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Abst rac t .  We extend the notion of bisimulation to Kripke structures 
with fairness. We define equivalences that preserve fairness and are akin 
to bisimulation. Specifically we define an equivalence and show that it is 
complete in the sense that it is the coarsest equivalence that preserves 
the logic CTL* interpreted with respect to the fair paths. We show that 
the addition of fairness might cause two Kripke structures, which can 
be distinguished by a CTL* formula, to become indistinguishable by 
any CTL formula. We also define another weaker equivalence that is the 
weakest equivalence preserving CTL interpreted on the fair paths. As a 
consequence of our proof, we also obtain characterizations of states in 
the fair structure in terms of CTL* and CTL formulae. 

1 I n t r o d u c t i o n  

Branching time propositional temporal logic has been found very useful in the 
automatic verification of concurrent finite-state systems [3]. The systems are 
modelled using labelled state transition structures called Kripke or temporal 
structures [5]. The properties that one wishes to verify can be expressed in 
terms of a branching-time temporal logic. One of the simplest such logics is 
CTL (Computational Tree Logic) described in [4]. While the problem of model- 
checking CTL formulas of a Kripke structure is of polynomial complexity, CTL 
suffers in expressiveness. The richer logic CTL*, described in [6], adds the power 
of linear-time propositional logic to CTL, and subsumes both CTL and PLTL 
(Propositional Linear Time Logic). However, the problem of model checking 
becomes PSPACE-complete [4]. 

The major limitation of CTL is that  it cannot express correctness under fair- 
ness constraints. Fairness constraints allow us to reason about only those infinite 
paths in the Kripke structure which satisfy some fairness specification, which is 
evaluated over the infinite path. The logic FairCTL allows the specification of 
a CTL formula p along with a path formula r The fairness constraint r is a 
Boolean combination of the set of infinitary linear time operators applied to 
propositional arguments [5]. The path quantifiers in the syntax of the formula 
now range over only those infinite paths which meet the fairness constraint r 
In [4], a more general specification CTL F is allowed, where the fairness is de- 
fined in terms of state labels. This allows us to distinguish between two different 
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states which cannot be distinguished by any propositional temporal logic formu- 
la~. The notion of fairness used in our paper is the extension of [5], where we 
allow the infinitary linear time operators in r to refer to state labels also. The 
model-checking problem for FairCTL (and CTL F) can be solved in polynomial 
time. 

Often, it is more natural to think of the fairness constraints as part of the 
system specification, instead of part of the property being verified. We will refer 
to Kripke structures with fairness constraints as fair Kripke structures, and the 
problem of checking a CTL (or CTL*) formula on a fair Kripke structure as the 
FairCTL (or FairCTL*) model checking. Since we allow the fairness constraints 
to be a Boolean combination of infinitary linear time operators applied to state 
labels, the fair Kripke structure specification is as powerful as any kind of w- 
automata [8]. 

Browne, Clarke and Grfimberg [2] characterized finite Kripke structures in 
temporal logic. They showed that any two Kripke structures that can be distin- 
guished by a CTL* formula can also be distinguished by a CTL formula. They 
provide a CTL formula which characterizes Kripke structures up to bisimulation 
equivalence. Bisimulation equivalence is exactly the equivalence that preserves 
all CTL and CTL* formulas. In this paper, we solve an open problem proposed 
in [2] of characterizing equivalence classes for Kripke structures with fairness 
constraints. 

We show that, unlike ordinary Kripke structures, there exists a pair of fair 
Kripke structures which can be distinguished by a CTL* formula, whereas no 
CTL formula can distinguish these two. In fact, these two structures are not 
even trace equivalent, which is surprising because in the case of ordinary Kripke 
structures bisimulation equivalence is the finest equivalence and trace equiva- 
lence is the coarsest equivalence in the linear time branching time spectrum 
[7]. 

