Skip to main content

A nearly optimal parallel algorithm for the Voronoi diagram of a convex polygon

  • Conference paper
  • First Online:
  • 151 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 824))

Abstract

We present a parallel algorithm for the Voronoi diagram of the set of vertices of a convex polygon. The algorithm runs in time O(log n) and uses O(n log log n/ log n) processors in the CRCW PRAM model. The concurrent write is used only by an integer sorting subroutine. We also obtain an O(log n)-time and O(n log log n/ log n)-processor CRCW PRAM algorithm for the construction of the medial axis of a convex polygon. Our algorithms use the solution to the duration-unknown task scheduling problem due to Cole and Vishkin and the optimal parallel algorithm for the convex hull of a polygon due to Wagener. They are randomized in the sense that for any given l>0 they terminate in time O(log n) with probability greater than 1n −l.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Aggarwal, L.J. Guibas, J. Saxe, and P.W. Shor. A Linear-Time Algorithm for Computing the Voronoi Diagram of a Convex Polygon. Discrete and Computational Geometry 2, 1987, Springer Verlag.

    Google Scholar 

  2. F. Aurenhammer. Voronoi Diagrams—A Survey. Tech. Rep., Graz Technical University, 1988.

    Google Scholar 

  3. O. Berkman, D. Breslauer, Z. Galil, B. Schieber and U. Vishkin. Highly Parallelizable Problems. Proc. 21st ACM STOC, pp. 309–319.

    Google Scholar 

  4. R. Cole and M.T. Goodrich. Optimal Parallel Algorithms for Polygon and Point-Set Problems. Proc. 4th ACM Symp. on Computational Geometry, 1988.

    Google Scholar 

  5. R. Cole, M.T. Goodrich and C. Ó Dúnlaing. Merging Free Trees in Parallel for Efficient Voronoi Diagram Construction. Proc. 17th ICALP, LNCS 443, Springer Verlag, pp. 432–445.

    Google Scholar 

  6. R. Cole and U. Vishkin. Approximate Parallel Scheduling. Part 1: The Basic Technique with Applications to Optimal Parallel List Ranking in Logarithmic Time. SIAM J. Comput. 17(1), 1988, pp. 128–142.

    Article  Google Scholar 

  7. P. Chew. Building Voronoi Diagrams for Convex Polygons in Linear Expected Time. Manuscript (1986).

    Google Scholar 

  8. K.L. Clarkson. New applications of random sampling in computational geometry. Discrete and Computational Geometry, 1987, pp. 195–222.

    Google Scholar 

  9. K.L. Clarkson. Applications of random sampling in computational geometry II. Proc. 4th ACM Symp. on Computational Geometry, 1988, pp. 1–11.

    Google Scholar 

  10. K.L. Clarkson and P. Shor. Algorithms for diametral pairs and convex hulls that are optimal, randomized and incremental. Proc. 4th ACM Symp. on Computational Geometry, 1988, pp. 12–22.

    Google Scholar 

  11. O. Devillers. Randomization yields simple O(n log* n) algorithms for difficult Ω(n) problems. International Journal of Computational Geometry and Applications, Vol 2, No 1 (1992), pp. 97–111.

    Google Scholar 

  12. H. Djidjev and A. Lingas. On Computing the Voronoi Diagram for Restricted Planar Figures. Proc. WADS'91, pp. 54–64, LNCS, Springer Verlag. To appear in IJCGA.

    Google Scholar 

  13. H. Edelsbrunner. Algorithms in Combinatorial Geometry. EATCS Monographs on Theoretical Computer Science 10, 1987, Springer Verlag.

    Google Scholar 

  14. L.J. Guibas and J. Stolfi. Primitives for the Manipulation of General Subdivisions and the Computation of Voronoi Diagrams. ACM Trans. Graphics 4, 1985, pp. 74–123.

    Google Scholar 

  15. R. Klein and A. Lingas. A linear-time randomized algorithm for the bounded Voronoi diagram of a simple polygon. Proc. 9th ACM Symposium on Computational Geometry, San Diego, 1993.

    Google Scholar 

  16. R. Klein and A. Lingas. Hamiltonian abstract Voronoi diagrams in linear time. Manuscript, 1993.

    Google Scholar 

  17. R. Klein and A. Lingas. A note on generalizations of Chew's algorithm for the Voronoi diagram of a convex polygon. Proc. of the 5th CCCG, pp. 370–374.

    Google Scholar 

  18. R. M. Karp and V. Ramachandran, Parallel Algorithms for Shared-Memory Machines. Handbook of Theoretical Computer Science, Edited by, J. van Leeuwen, Volume 1, Elsevier Science Publishers B.V., 1990.

    Google Scholar 

  19. F.P. Preparata and M.I. Shamos. Computational Geometry: An Introduction. Texts and Monographs in Theoretical Computer Science, Springer Verlag, New York, 1985.

    Google Scholar 

  20. S. Rajasekaran and J.H. Reif. Optimal and Sublogarithmic Time Randomized Parallel Sorting Algorithms. SIAM Journal on Computing 18(3), pp. 594–607.

    Google Scholar 

  21. J.H. Reif and S. Sen. Polling: A New Randomized Sampling Technique for Computational Geometry. Proc. 21st STOC, Seattle, 1989, pp. 394–404.

    Google Scholar 

  22. H. Wagener. Parallel Computational Geometry: Exploiting polygonal order for optimally parallel algorithms. Ph.D. Thesis, Techn. Univ. Berlin, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Erik M. Schmidt Sven Skyum

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berman, P., Lingas, A. (1994). A nearly optimal parallel algorithm for the Voronoi diagram of a convex polygon. In: Schmidt, E.M., Skyum, S. (eds) Algorithm Theory — SWAT '94. SWAT 1994. Lecture Notes in Computer Science, vol 824. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58218-5_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-58218-5_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58218-2

  • Online ISBN: 978-3-540-48577-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics