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Department of Information Systems, Graduate School of Engineering Sciences, 
Kyushu University 

Abstract .  In this paper, we introduce the Datarol-II processor, that c a n  

efficiently execute a fine-grain multi-thread program, called Datarol. In 
order to achieve the efficient multi-thread execution by reducing context 
switching overhead, we introduce an implicit register load/store mecha- 
nism in the execution pipeline. A two-level hierarchical memory system 
is also introduced in order to reduce memory access latency. The sim- 
ulation results show that the Datarol-II processor can tolerate remote 
memory access latencies and execute a fine-grain multi-thread program 
efficiently. 

1 Introduction 

In a massively parallel computer, one of the most important problems is latencies 
caused by remote memory accesses and remote procedure calls. Therefore, to 
eliminate the PEs'  idling time caused by these latencies~ a new architecture~ that  
realizes more efficient context switching among fine-grain concurrent processes, 
should be developed. 

We propose the Datarol-II processor architecture, that can perform fast con- 
text switching so that  the latencies can become tolerable. 

2 Architecture of Datarol-II Processor 

Fig.1 shows the structure of the Datarol-II processor element (PE). 

F U  (Function Unit) executes the Datarol-II assembly instructions. 
M U  (Memory Unit) stores operand data for each instance 1. 
A C  (Activation Controller) controls the activation of threads. 
CU (Communication Unit) handles input packets from other PEs. 
RQ (Ready Queue) stores waiting threads. 
S M U  (Structure Memory Unit) offers I-structure memory access. 

In Datarol architecture~ each instance has its own logical registers. MU holds 
these register values for each instance in Operand Memory (OM). FU has several 

1 An instance in Datarol corresponds to a process 
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Fig. I. The Datarol-II Processor Element 

physical register sets. Before each thread execution, FU has to read logical regis- 
ter values from MU and store them into one of the register sets. In each physical 
register, there is a presence bit that is checked every time FU reads the register 
value. If the presence bit is off, the register value is not read from the physical 
register, but from MU. Since this register loading mechanism is embedded in the 
FU pipeline, FU does not have to issue load instructions to load logical register 
values into physical registers. Moreover, when the physical register values are 
overwritten, these changes are automatically reflected to MU, therefore there is 
no need for explicit store instructions. Since this implicit load/store mechanism 
considerably reduces context switching overheads, the Datarol-II processor can 
perform efficient context switching among fine-grain threads. 

In addition, a high speed memory, called Register Buffer (RB), is introduced 
in MU to reduce memory access time. The register values of several instances 
are loaded into RB by RQ request before being accessed from FU. By means of 
this mechanism, when FU starts a new thread, it can read the register values 
very quickly from RB. 

3 Evaluation 

To evaluate the Datarol-II processor, we developed a software simulator. In this 
section, we show the simulation results of a Datarol-II machine consisting of 
Datarol-II PEs connected to a 2-D torus network. We used the Mat r ix  bench- 
mark program : a 64 • 64 matrix multiplication program executed by 16 x 16 
PEs. The innermost loop corresponds to each instance, so there are 64 x 64 
concurrently executed instances (4 x 4 instances for each PE). 
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Fig. 2. Effect of implicit register load/store mechanism 

Ef fec t  o f  Imp l i c i t  R e g i s t e r  l o a d / s t o r e  : In a Datarol-II processor, register 
values are loaded from MU and also automatically stored into MU at execution 
time. Now, we show the effect of this implicit register load/store mechanism by 
comparing the results with those of explicit load/store instructions(See Fig.2) .  
In the explicit case, load/store instructions are inserted in the program, then 
every thread loads the register values from MU by means of load instructions at 
the head of the thread, and stores the required register values into MU at the 
end of the thread. On the other hand, in the implicit case, register values are 
loaded and stored automatically by a hardware mechanism without load/s tore  
instructions. In Fig.2,  we can see that  in the explicit case the load/store in- 
structions account for a considerable increase in execution time. On the other 
hand, in the implicit case, MU accesses are executed in the FU pipeline, over- 
lapping with the thread execution. Therefore, the context switching overhead 
caused by load/store instructions, is eliminated, and the total execution time is 
significantly shorter. 

L a t e n c y  T o l e r a n c e  : To confirm the latency tolerance of Datarol-II, we vary 
both the throughput of the PE-PE  connection links and the minimum latency 
needed to sent a packet to an adjacent PE. Fig.3 shows the utilization ratio of 
the execution units with varying network parameters. To estimate the execution 
of the M a t r i x  program, a throughput of 0.4 packets per clock 2 is needed for 
each PE-PE  connection, and the maximum tolerance of remote memory access 
latency is also estimated to be 300 clocks 3 to keep the execution units utilization 
ratio high. From the left chart, it can be seen that the utilization ratio of the 
execution units is high, when the throughput  is sufficient. In the right chart, 
we significantly increase the latencies and observe the utilization ratio of the 
execution units. When the average remote memory access latency is less than 

Each iteration has 20 instructions including 2 remote memory accesses. The average 
remote memory access distance is 8 hops, and there are 2 links per PE. Then, a 
throughput of (2 • 8/2)/20 packets per clock is needed. 

3 Each PE executes 16 instances concurrently. Then the maximum tolerable latency 
is estimated to be 20 x (16 - 1) clocks. 
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Fig. 3. Datarol-II performance with varying network parameters 

200 clocks 4 and the throughput is sufficient, the utilization of execution units 
is high. According to these results, it is clear that Datarol-II has good latency 
tolerance. 

4 C o n c l u s i o n s  

In this paper, we proposed the Datarol-II processor architecture, which can elim- 
inate the processors' idling time caused by remote memory access latency by 
performing more efficient context switching. We have evaluated the Datarol-II 
processor architecture with a software simulator. The simulation results showed 
that (1) the implicit register load/store mechanism eliminates the overhead of 
context switching, (2) when the network throughput is sufficient for the target 
program, the Datarol-II processor tolerates latencies, and its execution is highly 
efficient. 
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