Since, for fair Kripke structures, the notion of equivalence is different for 
CTL and CTL* formulas, we provide two different extensions of bisimulation 
equivalence which deal with fairness constraints. E/air-bisimulation character- 
izes states in fair Kripke structures with respect to equivalence over CTL formu- 
las, and E/a~r*-bisimulation characterizes states in fair Kripke structures with 
respect to equivalence over CTL* formulas. 

The problem of FairCTL* model checking can be solved using the algorithm 
for CTL* model checking by introducing additional atomic propositions which 
evaluate state labels, and then transforming the formula using these additional 
propositions [4]. However, the characterization of states in Kripke structures 
for CTL* equivalence [2] does not solve the problem of characterizing states in 
fair Kripke structures. This is especially important when one considers fairness 
constraints as part of the system specification. 

The remainder of this paper is organized as follows: In section 2 we give 
the definitions of fair-Kripke structures and CTL/CTL* syntax and seman- 
tics on such structures. In section 3, the relationship between bisimulation and 
CTL/CTL* model checking is reviewed. In section 4 we present the definitions 
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of g]air*-bisimulation and gSair-bisimulation, and prove completeness results 
for both equivalences. We conclude in section 5 with plans for future research 
and applications of our results. 

2 D e f i n i t i o n s  

2.1 Fair  K r i p k e  S t r u c t u r e s  

A Kripke structure K is a triple < S, T, L >, where 

- S is a finite set of states. 
- T C S x S is the transition relation. 
- L : S --~ 2 AP is the labelling function and A P  is the underlying set of atomic 

propositions. 

The infinite sequence of states ~ = [sls2s3 �9 �9 .] is said to be a path starting at 
state Sl if Vi(T(si ,s i+l)) .  a k denotes the path [sks~+lsk+2...], i.e. the k-th 
suffix of e. [a]k denotes sk i.e. the k-th state occurring on ~r. 

Fairness conditions express restrictions on the infinitary behavior of the sys- 
tem. Various formalisms exist for defining fair paths, e.g Biichi, Streett, Rabin, 
and Muller conditions [8]. An important  observation is that  in all cases fairness 
of the path is a function of the set of infinitary states. Muller conditions, defined 
below, can express arbitrary constraints on the set of infinitary states. Thus 
Muller fairness constraints are complete, and so without loss of generality, we 
will restrict our analysis to Kripke structures with Muller fairness conditions, 
which will be referred to as f a i r - K r i p k e  s t r u c t u r e s ,  denoted by the 4-tuple 
(S, T, s f ) .  

D e f i n i t i o n  1. A M u l l e r  F a i r n e s s  c o n d i t i o n  (MFC) f on Kripke structure K 
is characterized by a class C = M1, M2, �9 �9 Mn of subsets of S; the path e is 
fair, if and only if the set of states occurring infinitely often in (r, (denoted by 
inf(er)) is an element of C. The sets Mi will be referred to as the M u l l e r  fa i r  
subsets. 

N o t a t i o n :  ~'~0 denotes the set of all paths starting at so that  satisfy the MFC f .  
R e m a r k :  Muller conditions are known to be exponentially less succinct in ex- 
pressing fairness than other common fairness constraints. We do not analyze 
complexity issues in this paper; hence this is of no concern. Also, to simplify 
analysis we will always assume that  every state lies on a fair path. This is not 
a serious restriction; also note that  under Muller fairness conditions, there are 
efficient procedures for deciding if there is a fair path from a state. 

2.2 C T L / C T L *  M o d e l  C h e c k i n g  o n  fa ir  K r i p k e  s t r u c t u r e s  

There are two type of formulae in CTL and CTL*: state formulae (which are 
true or false in a specific state), and path formulae (which are true or false along 
a specific path). Let AP be the set of atomic proposition names. A state formula 
is given by the following syntax: 
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1. _ a i f a E  AP 
2. If f l  and f~ are state formula, then so are -~fl, f l  V f2 
3. If g is a path formula, then 3g, Vg are state formulae. 

