Origin Tracking for Higher-Order Term Rewriting Systems

A. van Deursen, T.B. Dinesh

Computer Science/Department of Software Technology

CS-R9425 1994

Origin Tracking for
Higher-Order Term Rewriting Systems

Arie van Deursen and T.B. Dinesh
{arie,dinesh}@cwi.nl

cwi
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract

Origin Tracking is a technique which, in the framework of first-order term
rewriting systems, establishes relations between each subterm ¢ of a normal
form and a set of subterms, the origins of t, in the initial term. Origin
tracking is based on the notion of residuals. It has been used successfully for
the generation of error handlers and debuggers from algebraic specifications
of programming languages. Recent experiments with the use of higher-order
algebraic specifications for the definition of programming languages revealed
a need to extend origin tracking for higher-order term rewriting systems.

In this paper, we discuss how origin information can be maintained for
Bn reductions and expansions, during higher-order rewriting. We give a
definition of higher-order origin tracking. The suitability of this definition
is illustrated with a small, existing specification.

AMS Subject Classification (1991): 68N20, 68Q55, 68Q65.
CR Subject Classification (1991): D.2.5,D.2.6, D.3.4, F.3.2.

Keywords & Phrases: Algebraic specifications, higher-order rewriting, pro-
gramming language semantics, programming environments, program gener-
ation, origin tracking, program schemes, primitive recursion.

Notes: Partial support has been received from the European Communi-
ties, EESPRIT projects 2177: Generation of Interactive Programming Envi-
ronments II (GIPE II) and 5399: Compiler Generation for Parallel Machines
(CoMPARE) ; and from the Netherlands Organization for Scientific Research
— NWO, project Incremental Program Generators. This paper will appear
in the proceedings of the Workshop on Higher Order Algebra, Logic and
Term Rewriting, Lecture Notes in Computer Science, Springer, 1994.

1. Origin Tracking

When algebraic specifications are executed as term rewriting systems (TRSs),
computations are performed by reducing an initial term to its result value
— its normal form. Often, it is enough just to compute this result value, but
in many cases it is useful to have some additional information. For instance,
one may wish to know how the initial term influenced the normal form; are
there perhaps parts of the initial term that were copied without a change
to the result term? Or, if a subterm of the normal form does not literally
recur in the initial term, is it possible to identify a set of subterms in the
initial term which in some sense were responsible for its creation?

Trying to capture how intermediate and final terms originate from the
initial term is formalized in a notion called origin tracking [4, 5, 10]. Ori-
gin tracking is based on so-called residuals. Residuals have been used suc-
cessfully in more theoretical work [15, 21, 23], for reasoning about optimal
reduction strategies in TRSs.

= 0]
[] File Display
errors |
PROGRAM test 2
TECLARE
n i REAL:
i ¢ IMTEGER:
PROCEDURE =squsre ¢ n ¢ IMTEGER 3
DECLARE = : REAL:
=tep : LABEL BEGIN

® = 0p
step = ni
ztep 1= step = 0,017
WHILE = < 1,0 DO WRITE ¢ =)2
WRITE ¢ " ™2 = " 3:
WRITE § » % x 32
WRITE ¢ "sn" »r
step : x i= x + step END:

GOTO =step:
step ; EMD =222

i =0z n:..; TecErtars 3 Jusrdpeopledtipddenos/Errors, ere ;u il D_i
WHILE i < O DI tree text expand help
EMD: Shou Origin multiply—defined-lakbel 8
sgusre Lo cannot-assign—to LABEL in := :
EHD used-as—operand LABEL :
W3 procedure—call () expected-arg
IMTEGER found-arz EEAL

Figure 1: Example of a generated environment using origin tracking.

1.1 Applications

Our motivation for working on origin tracking is its applicability to the
automatic generation of tools from algebraic specifications of programming
languages. As an example, let us take an algebraic specification of a type
checker for some programming language. Assume that this specification can
be executed using rewriting, and that the type check function is called tc.
In order to type check a program P, a term p is constructed representing

P. The term tc(p) is reduced to its normal form, which is a list [E1, ..., Ep]
of error messages. Just carrying out the reduction will only give such a list,
whereas when reduced in combination with origin tracking we get additional
information. Namely, for each error E;, a relation to the part in the initial
term ¢c(p), e.g., a statement, an expression or an identifier, responsible for
causing FE; is established.

In the ASF+SDF programming environment generator! [3, 17] origin track-
ing has been implemented. This implementation has been used to derive
error reporters from algebraic specifications of static semantics of program-
ming languages. As an example, Figure 1 shows a generated editor for a
Pascal-like programming language, and an error reporting window which is
displayed as a result of the user requesting a type-check of the program.
Here the user has selected the error message “multiply-defined-label step”.
By clicking the “Show Origin” button, the user has requested additional
information. This action has caused the relevant occurrences of “step”, in
the original program, to be high-lit.

More details concerning the application of origin tracking to error report-
ing are given in [11]. Origin tracking can also be used to link source and
target code in an algebraically specified compiler, thus facilitating the gen-
eration of source-level debuggers. It has also been used to link intermediate
steps in an interpreter to the source program (given a specification of an
evaluator), thereby aiding the generation of program animators [25].

1.2 Preliminaries: First-Order Rewriting

Before defining origins more rigorously, we borrow some preliminary defini-
tions concerning first-order term rewriting from [19, 15]. Given an alphabet
containing variables and function symbols each equipped with an arity (a
natural number), a set of terms is constructed by considering

e all variables as terms.

e f(t1,...,tn) is a term when ¢4, ..., ¢, (n > 0) are terms and f is an n-ary
function symbol.

A term t can be reduced to a term t' according to a rewrite rule r : p — ¢
by identifying a context C[] and a subterm s in ¢ such that ¢ = C[s], and
by finding a substitution ¢ such that s = p°. Then t = C[p?] rewrites
to C[¢°] = t' by one elementary reduction, written ¢ — t'. We call p°
the redex, and ¢° the contractum. The concatenation of reduction steps
to — t1 — ... = t, is also written o —* ¢, (n > 0).

Subterms are characterized by occurrences (paths), which are either equal
to [| for the entire term or to a sequence of integers (the branches) [nq, ...,]
(m > 0) representing the access path to the subterm. The occurrence [1, 2]

! ASF+SDF is the name of the formalism used to specify programming languages; it
originated from combining the Algebraic Specification Formalism ASF and the Syntax
Definition Formalism SDF.

denotes the second son of the first son of the root, i.e., for term f(g(a,b),c)
it denotes subterm b. The subterm in ¢ at occurrence u is written ¢/u. Paths
are concatenated by the (associative) operator “.”. If u, v, w are occurrences
and v = v-w, then v is above u, written v < u, or v < w if w # []. If neither
u < v nor v X u then v and v are disjoint, written u | v. The set of all
occurrences in a particular term ¢ is identified by O(¢), which we furthermore
partition into a set Oy, () denoting variable occurrences and a set Ofy,(t)
denoting function symbol occurrences.

When we wish to identify the redex, rule, and substitution explicitly, we
will write ¢t —5, ¢ for the one-step rewrite relation, indicating that rule r is
applied at occurrence u in term ¢ under substitution o.

v<u 'v|u V=U-V W

Figure 2: Relative positions of v with respect to contractum position u

1.3 Definition of the Origin Function

We give the definition of origins as described in [10], following the presenta-
tion of [4]. Let ¢ 2. t', where 7 is a Tule p — ¢, be an elementary reduction
step. With each step we associate a function org : O(t') — P(O(t)) mapping
occurrences in t' to sets of occurrences in ¢. Let v € O(t'). We define org by
distinguishing the following cases (see Figure 2):

e (Context)
If v < wor v | uthen org(v) = {v};

¢ (Common Variables)

If v=u-v- wwith v € Oy(¢) denoting some variable X in the
right-hand side, and w € O(X7) an occurrence in the instantiation of
that variable, then

org(v) = {u-v" -w|p/v' = X}

Hence, v € O,4,(p) denotes an occurrence of X in the left-hand side p.

For the time being, we will assume that org(v) = 0 for the remaining case,
i.e., where v denotes a function symbol in the right-hand side (see also
Section 1.5).

Function org covers one-step reductions. It is generalized to a function
org* for a multistep reduction ¢; —* ¢, (n > 0) by considering the origin
functions for the individual steps in the complete reduction tq — &; —

- — t,. Let o; : O(t;) — P(O(t;—1)) be the origin function associated
with rewrite step ¢;_; — #; (0 < i < n). Recursively define org? : O(t;) —
P(O(tp)) for 0 < j < n, and v € O(t;):

o j=0: org’(v) = {v}.

¢ 0<j<n: org?(v) = {w | w € org? }(w'), w' € 0;(v)}

Then org* is equal to org™ for multistep reduction to —* £, (n > 0).

For orthogonal (left-linear and non-overlapping) TRSs the origin function
is the reversal of the well-known notion of descendant or residual [15]; origins
“point backward”, whereas residuals indicate what remains of a term during
rewriting. In the orthogonal case, the org* function always yields a set
consisting of at most one element.

1.4 Ezample

As an example, Figure 3 shows a reduction step of a typical type checker.
The redex “tc(E; + E2)” is contracted at occurrence [1] in the given con-
text. Following the definition of the function org just given, origins for
nodes within the context are mapped onto themselves. The context po-
sitions (on top of or next to the redex) are [|, [2], and [2,1], denoting
“conc”, “undeclared-var”, and “foo”. For these, we have, org([]) = {[I},
org([2]) = {[2]}, and org([2,1]) = {[2,1]}. Within the contractum, the po-
sitions corresponding to function symbol occurrences in the right-hand side
obtain the empty set as origin. These positions are [1], [1,1] and [1,2], de-
noting “conc”, “tc”, and “tc” respectively, for which we have org([1]) =
org([1,1]) = org([1,2]) = 0. Finally, the origins within the contractum
corresponding to variable occurrences receive an origin to the recurrences
of these variables. From variable E; we have org([1,1,1]) = {[1,1,1]} and
org([1,1,1,1]) = {[1,1,1,1]}, and from E, we have org([1,2,1]) = {[1,1, 2]}.

In this example, the origins are sets of at most one element. Sets with
more elements can be caused by non-linearity. E.g., rule “and(X, X) — X7
will cause X to have origins to both occurrences of X in the left-hand side.

1.5 Discussion

Are the origins in the previous example the ones we were looking for? The
origin of “4” to “4” was good, but it is doubtful that the empty set is the
best origin for the two occurrences of “tc”. Here we summarize some issues
we should be aware of when dealing with (extensions of) origins.

Typically, having origins based only on the Common Variables case is in-
sufficient. These will only establish origins for literal recurrences of terms
and not for any function symbols introduced. Therefore, in addition to rela-

concyy) \ undeclared-vars

? tepnay tepa

Rewrite rule: tc(Ey 4+ E2) — conc(te(Eq), te(E2))
Substitution: {E; — —3, Es — 4}
Context: conc(0, undeclared-var(foo))

Dashed Lines: Origins for Common Variables
Dotted Lines: Context Origins.

Figure 3: Origins established for one rewrite step.

tions based on common variables, relations following from function symbol
occurrences in left- and right-hand sides of rewrite rules are needed.

Blindly relating any symbol in the right-hand side to all symbols in the
left-hand side will not do either, since this would result in origin sets that are
too big to give accurate information. On the other hand, it should not be too
restrictive. An error message indicating a discrepancy between declaration
and use of an identifier should have an origin containing at least two paths:
one to the use and one to the declaration. In general, however, we will try
to keep the origin sets small.

We will refer to the origins based only on Contexts / Common Variables
as primary origins. These are clearly necessary and are useful in all applica-
tions. Moreover, we will deal with secondary origins, where the emphasis is
on relations established due to function symbols occurring in left- and right-
hand sides of rewrite rules. Proposals for secondary origins may be biased
towards particular applications, with emphasis on, e.g., error handling or
debugger generation.

1.6 Goal of this Paper

Recent experiments by Heering demonstrated that the use of higher-order
algebraic specifications can be advantageous for the definition of program-
ming languages [14]. These experiments, however, also revealed that rapid
prototyping of these specifications using higher-order term rewriting would
only be of limited use unless some form of origin tracking were available [14,

Section 2.2]. Moreover, they suggest that a simple origin scheme based only
on the primary origins rule would be inadequate.

This paper addresses these problems. First, we briefly summarize the
definitions of higher-order rewriting in Section 2, along with a small example.
Next, we present primary origins for the higher-order case in Section 3, and
extensions to secondary origins in Section 4. In Sections 5 and 6 we mention
related work and draw some conclusions.

2. Higher-Order Term Rewriting

For the definition of Higher-Order Term Rewriting Systems (HRSs), we
follow [26, 22, 24]. The main difference from the first-order case is that
terms in HRSs are constructed according to the simply-typed A-calculus [7].

2.1 The Simply-Typed X-Calculus

The set of type symbols T consists of elementary type symbols from Ty and
of functional type symbols (a —), where o, 3 € T. We may abbreviate a
type (o1 = (a2 = (- = (an — B)--+))) to (a1,...,an — B). Terms are
built using constants and wariables, each of which has an associated type
symbol. The type of ¢ is written 7(¢). If 2 is a variable with 7(z) = a,
and ¢ a term with 7(¢) = 3, then the abstraction (Az.t) is a term of type
(a — pB). If t,t' are terms with 7(¢) = (o« — B) and 7(¢t') = «, then the
application? (t t') is a term of type 8. When omitting brackets, application
is left-associative.

Occurrences in A-terms are defined as for the first-order terms, by repre-
senting abstraction as a node with 1 son and application as a node with 2
sons. As an example, Figure 4 shows all occurrences in the term

(add ((AN.N) zero) zero).

All occurrences of z in (Az.t) are said to be bound. Non-bound occur-
rences are free. A term is closed if it does not contain free variables, open
otherwise. Bound variables can be renamed according to the rule of a-
conversion. A replacement of a term t at occurrence u by subterm s is
denoted by t[u « s]. A substitution o is a mapping from variables to terms.
Application of a substitution o to a term ¢, written ¢7, has the effect that
all free occurrences of variables in the domain of ¢ are replaced by their
associated term. Following the variable convention [2], bound variables are
renamed if necessary.

Let be a variable, t1,t, terms, and let substitution ¢ = {z — #,}.
Then the term ((Az.t1) t3) is a B-redez and can be transformed to t{ by
B-reduction. A term without 8-redex occurrences is said to be in 3-normal
form. All typed A-terms have a B-normal form, which is unique up to a-
conversion. A -normal form always has the form

ZWe use @(t,t') alternatively, when there is a need to make the application operator
explicit, as in Figure 4. We also use ¢(¢') in the context of algebraic specification, as in
Figure 5.

(Azr.(Azz. - (Azn{(- - ((H 1) 12) -~ tn)}) -)

where 24, ..., 2, are variables, t,...,t,, terms in #-normal form, H a con-
stant or a variable, m,n > 0. We will sometimes write this as

Az -2 H(t1,...,tm). In such a term, H is called the head, H(t1,...,tm)
is called the matriz, and Az, - - - ¢, is called the binder.

The rule of -reduction states that terms of the form Az.(¢) can be trans-
formed to just ¢, provided that # does not occur freely in ¢. Its counterpart
is ;j-expansion: if a head H of a f-normal form Azq - -2, . H(t1,...,tm) is
of type (ou,...,msr — B) (k > 0), then clearly as H expects more ar-
guments, we can add these as extra abstractions. The term above can be
7-expanded to Azq - - - 2,y.H(t1,...,tm,y), where y is a fresh variable of type
Om41. Every term has a 7-normal form.

Let x be any of {a, 8,n,7}. If t can be transformed to ¢’ by performing
a x-reduction at occurrence u, we write this as ¢t >, , ¢/, or alternatively as
t' 4y 4 t, where we may omit occurrence u. Repeated y-reduction is written
o} t'. Since ¥ is a symmetric relation, we will sometimes write it as =.
The B7-normal form of ¢ is indicated by ¢ |g5. The relation t =g5 ¢’ holds if
and only if ¢ | g7 =o t' | g5

@p
/ \

Qp Zerojy]
/ \
a.dd[]_’]_] @[1’2]
}\N.[1’2’1] Zer0[1,2,2]
Npi2,1

Figure 4: Occurrences in the term “(add ((AN.N) zero)) zero”.

