
On the Relation between the λµ-Calculus and
the Syntactic Theory of Sequential Control

Philippe de Groote

INRIA-Lorraine – CRIN – CNRS
Campus Scientifique - B.P. 239

54506 Vandœuvre-lès-Nancy Cedex – FRANCE
e-mail: degroote@loria.fr

Abstract. We construct a translation of first order λµ-calculus [15] into
a subtheory of Felleisen’s λc-calculus [5, 6]. This translation preserves
typing and reduction. Then, by constructing the inverse translation, we
show that the two calculi are actually isomorphic.

1 Introduction

In: F. Pfenning (Ed.), Proceedings of the 5th International Conference on
Logic Programming and Automated Reasoning (LPAR’94),
Lecture Notes in Computer Science, 822, Springer-Verlag, (1994), pp. 31-43.

For a long time it has been widely thought that a classical proof, as opposed
to an intuitionistic one, did not carry any computational content (see, for in-
stance, [8, App. B, §B.1] and [12, p. 67, Proposition 8.3]). In 1990, however,
T. Griffin opened a new research area by introducing a classical formulae-as-
types notion of control based on Felleisen’s C operator [9]. Since then, various
authors have defined different systems that enlighten the constructive content
of classical logic [1, 2, 7, 13, 14, 15, 16, 17].

Despite its originality, Griffin’s work has been criticized by some logicians.
In [15], for instance, M. Parigot writes that the system he (Griffin) obtains is not
satisfactory from the logical point of view: the reduction is in fact a reduction
strategy and the type assigned to C doesn’t fit in general the reduction rule for
C. Such criticisms are based on a misunderstanding of Griffin’s motivations.
His goal was not to define a new calculus but to type an existing one, namely
Felleisen’s syntactic theory of sequential control (λC, for short).

The possible defects of Griffin’s proposal are only due to the fact that the
computation rule of a sequential control operator such as C is inherently con-
text sensitive. In order to push out this context sensitiveness as far as possible,
M. Felleisen defines a large part of his calculus by means of usual notions of
reduction, i.e., notions of reduction that are compatible with the term formation
rules. Therefore, if one consider only the subtheory defined by these congruent
notions of reduction, Griffin’s typing amounts to a system that satisfies interest-
ing properties such as confluence and subject reduction.

Moreover, from a computational point of view, Griffin-Felleisen system is
at least as powerful as first order λµ-calculus since the latter is isomorphic to a
subtheory of the former. This is the central result of this paper that we establish
by constructing a translation of the λµ-calculus into the λc-calculus. This result

also demonstrates that Griffin’s and Parigot’s approaches are not as different as
one could think at first sight.

The remainder of this paper is organized as follows. The two next sections
introduce briefly Felleisen’s λc-calculus and Parigot’s λµ-calculus (λµ, for short).
In Section 4, we define the translation of λµ into λC, and we study its proper-
ties. In Section 5, we construct the inverse translation. Finally, we present our
conclusions in Section 6.

All through the paper, we assume that the reader has an elementary knowl-
edge of λ-calculus and natural deduction. We also adopt Barendregt’s variable
convention, which protects one from clashes between free and bound variables.
This background material may be found in standard books such as [3, 8, 10, 18,
19].

2 Felleisen’s λc-Calculus

Felleisen’s calculus is a call-by-value λ-calculus including a control operator C
akin to Scheme call/cc [5, 6]. The core syntax of the language is given by the
following grammar:

T ::= x | (λx. T) | (T T) | (C T),

where a λc-term of the form C T is called a C-application.
The operational semantics of the language may be easily defined by rewrit-

ing rules expressed in terms of applicative contexts. Let a value be defined to be
a variable or a λ-abstraction, and let V range over values. Applicative contexts
are defined by the following grammar:

C ::= [] | V C | CT.

As usual, [] represents a hole, and the expression C[M] denotes the λc-term
obtained by putting the λc-term M into the hole of the applicative context C.