A path formula is given by the following syntax: 

1. A state formula 
2. If gl and g2 are path formula, then so are -~gl, f l  V g~. 
3. If gl and g2 are path formula, then so are Xgl ,  glUg2. 

CTL* is the set of state formulae that  are generated by the above rules; CTL 
is a subset of CTL* in which the path formulae are restricted to be: 

1. If f l ,  and f2 are state formula, then X fl  and f l  Uf~ are path formula 

Given a fair-Kripke structure K - (S, R, s f )  state and path formulae are 
interpreted over fair paths as defined below. The formulae f l  and f2 are state 
formulae, and gl and g2 are path formulae. 

1. so ~ _a if and only if a E s 
2. so ~ -~fl if and only if so ~ f l ,  so ~ f l V f 2  if and only if so ~ f~ or 

s0 
3. so ~ 3gl if and only if there exists a fa i r  path ~r starting at so such that  

~r ~ gl; similarly s0 ~ Vgl if and only if for all f a i r  paths r starting at So, 
~ ' ~ g l  

4. ~- ~ f l  if and only if so is the first state of ~" and s0 ~ f l  
5. 7r ~ ~gl if and only if ~" ~ gl, ~ ~ gl Vg2 if and only if 7r ~ gl or ~" ~ g2 
6. 7~ ~ Xgl if and only if~r 1 ~ gl, 7r ~ glUg2 if and only if there exists a k > 0 

such that 7r k ~ g2 and for all 0 < j < k, ~-~ ~ gl 

N o t a t i o n :  Given a path formula gl, we will use the abbreviation Ggl to denote 
the CTL* path formula-~(TItUE U-~gl), where TRUE is a logical tautology. 

3 E q u i v a l e n c e s  p r e s e r v i n g  C T L / C T L *  

Given a Kripke structure K = (S, T, s the usual definition of bisimulation is 
the coarsest relation on S • 5: satisfying 

Ebi (s, t)  - Z ( t ) )  A 

Ys'(T(s, s') --~ 3t'(T(t, t ')  A Ebi~(s ', t ' ))) A 

Vt'(T(t, t') --~ 3s'(T(s, s') A Ebi'(s ', t'))) (1) 

It is clear that E is an equivalence relation; soundness of this definition follows 
from the observation that  

1. there exists a relation satisfying the above (namely the identity), and 
2. given any two distinct relations E1,$2 satisfying the above, there exists a 

relation containing both E1 and E2. 
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In the absence of fairness conditions on the paths through the Kripke struc- 
ture, Browne, Clarke, and Griimberg prove the following completeness result [2]: 

T h e o r e m 2 .  Let s,t  be states in K. Then gbiS(s,t) if and only if there is no 
CTL formula r such that s ~ r A t ~: r 

As a corollary, they note that  states in a Kripke structure that  can be dif- 
ferentiated by a formula of CTL* can also be differentiated by a formula of 
CTL. Furthermore, they construct CTL formulae that  characterize states and 
structures up to bisimulation equivalence. 

4 E q u i v a l e n c e s  o n  f a i r  K r i p k e  s t r u c t u r e s  

In the presence of fairness conditions, states that  have the same branching struc- 
ture may have different infinitary behavior. In the fair-Kripke structure defined 
in figure 1, the Muller fairness condition is {U1, V1} (shown in the dotted boxes), 
and the set of AP's is {a, b}. States so and to have identical finite branching struc- 
ture, but state to models the CTL formula 3Ga (there exists a path such that  
always a), while so ~ 3Ga. 

Vl : { 3 0 ~ 1 }  

Fig. 1. 

Vl = {to} 

States that agree on all CTL formulae in the absence of fairness 

In this section we define two equivalences on the states of fair-Kripke struc- 
tures. We prove completeness results with respect to CTL* and CTL, using 
arguments analogous to those in [2]. Essentially, our equivalences incorporate 
fairness constraints by requiring that  states be equivalent on all fair paths. We 
show that  it suffices to examine a restricted class of paths, namely the rational 
paths defined below. 