2.2 Higher-Order Rewrite Steps
If p,q are open simply-typed A-terms of the same type and in S7-normal
form, and if every free variable in ¢ also occurs in p, then p — ¢ is a (higher-
order) rewrite rule. A reduction t —=3, ', where t,t' are closed A-terms in
B7-normal form, o is a substitution, and w is an occurrence in O(¢) denoting
the redex position, is possible if:

e The types of the redex and the left-hand side of the rule are the same:
7(t/u) = 7(p)

e The instantiated left-hand side is #7-equal to the redex:
{r7}lgn =o {t/u}ln

o Replacement of the redex by the instantiated right-hand side followed
by A7m-normalization yields the result ¢':

{tlu = ¢V o =a ¥

Notice the variety of {a, 3, 7}-conversions involved in the application of
one rule. This turns out to have consequences for the definition of origins.
Also note that matching the redex against a left-hand side may yield more
than one substitution. For origin tracking purposes, however, we are not
concerned with finding matches; we assume that in some way it has been
decided to apply a rewrite rule under a given substitution (see also Sec-
tion 4.3).

2.3 Ezample

Consider the second-order algebraic specification of a simple type checker
shown in Figure 5, which was taken from [14]. The objective of this spec-
ification is to replace all simple expressions (identifiers, string or natural
constants) by a term “tp(7)”, where 7 is the type of that simple expression
(see equations [1], [2], and [3]). Next, type correct expressions are reduced
to their type (equation [4]). Finally, type correct statements are eliminated
(equation [5]). The resulting normal form only contains the incorrect state-
ments.

Take the initial term P;:

program(decls(decl(n,natural), decls(decl(s,string), emptydecls)),
stats(assign(s, plus(id(n),id(n))), emptystats))

It can be reduced according to equation [1] with, e.g., the substitution® oy:

ADecl. decls(Decl, decls(decl(s,string), emptydecls)),
Ald. stats(assign(s,plus(id(Id),id(Id))), emptystats),
n’

natural }

9 =<

1111

Applying this rule replaces occurrences of “n” by “tp(natural)”, which re-
sults in a term Ps:

program(decls(decl(n,natural), decls(decl(s,string), emptydecls)),
stats(assign(s, plus(id(tp(natural)),
id(tp(natural)))), emptystats))

Next, equation [1] can be applied again, this time replacing “s” by “tp(string)”,
yielding a Ps. Finally, equation [4] can be used to replace the “plus” expres-
sion by a representation of its type (natural) resulting in P,, which is the
normal form of P;.

®It is necessary to avoid vacuous abstraction of Declin the assignments of D [14].

10

Initially, we are allowed to apply equation [1] on Pj, since under substi-
tution oy, the left-hand side of equation [1] produces a new term P;’, which

after two (-reductions (one for D and one for §) is exactly equal to term
P.

To construct the result P, of this one-step reduction, we first apply o1
to the right-hand side of equation [1], producing some term P,’. Then two
more f-reductions transform P, to its B-normal form, which results in the
desired P,. We can summarize this first single-step rewrite as follows:

P1 43 Pll 43 P”El({l ~ 7“{1 = 2” >3 PZI >3 P2

where ~» denotes the replacement of the instantiated left-hand side by the
instantiated right-hand side, and [y and r; are the left and right-hand side of
equation [1]. Our definition of origins also follows this “flow” where origins

between P, and P; are defined using elementary origin definitions between
the pairs P, — Py, Py — P), etc.

3. Higher-Order Origins

We define origins for higher-order rewriting by (i) indicating how origins
are to be established for >4, >g, >y, and >y conversion; then (ii) describing
how the inverses <g and <z can be dealt with; and (iii) explaining how origin
relations can be set up between the left- and right-hand side of a rewrite rule.
In this section we give a very basic definition, which we refer to as primary
origins. In the next section we discuss various proposals and heuristics to
extend these origins.

We use the following notational conventions. For a term ¢ and variable
z, we write Opqrs(t) for all free variable occurrences in ¢, Ofygurs(o)(t) for
the occurrences of z in t that are free, and Oppy,(t) for the application,
abstraction, or constants as well as the bound variable occurrences in ¢.
Moreover, we abbreviate occurrences of a series of n b-branches as [0"]. For
example, for a f-normal form Az, ---z,.H(t1,...,t,), the path to Az; is
[171] (1 < j < n) and the path to ¢; is [17] - [1™7%] - [2]. The left side of
Figure 6 shows a term in 8 normal form, and some path abbreviations.

3.1 Conversions

Let t,t' be terms, u € O(t), and let x be any of {e, 8,7,7}. Given t >, , t/,
we define org(v) for v € O(t'). First, if v | w or v < u then org(v) = {v}.
Otherwise,

o Y — a:
a-Conversion does not change the term structure, so we simply have

org(v) = {v}.

o x =0

sorts: PROG DECLS DECL STAT STATS ID TYPE EXP ...

11

functions:
program : DECLS, STATS — PROG
decls : DECL, DECLS — DECLS
emptydecls — DECLS
decl : ID, TYPE — DECL
natural — TYPE
string — TYPE
stats : STAT, STATS — STATS
emptystats — STATS
assign : ID, EXP — STAT
plus : EXP, EXP — EXP
id . ID — EXP
nat : NAT — EXP
str ! STRING — EXP
tp : TYPE — ID

variables:
D : DECL — DECLS X :1ID
T : TYPE S :ID — STATS
S 1 STATS N : NAT

R : STRING

equations:

[1] program(D(decl(X,7)), S(X))
= program(D(decl(X,7)), S(tp(7)))
2] nat(N) = id(tp(natural))
3] str(R) = id(tp(string))
4] plus(id(tp(natural)), id(tp(natural))) = id(tp(natural))
5] stats(assign(tp(7),id(tp(7))), S) = S

— —— —

Figure 5: Part of the static semantics specification

Since t/u is a f-redex, we have t/u = ((Az.t1) t2). Note that the path
to t1 is [1,1], and to ¢y is [2]. Now let wy € O(t1),ws € O(tz). We
distinguish two cases:

1. v=wu-wy: Then org(v) = {u-[1,1] - w1}.
2. v=u-w; - wy, and wy > [] then org(v) = {u - [2] - wa}.

The condition wy > [] avoids overlap with the former case.

Thus, origins in the body t; “remain the same”; origins for the top
node of an instantiated variable have an origin to their corresponding
variable position in the body ¢;, which is indicated by the dashed lines
in Figure 7; and origins to non-top nodes of an instantiated variable
have an origin to their position in the actual parameter ¢, which is

12

}\231[.]_0] = [] }\231
Az, [1771] > }\Ia:n
e [17] 7 Ay [17]
@\ \tm /’77[] (IQ:T]_n-I—l]
) 1n+2 <N 17+ 9
H/ \tl [1;17] . [1m—z] [2] [o _]© - j[]

Figure 6: 7-Expansion.

indicated by the dotted lines.

o X =1
In n-reduction one A is eliminated. Since t/u is an n-redex, we can
assume t/u = Az.({;). Realizing that the path to ¢; is [1,1], we
simply have: org(u-v') = {u-[1,1]-v'}.

o X =1
In n-expansion, an extra A is added. The origins of the old parts point
to the same old parts, while the origin of the new A is the empty set:

Since t/u is an 7-redex, we have t/u = Azy---zp . H(t1,...,tm). We
distinguish three cases for v = u - v':

1. For v' < [1™71], org(u-v') = {u-2'}.

2. For v’ € {[1™],[1™*1], [1™1, 2]}, org(u - v') = 0.
Figure 6 shows, using tree representations, the occurrences [1"],
[1"T1] and [1"*!, 2] introduced by 7-expansion.

3. For v' = [1"2%], org(u - [1™T2] - v") = {u - [1"*1] - 0"} where
v’ = [1"T2] . 0",

Assume that we have an origin function O mapping occurrences of ¢’ to
sets of occurrences in t. Then O is said to be unitary if its result values are
always sets containing exactly one element, and unique if they contain at
most one element. If an occurrence can have the empty set as origin, we say
O is forgetful. If several occurrences in t' have an origin to the same node in
t, we may refer to O as many-to-one, while its counterpart, where an origin
set can contain more than one path, is called one-to-many. Finally, if for
every v € O(t') we have O(v) = {v}, then we say O is tdentical.

Thus, the origin function is identical for «, is unitary for 75, is forgetful
for 77 and finally, is unitary and many-to-one for 3. None of these is one-
to-many, which is fortunate, since in Section 1.5 we concluded that it was
advisable to keep the origin sets small.

3.2 Equality modulo 37-conversions
In Section 2.3 we discussed, reversed 8 and 7i-reductions that need to take
place. The origin functions for »(, g, defined in the previous section

13

Figure 7: B-reduction in both directions.

can easily be inverted, thus yielding origin functions for <4 g, . Note
that, from an origin tracking point of view, the inverse of n-reduction is
T-expansion.

Since the origin function for a-conversion is identical, performing several
a-conversions in one direction or another does not affect the origins. This
is not the case for 77 or 3 reduction. Since B-reduction is many-to-one, its
inverse must be one-to-many. As can be seen from Figure 7, this may lead
to a growth of the origin sets. Consider a reduction t <g t' bg ¢, where

t' = ((Az.t1) t3), and ¢,t" = tim'_’t""}, then the origins from ¢” to ¢’ will cause
all instantiated occurrences of « to be related to the same ¢, in t’; the origins
of # to t in turn will link this ¢, to all instantiated occurrences of z in t.
Thus, transitively, one occurrence of t5 in ¢ has origins to all occurrences
of ty in ¢t. This is illustrated by the dotted lines of Figure 7. Note that the
definition of the origin function for the 8 reduction (case 1), relates the top
node of ta, via the #s occurring in ¢; to its position in ¢ (dashed lines of
Figure 7).

Since the origins for 7 conversions are unique this problem does not arise

for 77 conversions. However, the v5 are forgetful, so checking for 7-equality
may result in loss of some origin information (in particular in the binders).

3.8 Left- and Right-Hand Sides

We define the relations between the instantiated left and right-hand side
of a rewrite rule, where we assume that these are instantiated but not yet
B7i-normalized. We closely follow the first-order case defined in Section 1.3.

Let p — ¢ be a rewrite rule, and o a substitution. The function

org : O(¢°) — P(O(p?)), for a path v € O(¢?), is defined as follows:

¢ (Common Free Variables)

If v = v - w with v’ € Opyqrs(g) denoting some variable X in the right-
hand side, and w € O(X?) an occurrence in the instantiation of that
variable. Then:

OTg('U) = {’U” "W | q/vl = p/,vll’ o" € Ofvars(X)(p)}

14

Thus, v" denotes an occurrence of X in left-hand side p.

¢ (Function Symbols)
If v € Oppun(gq), then org(v) = 0.

This is obviously a forgetful definition, but this situation is improved in
Section 4. As in the first-order case, it is also possibly one-to-many (in the
case of non-left-linearity).

Note that the common free variables case results in the same origins as in
the common variables case of Section 1.3, when the specification does not
use the higher-order features. The Context case will be dealt with in the
next section.

i1 = > A =1

Ju [u — 5]

! * " * m — o o — ¢l
t]. l>,77a t]. <],8’T] t]. =p ~ g :t2

Figure 8: All conversions for one reduction step t; — t,, applying rule p — ¢
at occurrence u in t; under substitution o.