The rewriting rules defining the operational semantics of the language are
the following:

C[(λx.M) V] → C[M [V/x]], (C1)

C[CM] → M (λx.A (C[x])). (C2)

In Rule C1, V stands for a value, and M [V/x] denotes the usual capture-avoiding
substitution. In Rule C2, A is the abort operator that can be defined as

AM
def= C (λx.M),

where x is a dummy variable that does not occur free in M .
It is easy to show that any closed λc-term is either a value or can be written

in a unique way as C[M], where M is either a βv-redex or a C-application.
Therefore, Rules C1 and C2 defines a totally deterministic strategy of evaluation,
and the applicative context C that is uniquely determined by each rewriting step

2

may be interpreted as being the current continuation. This interpretation allows
one to explain intuitively the behavior of the operator C. When evaluated within
an applicative context C, a C-application gives complete control to its argument
by applying it to a procedural abstraction of the current continuation C. In the
sequel, if this procedural abstraction is invoked with a value V , the new current
applicative context is abandoned, and control is given to the term C[V].

While Rules C1 and C2 are useful to define the operational semantics of
the language, there are not convenient to reason about programs. For this
reason, Felleisen has developed a calculus in which a large part of the operational
semantics of his language is expressed by means of proper notions of reduction,
that is notions of reduction that are compatible with the term formation rules.
These notions of reduction are the following:

(λx.M) V → M [V/x] (βv)

(CM) N → C (λk. M (λf.A (k (f N)))) (CL)

V (CM) → C (λk. M (λf.A (k (V f)))) (CR)

CM → C (λk. M (λf.A (k f))) (Ctop)

C (λk. CM) → C (λk. M (λf.A f)) (Cidem)

The resulting calculus satisfies the Church-Rosser property and a form of
the standardization theorem [6]. It also captures a large part of the original oper-
ational semantics. In order to get equivalence, only one additional computation
rule is needed:

CM � M (λf.A f) (CT)

Moreover, the application of this computation rule, which is not a proper notion
of reduction, may be delayed.

In [9], T. Griffin analyses the rewriting rule C2, and proposes to give the
operator C the type ¬¬A → A. As stressed by M. Parigot, this type assignment
is not preserved by evaluation1. The only type violation, however, is due to
the computation rule CT. Therefore, if one considers only the proper notions of
reduction, Griffin’s type assignment satisfies the subject reduction property.

For the purpose of this paper, we will slightly modify Felleisen’s calculus.
First of all, Parigot’s λµ-calculus is not a call-by-value calculus. Hence, in order
to establish our equivalence result, we must abandon Felleisen’s call-by-value
strategy. In other words, we must replace the notion of reduction βv by the
usual notion of reduction β. By doing this, one destroys the confluence of the
calculus because a term of the form

(λx.M) (CN)

1 Griffin, of course, mentions the problem, and solves it by encapsulating each program
M into the expression C (λk. k M).

3

may now be reduced in two different ways. Therefore, in order to conserve the
Church-Rosser property, we will drop the notion of reduction CR. We will also
drop the notion of reduction Cidem, simply because it is not needed.

Another modification concerns the presence of the abort operators in Fel-
leisen’s reduction rules. As far as control is concerned, these abort operators are
useful. However, from a proof-theoretic point of view, there are irrelevant. In
general, the type scheme assigned to the abort operator is ⊥ → A. In Felleisen’s
rules, however, the abort operators must all be assigned the trivial type ⊥ → ⊥.
Take for instance the notion of reduction CL. It corresponds to the following
proof-reduction step:

¬¬(A → B)
A → B A

B
→

¬¬(A → B)

[¬B]
[A → B] A

B

⊥
⊥

¬(A → B)
⊥

¬¬B

B

Clearly, the inference ⊥
⊥ is useless.

To summarize, the calculus that we will consider is the one induced by the
modified notions of reduction that follows:

(λx.M) N → M [N/x] (β)

(CM) N → C (λk. M (λf. k (f N))) (CL)

CM → C (λk. M (λf. k f)) (Ctop)

From now on, when we will speak of Felleisen’s calculus (λC), we will
mean the subtheory resulting from the three modified notions of reduction β,
CL, and Ctop. This calculus satisfies the Church-Rosser property; this can be
established by replaying Felleisen’s proof because it is based on the Hindley-
Rossen lemma. The symbol →c will denote the one-step reduction relation
of λC; and the symbols →→c and =c will stand, respectively, for the reflexive,
transitive closure and the reflexive, transitive, symmetric closure of the one-
step reduction. Finally, when a λc-term M is typable with type A according to
Griffin’s system, we will write `C M : A.