D e f i n i t i o n 3 .  Let ~ be a path through a Kripke structure K.  Define cr to be a 
r a t i o n a l  p a t h  if 3N, M such that Vi (i > N :=~ [a]i = [O'](imodM+g) ). 

Thus rational paths are those which end in a cycle. 
N o t a t i o n :  Given an equivalence relation E on the state space of a Kripke struc- 
ture, extend it to an equivalence g~ on paths through the Kripke structure as 
follows: 

In the sequel, we will simply use E to denote Eo~. 
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4.1 E q u i v a l e n c e s  p r e s e r v i n g  CTL* o n  fair K r i p k e  s t r u c t u r e s  

D e f i n i t i o n 4 .  Given a fair-Kripke structure K = (S, T, s  f ) ,  states s and t are 
said to be gyair ._bis imilar  if they lie in the coarsest equivalence g that satisfies 

s ( s ,  t)  r  ( s  - ^ 

(for all fair rational paths a start ing at s 

there exists a fair rational pa th  7" start ing at t such tha t  S(~, 7")) A 

(for all fair rational paths 7" s tar t ing at t 

there exists fair rational pa th  ~s ta r t ing  at s such that  S(a,  7")) (2) 

The soundness of this definition follows in a manner  analogous to that  for equa- 
tion 1. 
This definition is complete in the sense tha t  we have the following theorem: 

T h e o r e m  5.. Let s,t be states in K. Then gYair*(s,t) if and only if there is no 
fair CTL* formula r such that s ~ r A t ~= r 

Proof. The forward direction of the theorem, namely g la / r*(s , t )  =r for every 
CTL* formula r s ~ r ~ t ~ r follows by a straightforward induction on the 
length of CTL* formula. 

To show the converse, namely ~Eyair*(s,t) ~ there exists a formula r of 
CTL* such that  s ~ r A t ~: r we first define E0, E l , . . . :  

- E0(s, t) if and only if s  _: s 
- Ek+l(s, t) if and only if 

�9 For every fair rational path  ~r start ing at s there is a fair rational path  
7- starting at t such that  Ek(~r, r) .  

�9 For every fair rational path T start ing at t there is a fair rational pa th  
starting at s such that  Ek(c L 7-). 

Observe that  since E~+l(s,t) ~ Et(s,t), it follows that  E0 __D E1 _D_D E2 . . . .  
Also every equivalence in the sequence contains the equality relation. (The binary 
relation where an element is related only to itself). Since the state space is finite 
the sequence converges to a fixed point in some finite number of step, i.e. there 
is some k such that  Ek+l = Ek, which we will refer to as Eoo. 

We now characterize states up to El equivalence by CTL* equivalence. This 
is done by induction on I. Specifically we demonstrate  

- If-~(El(s,  t)) then there is a CTL* formula dl(s, t) such that  Vv [El(s, v) 
v ~ dt(s,t)], and t ~ dt(s,t). 

- For every state s 6 S, there is a formula of CTL* Cl(s) such that  for every 
t 6 S[t ~ Of(s) r Et(s,t)]. 

dl (s  , t )  is a formula that  distinguishes between t and states El-equivalent to 
s and Cl(s) is a formula that  characterizes Et-equivalence to state s within the 
fair-Kripke structure. 
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If we let Cl(s) be a conjunction of Cl-1 (s) and dr(s, t) for every t which is not 
Ez-related to s, the second assertion follows immediately. Now it is necessary to 
show how to construct dl(s, t) by induction on I. 

Base Case:(/= 0) 
Let {Pi} be the set of atomic propositions in s  and {qj } be the set of atomic 
propositions in AP - s  Now let Co(s) - Aipi A Aj-~qj. It is clear that this 
formula is only true in states with exactly the same labell~--ng as s. Thus the base 
case is established. 

Induction: 
Assume the result is true for 1. We will show it for l -{- 1. 

