

2. S.Kusakabe, T.Hoshide, R.Taniguchi and M.Amamiya, "Parallelism Control and
Storage Management in Datarol PE", Proc. IFIP World Congress, Vol.1, pp.535-
541, (1992)

4 Almost all the latencies are less than 300 clocks