3 Parigot’s λµ-Calculus

Parigot’s λµ-calculus is a classical extension of Krivine’s AF2 [11]. It is therefore
a second-order system. In this paper, we will focus on first-order λµ-calculus.

4

This restriction affects neither the syntax of the language, nor the reduction
rules. Simply, it allows fewer terms to be typable.

λµ-Terms are built from two distinct alphabets of variables: the set of λ-
variables, and the set of so-called µ-variables. The core syntax of the language
is given by the following grammar:

T ::= x | (λx. T) | (T T) | (µα. T) | [α] T,

where x ranges over λ-variables, and α ranges over µ-variables. A λµ-term of the
form µα. T is called a µ-abstraction, and a λµ-term of the form [α] T is called
a named term. As λ, µ is binding operator: the free occurrences of a µ-variable
α in T become bound in µα. T .

The typing rules are given by means of a classical sequent calculus. The
sequents are either of the form Γ − ∆ or of the form Γ − A, ∆, where the
antecedent Γ is a set of formulas indexed by λ-variables, the succedent ∆ is a
set of formulas indexed by µ-variables, and A is a distinguished formula. The
typing rules are the following:

Logical rules
x : Ax − A

M : Γ, Ax − B, ∆
λx.M : Γ − A → B, ∆

M : Γ − A → B, ∆ N : Π − A, Σ
M N : Γ, Π − B, ∆, Σ

Naming rules

M : Γ − A, ∆
[α] M : Γ − Aα, ∆

M : Γ − Aα, ∆
µα.M : Γ − A, ∆

In addition to the usual notion of reduction β, there is a structural notion of
reduction, which is related to µ-abstraction. The intuition behind the operations
of naming and µ-abstraction may be explained as follows: in a λµ-term µα.M of
type A → B, only the subterms named by α are really of type A → B; therefore,
when such a term is applied to an argument, this argument must be passed
over to the subterms named by α. The structural reduction rule formalizes this
intuition:

(µα.M) N → µα.M [N/∗ α],

where the structural substitution is inductively defined as follows:

(i) x[N/∗ α] = x;
(ii) (λx.M)[N/∗ α] = λx.M [N/∗ α];
(iii) (M O)[N/∗ α] = M [N/∗ α]O[N/∗ α];
(iv) (µβ.M)[N/∗ α] = µβ.M [N/∗ α];
(v) ([α] M)[N/∗ α] = [α] (M [N/∗ α]N);

5

(vi) ([β] M)[N/∗ α] = [β] M [N/∗ α] if α 6= β.

There are some other notions of reduction, among which renaming:

[α] (µβ.M) → M [α/β]

According to M. Parigot himself, such notions of reduction are essentially trivial
from a computational viewpoint [16]. Moreover, like the η-reduction steps in
λ-calculus, they can be postponed with respect to the structural and the β-
reduction steps. We will not allow for them.

In [15], M. Parigot proposes the two following rules to handle the negation:

M : Γ, Ax − ∆
λx. µα. M : Γ − ¬A, ∆

M : Γ − ¬A, ∆ N : Π − A, Σ
[β] (M N) : Γ, Π − ∆, Σ

,

where the µ-variable α is fresh. These rules, which are based on an explicit
treatment of falsum (⊥), present some peculiarities.

On the one hand, the occurrence of the µ-variable β introduced by the
elimination rule will desperately remain free. Therefore judgment such as the
following are derivable:

λy. µα. [φ] (y (λx. µδ. [α] x)) : − ¬¬A → A

This is quite surprising: while the above λµ-term stands for a completed proof,
it contains a free µ-variable (something like a useless hypothesis that has not
been discarded).

On the other hand, unlike the other logical rules, the rules for the negation
do not correspond to the intuitionistic ones.

For these reasons, we will substitute the following alternative rules for the
original ones:

M : Γ, Ax − ∆
λx.M : Γ − ¬A, ∆

M : Γ − ¬A, ∆
M x : Γ, Ax − ∆

.

These rules are based on an implicit treatment of falsum that amounts to identify
any sequent of the form Γ − ∆ with the sequent Γ − ⊥, ∆.