Let s, t  be any states in the structure such that -,(El+l(s,t)). This can 
only happen if there is a fair rational path from s for which there is no Ez- 
corresponding fair rational path out of t, or there is a fair rational path from 
t for which there is no El-corresponding fair rational path out of s. In the lat- 
ter case, we will use the argument below to find a dl+l(t,s) such that t 
dz+l(t,s) and s ~= dz+l(t,s). We can negate this formula to obtain the desired 
dl+l(t, s). Let a fair rational path from s with no corresponding path from r be 

= sis2 . . .  sg(sN+l . . .  SN+k) ~, where s = sl for notational convenience. First 
define the CTL* formulae cycle~+l(S,t) ,  for i e {1 , . . . ,  k} 

c y c ' [  e~+1(8  , t) ---- (Cl(SNq_l+(i_l)modk ) A Z ( C l ( S N + l + ( i ) m o d k )  A Z ( C l ( S N + l + ( i + l ) m o d k )  

�9 "" XCl (SN+l+( i+k_2)modk ) ) "  "') 

Let cyclez+l(s  , t) be the path formula given below: 

cyclel+ l(s, t) = cycle~+ l(s, t) V cycle2+l (s, t) ... cyclelk+l (S, t) 

A path will model cyclet+1(s,t ) if and only if the k-th prefix of the path is 
El-equivalent to a cyclic permutation of the k-th prefix of a. 

Now defin e pa th l+l (s  , t)  as below: 

= (Cz(s ) ^ ^ x ( c , ( s 3 )  ^ . . X ( C , ( s N )  A 

^ X(Cz(sN+2)... x(c, ^ 

IX a (r162 (s, t ) ) ] ) . . . )  

Let d~+l(s,t) = 3pa thz+l ( s , t  ). Note that  o "N+I ~ cyc le t+ l ( s  ,t).  Further- 
more, cr ~ (Cz(sl) A X(Cz(s2) A X(CI(s3) A .. "X(C,(SN+k))'" "); hence s 
dz+l (s, t). 

Given that ~r ~ patht+ 1 (s, t), we can prove that  ~r is El-equivalent to a. First 
observe that  for each i E {1 , . . . ,  g + k}, 7r i ~ Cl(si). Further, it is true that 
for i > 1, r g+i ~ cyc lez+l ( s , t  ). Using these facts, one can show by induction 

_ ( ( / - 1 ) m o d k ) + l ,  .x  that  for i _> 1, 7r N+i ~ cycxel+ 1 ts,~). This implies that  for each i >_1, 

7r N+i ~ Cz(sN+l+(i-1)modk). 
We now reason that  Ecc(s, t )  ::~ g/ai~*(s,t), and so states that are E ~  

equivalent cannot be differentiated by any formula of CTL*, implying that  states 
that  are not El~ir*(s, t) equivalent can be differentiated. 
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Since E ~  is a fixed point, and is reached at some finite stage, there exists 
some k such that  Ek = Ek+l = Eoo. Hence E ~  satisfies the following: 

- Ek+l(s , t ) (= Eoo(s,t)) if and only if for every fair path from s there is an 
Ek(= E~)-equivalent  path from t, and vice versa. 

Thus E ~  lies in E/air*, and so E ~  = glair*. �9 
Remark: In definition 4 states were taken to be equivalent over rational fair 
paths. The following lemma demonstrates that equivalence over rational fair 
paths implies equivalence over all fair paths, establishing a more intuitive char- 
acterization of gfair*-bisimulation. The lemma also establishes that  glair* can 
be polytime reduced to deciding trace equivalence for w-automata with accep- 
tance conditions corresponding to the fairness conditions. 