3.4 Rewrite Steps

Knowing how to both establish origins for a-, 3-, and 7-conversions in either
direction and to set up origins between the instantiated left- and right-hand
side, we can obtain the origins for one complete reduction step t; — t,.
Figure 8 summarizes the work to be done for one reduction, following as
described in Section 2.2.

Note that in general the situation is slightly more complicated than in the
example of Section 2.3

Py ag P| ag P/'=1]" ~ r]* =P} vg Py vg Ps

where the rewrite rule is applied at the root of P; which has the effect that
Figure 8 can be reduced to just “one level”: The context is empty (u = []),
and consequently the term ¢/u is already a 7-normal form, hence the result
need not be put back into the context (in the figure, [[] « t5] is just equal
to th).

3.5 Ezxample

Consider reduction P; — P, as presented in Section 2.3. Most occurrences
in P, have their intuitive origin; mainly because they also occur in bodies
of the instantiations of D and S in substitution ¢;. However, some origins
are lost; in particular for nodes occurring in the right-hand side of rule [1].
Thus, symbols “program”, “decl” (for the declaration of n), and “tp” do

15

not have an origin. Moreover, rule [1] is non-linear in X, and therefore the
X-occurrence in the declaration at the right-hand side has an origin to the
occurrence in the statement as well as in the declaration. Thus, the single
n in P, has origins to all n occurrences in P; (this does not seem intuitive).
All occurrences of “natural” in P, have their origin to the declaration it
came from (seems reasonable).

Now consider the entire reduction P, —* P4, where normal form P, is:

program(decls(decl(n,natural), decls(decl(s,string), emptydecls)),
stats(assign(tp(string),
plus(id(tp(natural)),id(tp(natural)))),
emptystats))

In this case, more origins are lost. In particular, the two “decl” nodes have
an empty origin, and the reduction according to rule [4] did not establish
any origins, so “tp(natural)” does not have any origins.

4. Extensions

The origins in the previous example were nice, but still not sufficient for
using them in practice. In this section we present some extensions of the
origin function. Some of these extensions are of a heuristic nature, based on
frequently occurring forms of (higher-order) rewrite rules.

4.1 Ezxtended Contexts

Taking a close look at equation [1] of Figure 5, we see that its intention is to
identify some context “program(...)” in which a certain term (the identifier
denoted by X) is to be replaced by another term (in this case tp(7)). This
context is exactly the same in the left- and right-hand side of the rewrite
rule.

It seems reasonable to extend the notion of a context to cover such simi-
larities within rewrite rules as well. Considering a rewrite rule p — ¢, we can
look for a (possibly empty) common context C and holes (terms) hq, ..., Ay
and A ...h,, (m > 0) such that p =, Clhs,...,hp] and ¢ =4 C[RY, ..., kL],
where h;# .k’ for all 1 < j < m. We are actually looking for the biggest
of such contexts which contain the smallest possible number of holes where
none of the holes h;, h’ (1 < j < m) start with a non-empty context C such

that h; =, C[hy,...h,] and h; = C[AW'1,...W,]. As an example, equa-
tion [1] of Figure 5 has a common context C = “program(D(decl(X,7)),
§(0))”, where the hole h; at the left is equal to “X”, and A} at the right to
“tp(T)”.

For every node in this extended context, the origin should point only
to its corresponding occurrence in that same context at the left-hand side.
Note that, as a consequence, the common variables case should not apply to
variables occurring in the common context. For example, in equation [1], the
origin of X at the right will only point to its counterpart under the “decl”

16

at the left and not to the X in the statements. Moreover, when trying to
find origins for a node in a hole h;, it seems reasonable to focus on origins
that can be found within the corresponding hole h;. Only if it is impossible
to find origins there, an origin can be looked for in the rest of the left-hand
side.

There is, however, a minor catch in this. If two consecutive holes h;
and h;i; are only separated by an application in the context C, i.e. they
actually occur as @(h;, hj11) at the left and as @(h}, A},) at the right, then
it is more natural to regard these two as one hole (H = @(h;, hj11) instead
of h; and hj;1). As an example, equation [2] in applicative form reads as
@(nat,N) = @Q(id, @(tp, natural)). It would be counter-intuitive to regard
the top-application as a common context @(O, 0) with two holes: hy = nat,
hi =1id, and hy = N, h, = @(tp, natural).

Note that this new extended context case would be useful in the first-order
case as well.

4.2 Origins for Constants

Let p = Clh1,...,hm] — C[hy,...,hl,] = ¢ be a rewrite rule with the
common context C and m (m > 0) holes. We define origins for constants
occurring in the A} (1 < j < m) according to the following three cases:

1. Head-to-Head

The origin for the occurrence of the head symbol of a hole h; at the
right is the occurrence of the head symbol of that same hole A; at
the left. For example, the “tp” symbol in equation [1] is linked to the
occurrence of X in the statements at the left. This head-to-head rule
corresponds to the “redex-contractum” rule of the first-order origins
as described in [10]. Note that if the head symbol at the right is a free
variable, the common variables case is applicable as well. This can, in
general, have the effect that the origin set for the head symbols consist
of more than one path.

2. Common Subterms.

If a term s is a subterm of both h; and h;, then these occurrences of
s are related. For example, the subterm “tp(natural)” at the right of
equation [4] (Figure 5) is related to both occurrences of “tp(natural)”
at the left. Note that these common subterms are identified in the un-
instantiated left- and right-hand side. This rule can in some cases lead
to seemingly wild connections, but has already proven its usefulness
for the first-order case [10, 11]. The common subterms behave slightly
different in the higher-order case, due to the applicative form of the
A-terms. In the first-order case, function symbols were only related if
all arguments were identical at the left and right. In the higher-order
case, function symbols are constants. Each constant F' in h; is related
to all occurrences of F' in h;. This effect is similar to the tokenization
discussed in [11].