From now on, when we will speak of the λµ-calculus (λµ), we will mean first-
order λµ-calculus, with the structural notion of reduction and the usual notion
of reduction β, and with the alternative rules for negation. The symbol →µ will
denote the one-step reduction relation of λµ; and the symbols →→µ and =µ will
stand for the reflexive, transitive closure and the reflexive, transitive, symmetric
closure of the one-step reduction respectively. Finally, when a judgement of the
form M : ` A is derivable according to the typing rules of λµ, we will write
`µ M : A.

6

4 Translation of λµ into λC

In this section we give a homomorphic translation of λµ into λC that preserves
typing and reduction.

For the purpose of this translation, we consider that all the variables (i.e.,
the µ-variables and the λ-variables) belong to the same alphabet.

Definition 4.1 (C-transform) The C-transform 〈M〉 of a λµ-term M is in-
ductively defined as follows:

(i) 〈x〉 = x;

(ii) 〈λx.M〉 = λx. 〈M〉;

(iii) 〈M N〉 = 〈M〉 〈N〉;

(iv) 〈µα.M〉 = C (λα. 〈M〉);

(v) 〈[α] M〉 = α 〈M〉.

The two next propositions establish that the C-transform preserves typing
and reduction.

Proposition 4.2 If M is a λµ-term and A is a simple type such that `µ M : A
then `C 〈M〉 : A.

Proof. We interpret any sequent

M : Γ − A, ∆

of the λµ-calculus by the following intuitionistic sequent:

Γ, ¬∆ − M : A,

where the context ¬∆ corresponds to the context ∆ in which each type has been
negated.

Then, using Felleisen’s operator C, we may simulate µ-abstraction and nam-
ing as follows:

Γ, ¬∆, ¬Aα − M : ⊥
Γ, ¬∆ − λα.M : ¬¬A

Γ, ¬∆ − C (λα.M) : A

¬Aα − α : ¬A Γ, ¬∆ − M : A

Γ, ¬∆, ¬Aα − α M : ⊥

7

Proposition 4.3 Let M and N be λµ-terms. If M →→µ N , then 〈M〉 →→c 〈N〉.

Proof. The property is obvious for the β-reduction steps. For the structural
reduction steps, we have that:

〈(µα.M) N〉 = C (λα. 〈M〉) 〈N〉
→c C (λk. (λα. 〈M〉) (λf. k (f 〈N〉)))
→c C (λk. 〈M〉[λf. k (f 〈N〉)/α])

Then, to establish that

C (λk. 〈M〉[λf. k (f 〈N〉)/α]) →→c 〈µα.M [N/∗ α]〉,

it remains to establish that

〈M〉[λf. k (f 〈N〉)/α] →→c 〈M [N/∗ α]〉[k/α].

This last property may be established by induction on the definition of the
structural substitution. The only intersting case is when M is of the form [α] O:

〈[α] O〉[λf. k (f 〈N〉)/α] = (α 〈O〉)[λf. k (f 〈N〉)/α]
= (λf. k (f 〈N〉)) 〈O〉[(λf. k (f 〈N〉))/α]
→c k (〈O〉[(λf. k (f 〈N〉))/α] 〈N〉)
→→c k (〈O[N/∗ α]〉[k/α] 〈N〉)

by induction hypothesis
= α (〈O[N/∗ α]〉 〈N〉)[k/α]

α 6∈ FV (〈N〉)
= 〈[α] (O[N/∗ α]N)〉[k/α]
= 〈([α] O)[N/∗ α]〉[k/α]

Notice that the notion of reduction Ctop does not play any role in the above
proof. This notion of reduction is necessary only for the results of the next
section.

5 The Inverse Translation

We have shown that λµ may be injected into λC. In this section, we show that
the two calculi are actually isomorphic. To this end, we construct the inverse
translation.

8

The key of this inverse translation is the following λµ-derivation that cor-
responds to the double negation rule2:

M : − ¬¬A

f : Af − A

[α] f : Af − Aα

λf. [α] f : − ¬A, Aα

M (λf. [α] f) : − Aα

µα.M (λf. [α] f) : − A

This derivation motivates the definition that follows.

Definition 5.1 (µ-transform) The µ-transform M of a λµ-term M is induc-
tively defined as follows:

(i) x = x;
(ii) λx.M = λx.M ;
(iii) M N = M N ;
(iv) CM = µα.M (λf. [α] f).

By construction, we have that the µ-transform preserves typing.