L e m m a 6 .  Let K be a given fair-Kripke structure. Let g be an equivalence 
relation on the states satisfying equation 2 i.e. satisfying the following: 

g(s, t ) .  (z(s) = z (0 )  ^ 
(for all fair rational paths ~r starting at s 

there exists a fair rational path 7" starting at t such that S(cr, r ) )  A 

(for all fair rational paths 7" starting at t 

there exists fair rational path ~r starting at ssuch that g(cr, 7-)) (3) 

Then g preserves equivalence across all fair paths, i.e. for all fair paths c~ starting 
at s there exists a fair path r starting at t such that g(~r, r)),  and for all fair 
paths 7- starting at t there exists a fair path ~r starting at s such that g(~r, 7-)). 

Proof. Let {C1, C2, . . . ,  Cn} be the equivalence classes of g. Define an alphabet 
= {Cl,C2,.. . ,Cn} corresponding to the equivalence classes. Define the w- 

language ns over Z as ns = {x e S~ I qcr E .T[ such that Vi[c~]i E C([x]i)}, 
where C : {C1, C2,. . . ,  Cn} --+ ~ maps equivalence classes to their corresponding 
alphabets. It is clear that L~ is w-regular. (The fair-Kripke structure can be 
viewed as a Muller automaton, and the output  at a state is the symbol of 
corresponding to its equivalence class.) Similarly, define the w-regular language 

nt = {y E ~ ] 3r  C .Tit such that Vi [r]i E C([y]i)}. 
It is clear that given any fair path ~r starting at s, there is a fair path 7- 

starting at t which is E-equivalent to c~, and vice versa, if and only if L~ = Lt. 
Claim:  If W1 and W2 are two w-regular languages over the same alphabet, 

and they agree on all rational words (i.e. words that are ultimately periodic), 
then they are in fact equal. 

The claim follows from the following observation. Let W be the symmetric 
difference of W1 and W2, i.e. W = (W~ N W~) U (W~ N W~). Then W is w-regular, 
and so is non-empty if and only is it contains a rational word. Since W1 and W~ 
contain exactly the same set of rational words, W is empty, and so W1 = W2. 

Since L1 and L~ agree on all rational words (because s and t agree on all 
rational paths), it follows that L1 = L~, and so s and t must agree on all paths, 
proving the lemma. �9 
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4,2 E q u i v a l e n c e s  preserv ing  CTL on  f a i r  K r i p k e  s t r u c t u r e s  

The logic CTL is a subset of the logic CTL* where nesting of path operators is 
not allowed, i.e. every path operator must be immediately followed by a path 
quantifier. Since it is a subset of CTL*, it follows from theorem 5 that  states that 
are E/a~r* equivalent must agree on all CTL formulae. However the converse is 
not true. Consider the the states s: and t:  in figure 2. 

u :  = { s : }  u2  = = 

l 
i:222;2 i;22"':':: ...... , ......... i ..... 

. . . . . . . . . . . . . . . . . . .  . . . . .  i { a }  l b }  

Fig. 2. States that agree on all CTL formulae but can be differentiated by CTL* 

1. The set of atomic propositions is {a, b}, the set of AP's true at s: and t :  is 
{a}, the set of AP's true at s2 and t2 is {b}. 

2. The fairness conditions are of Muller type. The sets U: = {s:},U2 = {s: , s2} ,  
V1 = {tt} are the fair Muller sets, i.e. fair paths are those in which the 
infinitary set of states is exactly one of U:, U2, V1. 

State s: can not be differentiated from t:  by any CTL formula, since the only 
difference is the fact that  there are paths from s: on which b happens infinitely 
often, and CTL can not express 3 G F r  i.e: there exists a path such that infinitely 
often r is true. More formally the equivalence of sl and t :  with respect to all 
CTL formula can be proved by using induction on the length of the formula. 
R e m a r k :  It is surprising that  the set of output  traces from s: is not equal to 
the set of output  traces from t: .  (Consider for example the trace (ab)W). This 
in contrast to the fact that  in the absence of fairness constraints states that are 
bisimilar equivalent must have the same set of traces. 

We can still characterize states that  agree on all CTL formula as shown in 
the following theorem. 