17

If for a subterm s of h; no occurrences of s can be found in h;, then
the entire left-hand side p can be used to find a common subterm
occurrence of s.

3. Any to All

If after application of the head-to-head and common subterms case
there are still constants in h; with an empty origin, the set of all
constant occurrences at the left-hole h; is defined as its origin set. For
example, in equation [2], the subterms “tp(natural)” and “natural”
relate to both “nat(N)” and “N”.

4.3 Abstraction and Concretization Degree

Let us end our discussion with an interesting observation. Recall from Sec-
tion 3.2 that <g conversions are one-to-many. Assume that t' <g ¢ with
t = ((Az.t1) t2). It would be useful to call the number of free occurrences
of # in t; the abstraction degree of Az.t;, and the number of occurrences
of term t, in #; the concretization degree. When trying to find a matching
substitution ¢ in order to apply a rewrite rule, freedom exists concerning the
abstraction and concretization degree. For example, if o assigns F' a value
T with abstraction degree N > 0 and concretization degree M > 0, then an
alternative match o’ can also be possible which assigns F a term 7' with
abstraction degree N — 1 and concretization degree M + 1. The problems
with <g are minimized if matches with abstraction degree 1 are preferred
over those with a higher abstraction degree.

In practice, however, such a preference may be somewhat problematic.
Firstly, a substitution with a lower degree of abstraction may not even ex-
ist. Secondly, the repeated application of a substitution with abstraction
degree 1 need not yield the same result as a single application with a higher
abstraction degree. Finally, repeated applications may be more expensive in
terms of run time behavior, than a single application with a high abstraction
degree.

4.4 Ezample

With these extensions, suitable origins for the example in Section 2.3 are
obtained. We assume that equation [1] is applied with substitutions of ab-
straction degree 1 only. The extended contexts assure that “program” and
“decl” are linked. Moreover, the effect of linking variables in contexts only to
the same occurrence in the context, guarantees that the n and s in the dec-
laration have the proper unitary origin. Furthermore, relating heads of holes
guarantees that the “tp” nodes get the right origin to the variable they were
substituted for. Likewise, the application of equation [4] results in “plus”
as the origin of “tp”. Finally, common subterms results in “tp(natural)”
to be linked to both occurrences of “tp(natural)” in the “plus” expression
(equation [4]).

The example given here is only part of the specification discussed in [14].

18

The origins with extensions create the proper relations for the full specifi-
cation as well.

5. Related Work

The current document is part of a series of papers studying origins and their
applications to the automatic generation of parts of compilers or program-
ming environments — in particular error handlers, symbolic debuggers, and
animators. The extensions to primary origins studied in [10] establishes rela-
tions between common subterms in left and right-hand side of rewrite rules,
as well as a link between the top-node of the redexz and the contractum.
Moreover, origins are defined for conditional rewrite rules. Several issues
related to the efficient implementation of origin tracking in the ASF+SDF
Meta-Environment [17] are discussed in [10]. The applicability of origins
in practice, using a specification of the semantics of a subset of Pascal, is
studied by Dinesh and Tip where the static semantics and generated er-
ror handler is covered in [11] and the dynamic semantics and generated
animator is described in [25]. In order to improve origin tracking for syntaz-
directed specifications (typically translators or type checkers), an extension
for primitive recursive schemes is proposed in [9]. An origin-like relation,
called dynamic-dependence relation is studied by Field and Tip [12]. They
show that the dependence tracking technique is useful in the context of
program slicing.

The study of origins was pioneered by Bertot [4, 5], who was concerned
with origins in natural semantics, (orthogonal) term rewriting, and the (un-
typed) A-calculus. He describes a language for the definition and representa-
tion of origins. In his setting, origins are unitary (consisting of at most one
path). Secondary origins are represented by marking functions. This work
was done in the framework of the CENTAUR system [6]. In particular, the
specification language TYPOL [16] has been extended with subject tracking
[8].

Closely related to origins are residual maps, descendants, or labelings
[20, 15, 21, 13|, which are used to study reduction strategies. Residuals
indicate which redexes survive if a particular redex is contracted. One can
think of this as giving interesting parts in the initial term a particular color,
and then looking how this color survives during reduction. An interesting
combination of origins and labeling systems is presented by Bertot [5] where
he investigates how origins for TRSs can be used to simulate labeling systems
for the A-calculus. The labels of [20] suggest that alternative representations
for origins containing more structure than the (simple) sets of paths could
be fruitful.

Nipkow’s definition of higher-order TRSs requires the rewrite rules to
satisfy several syntactic constraints [22]. We have discussed origins using
the more liberal setting of Wolfram [26]. Obviously, the same origins can be
established for Nipkow’s HRSs. The nicer matching behavior of Nipkow’s
HRSs will probably have a favorable effect on the origins. The mapping

19

between Nipkow’s HRSs and Klop’s combinatory reduction systems (CRSs)
[18] as described in [24] can be the basis for a definition of origins for CRSs.

Another issue is the study of origins as transformations on HRSs. Tip has
conducted such experiments for the first-order case. For the higher-order
case, it may be useful to use specifications of the A-calculus with explicit
substitutions as in [1].

6. Conclusions

Origin tracking for higher-order specifications is considerably more difficult
than establishing origin relations for the first-order case. Various conversions
to be performed, both as reductions and as expansions, have to be taken into
account. Nevertheless, we have found a satisfactory origin scheme, which is
applicable to arbitrary higher-order term rewriting systems

There is, however, still some future work to do. The most important
thing is to gain experience with these origins. More specifications of realistic
problems and their applicability for origin tracking should be studied.