Proposition 5.2 If M is a λc-term and A is a simple type such that `C M : A
then `µ M : A.

Proof. A straightforward induction on the derivation of `C M : A.

The µ-transform does not preserve reduction. This is due to the fact that
the elementary reduction steps of λC are more basic than the notion of structural
reduction of λµ. Nevertheless, the equality is preserved.

Proposition 5.3 Let M and N be λc-terms. If M =c N , then M =µ N .

Proof. The property is obvious for the β-reduction steps. For the notions of
reduction CL and Ctop we proceed, respectively, as follows.

(CM) N = (µα.M (λf. [α] f))N
=µ µα.M (λf. [α] (f N))
=µ µα.M (λf. (λx. [α] x) (f N))
=µ µα. (λk. M (λf. k (f N))) (λx. [α] x)
= C (λk. M (λf. k (f N)))

CM = µα.M (λf. [α] f)
=µ µα.M (λf. (λx. [α] x) f)
=µ µα. (λk. M (λf. k f)) (λx. [α] x)
= C (λk. M (λf. k f))

2 Remark that the resulting λµ-term is not the one given by M. Parigot in [15]. The
difference, which is necessary for our purpose, is due to the rules that we have given
to handle the negation

9

It remains to establish that the two transforms are inverse of each other.
This is where the notion of reduction Ctop is needed.

Proposition 5.4 Let M be a closed λµ-term and N be a λc-term. The C- and
the µ-transforms are such that:

〈M〉 =µ M (a)

〈N〉 =c N (b)

Proof. (a) The proof is by induction on the structure of M . We prove that for
any λµ-term M

〈M〉 =µ M∗,

where M∗ is obtained by replacing each free µ-variable α occurring in a subterm
[α] O of M , by the application α O.

The only non-trivial case is when M is a µ-abstraction:

〈µα.O〉 = C (λα. 〈O〉)
= µβ. (λα. 〈O〉) (λf. [β] f)
=µ µβ. (λα.O∗) (λf. [β] f)
=µ µβ.O∗[λf. [β] f/α]
=µ (µβ.O[β/α])∗

(b) The proof is by induction on the structure of N . The only interesting
case is the one of a C-application:

〈CO〉 = 〈µα.O (λf. [α] f)〉
= C (λα. 〈O〉 (λf. α f))
=c C (λα.O (λf. α f))
=c CO

We are now in the position of establishing that the two calculi are isomor-
phic.

Proposition 5.5 If M and M ′ are closed λµ-terms, if N and N ′ are λc-
terms, then

M =µ M ′ iff 〈M〉 =c 〈M ′〉 (a)

N =c N ′ iff N =µ N ′ (b)

Proof. From Propositions 4.3, 5.3, and 5.4.

10

6 Conclusions

The isomorphism that we have presented in this paper clarifies the relation exist-
ing between two different calculi that both extend the formulae-as-types principle
to classical logic. Surprisingly enough, we have shown that the main differences
between the two approaches are primarily syntactic and that first-order λµ-
calculus may be seen as a subtheory of a call-by-name variant of Felleisen’s
syntactic theory of sequential control.

It could be argued, however that our result is only partial because we did
not take into account some features of the original λµ and λC, respectively
renaming and the use of the abort operator. As we said, from a proof-theoretic
point of view, these two features are merely trivial. Nevertheless, it is interesting
to see how we could allow for them.

As for the abort operator, we can modify the definition of the C-transform
as follows:

(iv) 〈[α] M〉 = A (α 〈M〉),

the other clauses being unchanged. Then, in order to preserve Proposition 4.3,
we need the following reduction rule:

A (AM) →c AM,

which is a particular case of Felleisen’s notion of reduction Cidem. On the other
hand, the definition of the µ-transform may be kept unchanged but, in order
to preserve Proposition 5.3, we would need to allow for the following notion of
reduction:

µα.M →µ M

where µα.M and M are both of type ⊥, and where α does not occur free in M .
This notion of reduction, which is not included in Parigot’s theory, is related to
our treatment of negation.

As for renaming, it can be simulated in Felleisen’s calculus by using the
notion of reduction that follows:

M (CN) →c N (λx.M x),

where the type of M is of the form ¬A. This notion of reduction, which is absent
from Felleisen’s theory, is used by F. Barbanera and S. Berardi in [1].

In establishing our isomorphism, we did not use Felleisen’s notion of reduc-
tion CR:

M (CN) →c C (λk. N (λv.A (k (M v)))).

This notion of reduction corresponds, at the level of the λµ-calculus, to the
following reduction rule:

M (µα.N) →µ µα.N [M ∗/α],

where N [M ∗/α] is obtained by replacing inductively each subterm of N of the
form [α] O by [α] (M O). This rule is symmetrical to the structural reduction

11

rule. As observed by M. Parigot in [15], to add this rule to his theory destroys
the confluence of the calculus. Nevertheless the addition of such rules allows
the calculus to have a stronger notion of normal form, and the confluence can
be restore by defining an appropriate call-by-value strategy. The resulting cal-
culus provides an alternative solution to the problem of the uniqueness of the
representation of data. This problem is solved by M. Parigot in [16] by using
Krivine’s storage operators, which is actually a way of enforcing a call-by-value
mechanism.

References

1. F. Barbanera and S. Berardi. Continuations and simple types: a strong normal-
ization result. In Proceedings of the ACM SIGPLAN Workshop on Continuations.
Report STAN-CS-92-1426, Stanford University, 1992.

2. F. Barbanera and S. Berardi. Extracting constructive content from classical logic
via control-like reductions. In M. Bezem and J.F. Groote, editors, Proceedings of
the International Conference on on Typed Lambda Calculi and Applications, pages
45–59. Lecture Notes in Computer Science, 664, Springer Verlag, 1993.

3. H.P. Barendregt. The lambda calculus, its syntax and semantics. North-Holland,
revised edition, 1984.

4. Ph. de Groote. A CPS-translation of the λµ-calculus. In Proceedings of the Collo-
quium on Trees in Algebra and Programming (CAAP’94). Lecture Notes in Com-
puter Science, Springer Verlag, 1994.

5. M. Felleisen, D.P. Friedman, E. Kohlbecker, and B. Duba. A syntactic theory of
sequential control. Theoretical Computer Science, 52:205–237, 1987.

6. M. Felleisen and R. Hieb. The revised report on the syntactic theory of sequential
control and state. Theoretical Computer Science, 102:235–271, 1992.

7. J.-Y. Girard. A new constructive logic: Classical logic. Mathematical Structures
in Computer Science, 1:255–296, 1991.

8. J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1989.

9. T. G. Griffin. A formulae-as-types notion of control. In Conference record of the
seventeenth annual ACM symposium on Principles of Programming Languages,
pages 47–58, 1990.

10. J.R. Hindley and J.P. Seldin. Introduction to combinators and λ-calculus. London
Mathematical Society Student Texts. Cambridge University Press, 1986.

11. J.-L. Krivine. Lambda-calcul, types et modèles. Masson, 1990.
12. J. Lambek and P.J. Scott. An introduction to higher order categorical logic. Cam-

bridge University Press, 1986.
13. C. R. Murthy. An evaluation semantics for classical proofs. In Proceedings of the

sixth annual IEEE symposium on logic in computer science, pages 96–107, 1991.
14. C. R. Murthy. A computational analysis of Girard’s translation and LC. In Pro-

ceedings of the seventh annual IEEE symposium on logic in computer science, pages
90–101, 1992.

15. M. Parigot. λµ-Calculus: an algorithmic interpretation of classical natural deduc-
tion. In A. Voronkov, editor, Proceedings of the International Conference on Logic
Programming and Automated Reasoning, pages 190–201. Lecture Notes in Artificial
Intelligence, 624, Springer Verlag, 1992.

12

16. M. Parigot. Classical proofs as programs. In G. Gottlod, A. Leitsch, and
D. Mundici, editors, Proceedings of the third Kurt Gödel colloquium – KGC’93,
pages 263–276. Lecture Notes in Computer Science, 713, Springer Verlag, 1993.

17. M. Parigot. Strong normalization for second order classical natural deduction. In
Proceedings of the eighth annual IEEE symposium on logic in computer science,
pages 39–46, 1993.

18. D. Prawitz. Natural Deduction, A Proof-Theoretical Study. Almqvist & Wiksell,
Stockholm, 1965.

19. S. Stenlund. Combinators λ-terms and proof theory. D. Reidel Publishing Com-
pany, 1972.

13