T h e o r e m  7. Given a fair-Kripke structure K = (S, T, s  f ) ,  define states s, t to 
be 8/air-bisimilar if they lie in the coarsest equivalence C satisfying: 

E(s, t) if and only if 

I. L(s) = s 
2. For every fair rational path a = ( s : s 2 . . .  sN) �9 (SN+:SN+2.. .SN+k) '~ there 

exists a fair rational path v such that  Vi(1 < i < N --~ g(si ,[r]i))  and 
Vi > g [v]i is E-equivalent to some state in i n f (a ) .  
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3. For every fair rational path  r from tl, there should be a fair rational path  ~r 
from sl which corresponds to ~" in the above sense. 

Then sfai~ is the coarsest equivalence preserving all of fair-CTL. 

Proof. The proof is similar to that  for CTL*. First define E0, E l , . . .  

- Eo(sl, t l )  if and only if s  --- s  
- Et+l ( s l ,  t l )  if and only if 

1. for every fair rational path ~ = ( s i s2 . . .  SN).  (SlVSN+I . . .  SN+k) ~ there 
exists a fair rational path  7- such that  Vi (1 < i < g -+ Et(si, [vii)), and 
Vi > N,  [r]i is Et-equivalent to some state in inf(~) .  

2. for every fair rational path  r f rom tl ,  there is a fair simple pa th  o" from 
sl which corresponds to r in the above sense 

Note that  Eoo satisfies the definition of bisimulation as given in 1: By defini- 
tion, Eoo(s, t) ~ s - s Also, T(s, s') ~ 3t'(T(t,  t') A Eoo(s', t ' )) ,  since s '  
can be continued to an infinite path for which there must  correspond an infinite 
pa th  from T, the second state of which must  be E~-equivalent  to s. A symmetr ic  
argument  for t shows that  s and t are bisimilar. 

We now characterize states up to Et equivalence by CTL formulae. This is 
done by induction on I. Specifically we will demonstrate:  

- I f - , ( E z ( s , t ) )  then there is a CTL formula dz(s, t) such that  Vv [Ez(s, v) 
v d (s, v)], and t d (s, t )  
For every state s E S, there is a formula of CTL Ca(s) such that  for every 
t sit  Ca(s) El(s,t)] 

dl(s, t) is a formula that  distinguishes between t and states Ez equivalent to 
s and Cz(s) is a formula that  characterizes El-equivalence to state s within the 
fair-Kripke structure. 

If  we let Cz(s) be a conjunction of Cz-l(s) and dl(s,t) for every t which is 
not El-related to s, the second assertion follows immediately.  Now it is necessary 
to show how to construct dz(s, t) by induction on 1. 

B a s e  Case:( l=O) 
Let {p~} be the set of atomic propositions in ~:(s) and {qj} be the set of atomic 
propositions in AP - s Now let Co(s) = A i ~  A Aj-~q_~j. It is clear that  this 
formula is only true in states with exactly the same labelling as s. Thus the base 
case is established. 

I n d u c t i o n :  
Assume the result is true for l. We will show it for l + 1. 

Let s, t be any states in the structure such that  ~(E~+I (s, t)). This can only 
happen if there is a fair rational path  from s with no El-corresponding fair 
rational pa th  from t, or there is a fair rational pa th  from t for which there is no 
El-corresponding fair rational path out of s. In the latter case, we will use the 
argument  below to find a dz+l(t, s) such that  t ~ dt+l(t, s) and s ~: dl+l(t, s). 
We can negate this formula to obtain the desired dt+l (t, s). 
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Let ~ = sis2 .. �9 SN(SN+I . . .  SN+k) ~ be a fair rational path from s with no El- 
corresponding fair rational path from t, where sl = s for notationM convenience. 

Define dt+a (s, t) as below: 

dt+l (s, t) = Ct(sl)  A 3X(Ct(s2)  A 3X(Cl(s3)  A 3 ( X . . .  ~X(CI(SN+I) /k 

~C(Cz(sN+l) V C~(sN+~) V . . .  V Cz(sN+k )). . .)  

By construction, s ~ d~+l(s,t). Also, since there is no path from t which corre- 
sponds to or, t ~ dz+l(s, t). Hence the inductive step follows. 

Observe that  if states s, t are not Eoo equivalent, then there is some k such 
that  -~(E~(s,t)). As a result, s ~ Ck(s) and t ~ Ck(s) and so states that  are 
not Eoo-equivalent can be differentiated by CTL. 

We now reason that  E ~  (s, t) ~ for any CTL formula r s ~ r *-* t ~ r We 
use induction on the length of the formula. 

B a s e  Case:  r = _a where a E AP. Then since Ei --* E0, it follows/:(s) - 
/:(t),  and so s ~ a r t ~ a. Hence the base case is proved. 

I n d u c t i v e  S tep :  

1. r = -"(r Straightforward - follows from elementary propositional logic. 
2. r = (r V r Straightforward - follows from elementary propositional logic. 
3. r = 3X(r  Observe that  E~o(s,t) ~ Vs'(T(s, s') ~ 3t ' (T(t , t ' )AEoo(s ' , t ' ) ) ) .  

This follows from the fact that  s ~ can be continued to a fair rational path, and 
so there must be a corresponding fair rational path from t. t ~ can be taken to 
be the state following t in this path. From this observation and the induction 
hypothesis, it follows that  3 s ' ( T ( s , s ' ) A  s' ~ r r 3 t ' ( T ( t , t ' ) h  t' ~ r 
and hence induction goes through. 

4. r = 3(r162 Suppose s ~ r Then from the semantics of CTL, it fol- 
lows that  there exists a path a = s s l s 2 . . ,  such that  3N(Yi( i  < N 
[a]i ~ r A [~r]N ~ r Reasoning as above, there must exist a finite path 
t t l t 2 . . . t N  such that Vi <_ N(Ec~(s~, t~)). Hence by the induction hypothesis 
Vi < N(t i  ~ r and (tN ~ r This finite path can be extended to an 
infinite path, since every state is assumed to lie on a fair path, and this 
infinite path satisfies (r162 Thus t ~: r The converse, namely to show 
t ~ r ~ s ~ r follows by symmetry. 

5. r = 3G(r Suppose s ~ r Then there is a fair rational path r such 
that  V/([~r]~ ~ r Since a is rational, it can be expressed as a sequence 
ssl s2 �9 �9 �9 sg  (sn+l SN+2 �9 �9 �9 SN+k )~. Because s is Ec~-equivalent to t, it follows 
that  there is a rational fair path ~" such that 

- Vi < N :  Eoo([r [r]i), and 
- Vi > N :  3sj e i n f (a )  such that  Eoo(sj, [r]i) 

C la im:  r ~ G(r 
P r o o f :  Every state on the path r is Eoo-equivalent to a state on or. Since 

~ G(r it follows that  every state on ~ satisfies r Since every state on 
the path r is Eoo-equivalent to a state on a, and the induction hypothesis 
requires that  states that  are Eoo-equivalent agree on all CTL formula of 
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length less than I r h it follows that  all states on r satisfy r Thus t ~ r 
and the claim is proved. 

Hence by induction, states that  are Ec~-equivalent satisfy exactly the same set 
of CTL formula. 

This completes the proof of theorem 7. �9 

5 Conc lus ion  and Future  Work 

We have defined state equivalences on Kripke structures that  incorporate fair- 
ness. These equivalences were shown to be complete in the sense that  they are 
the weakest equivalences preserving branching t ime logics interpreted on the 
structures. Furthermore we characterized the equivalence classes by formulae 
from the logic. 

We have developed approximations to the complete equivalence that  can be 
efficiently computed for Biichi, Rabin, and Streett  fairness conditions. These 
are used in a hierarchical procedure for minimizing systems of interacting state 
machines[l]. We plan to continue developing generalized notions of equivalence 
that  are property specific, and can be used to reduce or abstract  components in 
large designs. 
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