Finally, after having seen many variants of origin tracking, it may be
worthwhile to investigate the possibility of generalizing to some kind of origin
scheme. This may clarify and ease future discussions of further extensions
of origin tracking.

Acknowledgments This paper would not have been possible without Jan
Heering’s support and advice. Comments of Jan Heering, Femke van Raams-
donk, Susan Uskiidarh, Machteld Vonk and the reviewers have helped im-
prove the presentation.

REFERENCES

1. M. Abadi, L. Cardelli, P.-L. Currien, and J.-J. Lévy. Explicit substitu-
tions. In Proceedings of the 17th conference on Principles of Program-
ming Languages, pages 31-46, 1990.

2. H.P. Barendregt. The Lambda Calculus; its Syntar and Semantics, vol-
ume 103 of Studies in Logic and the Foundations of Mathatematics.
North-Holland, 1984.

3. J.A. Bergstra, J. Heering, and P. Klint, editors. Algebraic Specifica-
tion. ACM Press Frontier Series. The ACM Press in co-operation with
Addison-Wesley, 1989.

4. Y. Bertot. Une Automatisation du Calcul des Résidus en Sémantique
Naturelle. PhD thesis, INRIA, Sophia-Antipolis, 1991. In French.

5. Y. Bertot. Origin functions in lambda-calculus and term rewriting sys-
tems. In J.-C. Raoult, editor, Proceedings of the 17th Colloguivm on
Trees in Algebra and Programming (CAAP ’92), volume 581 of LNCS.
Springer-Verlag, 1992.

6. P. Borras, D. Clément, Th. Despeyroux, J. Incerpi, B. Lang, and
V. Pascual. CENTAUR: the system. In Proceedings of the ACM SIG-

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

20

SOFT/SIGPLAN Software Engineering Symposium on Practical Soft-
ware Development Environments, pages 14-24, 1989. Appeared as SIG-
PLAN Notices 24(2).

A. Church. A formulation of a Simple Theory of Types. Journal of
Symbolic Logic, 5:56—68, 1940.

Th. Despeyroux. Typol: a formalism to implement natural semantics.
Technical Report 94, INRIA, 1988.

A. van Deursen. Origin tracking in primitive recursive schemes. In
H.A. Wijshoff, editor, Conference Proceedings Computing Science in the
Netherlands CSN’93, pages 132-143, 1993.

A. van Deursen, P. Klint, and F. Tip. Origin tracking. Journal of
Symbolic Computation, 15:523-545, 1993. Special Issue on Automatic
Programming.

T.B. Dinesh. Type checking revisited: Modular error handling. In
Proceedings of the Workshop on Semantics of Specification Languages,
Utrecht, 1993. Springer-Verlag, LNCS. To Appear.

J. H. Field and F. Tip. Dynamic dependence in term rewriting systems
and its application to program slicing. Technical report, Centrum voor
Wiskunde en Informatica (CWI), 1994. To appear.

J.H. Field. Incremental Reduction in the Lambda Calculus and Related
Reduction Systems. PhD thesis, Cornell University, 1991.

J. Heering. Second-order algebraic specification of static semantics.
Technical Report CS-R9254, Centrum voor Wiskunde en Informatica
(CWI), 1992. Extented version to appear, 1994.

G. Huet and J.-J. Lévy. Computations in orthogonal rewriting systems
part I and II. In J.-L. Lassez and G. Plotkin, editors, Computational
Logic; essays in honour of Alan Robinson, pages 395—-443. MIT Press,
1991.

G. Kahn. Natural semantics. In F.J. Brandenburg, G. Vidal-Naquet,
and M. Wirsing, editors, Fourth Annual Symposium on Theoretical As-
pects of Computer Science, volume 247 of LNCS, pages 22-39. Springer-
Verlag, 1987.

P. Klint. A meta-environment for generating programming environ-
ments. ACM Transactions on Software Engineering and Methodology,
2(2):176-201, 1993.

J.W. Klop. Combinatory Reduction Systems. Number 127 in Mathe-
matical Center Tracts. Mathematisch Centrum, Amsterdam, 1980.

J.W. Klop. Term rewriting systems. In S. Abramsky, D. Gabbay, and
T. Maibaum, editors, Handbook of Logic in Computer Science, Volume
2. Background: Computational Structures, pages 1-116. Oxford Univer-
sity Press, 1992.

J.-J. Lévy. An algebraic interpretation of the AgK-calculus and a la-

21.

22.

23.

24.

25.

26.

21

belled A-calculus. In C. Bohm, editor, A-Calculus and Computer Science
Theory, number 37 in LNCS. Springer-Verlag, 1975.

L. Maranget. Optimal derivations in weak lambda-calculi and in orthog-
onal term rewriting systems. In Proceedings of the Fighteenth conference
on Principles of Programming Languages POPL 91, pages 225-269,
1991.

T. Nipkow. Higher-order critical pairs. In Proceedings of the Sizth
Annual IEEE Symposium on Logic in Computer Science, pages 342—
349. IEEE Computer Society Press, 1991.

V. van Qostrom. Confluence for Abstract and Higher-Order Rewriting.
PhD thesis, Vrije Universiteit, Amsterdam, March 1994.

V. van Qostrom and F. van Raamsdonk. Comparing combinatory reduc-
tion systems and higher-order rewrite systems, 1994. This proceedings.

F. Tip. Animators for generated programming environments. In P. Fritz-
son, editor, Proceedings of the First International Workshop on Au-
tomated and Algorithmic Debugging AADEBUG’93, LNCS. Springer-
Verlag, 1993.

D.A. Wolfram. The Clausal Theory of Types, volume 21 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press,
1993.

