
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Origin Tracking for Higher-Order Term Rewriting Systems

A. van Deursen, T.B. Dinesh

Computer Science/Department of Software Technology

CS-R9425 1994





Origin Tracking for
Higher�Order Term Rewriting Systems

Arie van Deursen and T�B� Dinesh

farie�dineshg�cwi�nl

CWI

P�O� Box ������ ���� GB Amsterdam� The Netherlands

Abstract

Origin Tracking is a technique which� in the framework of �rst�order term
rewriting systems� establishes relations between each subterm t of a normal
form and a set of subterms� the origins of t� in the initial term� Origin
tracking is based on the notion of residuals� It has been used successfully for
the generation of error handlers and debuggers from algebraic speci�cations
of programming languages� Recent experiments with the use of higher�order
algebraic speci�cations for the de�nition of programming languages revealed
a need to extend origin tracking for higher�order term rewriting systems�

In this paper� we discuss how origin information can be maintained for
�� reductions and expansions� during higher�order rewriting� We give a
de�nition of higher�order origin tracking� The suitability of this de�nition
is illustrated with a small� existing speci�cation�

AMS Subject Classi�cation ������� ��N�	� ��Q

� ��Q�
�

CR Subject Classi�cation ������� D���
� D����� D����� F�����

Keywords � Phrases� Algebraic speci�cations� higher�order rewriting� pro�
gramming language semantics� programming environments� program gener�
ation� origin tracking� program schemes� primitive recursion�

Notes� Partial support has been received from the European Communi�
ties� Esprit projects �
��� Generation of Interactive Programming Envi�
ronments II �Gipe II� and 
���� Compiler Generation for Parallel Machines
�Compare� � and from the Netherlands Organization for Scienti�c Research
� NWO� project Incremental Program Generators� This paper will appear
in the proceedings of the Workshop on Higher Order Algebra� Logic and
Term Rewriting� Lecture Notes in Computer Science� Springer� 
����



�

�� Origin Tracking

When algebraic speci�cations are executed as term rewriting systems �TRSs��
computations are performed by reducing an initial term to its result value
� its normal form� Often� it is enough just to compute this result value� but
in many cases it is useful to have some additional information� For instance�
one may wish to know how the initial term in�uenced the normal form� are
there perhaps parts of the initial term that were copied without a change
to the result term� Or� if a subterm of the normal form does not literally
recur in the initial term� is it possible to identify a set of subterms in the
initial term which in some sense were responsible for its creation�

Trying to capture how intermediate and �nal terms originate from the
initial term is formalized in a notion called origin tracking ��� 
� 
	�� Ori�
gin tracking is based on so�called residuals � Residuals have been used suc�
cessfully in more theoretical work �

� �
� ���� for reasoning about optimal
reduction strategies in TRSs�

Figure 
� Example of a generated environment using origin tracking�

�	� Applications
Our motivation for working on origin tracking is its applicability to the
automatic generation of tools from algebraic speci�cations of programming
languages� As an example� let us take an algebraic speci�cation of a type
checker for some programming language� Assume that this speci�cation can
be executed using rewriting� and that the type check function is called tc�
In order to type check a program P � a term p is constructed representing



�

P � The term tc�p� is reduced to its normal form� which is a list �E�� ���� En�
of error messages� Just carrying out the reduction will only give such a list�
whereas when reduced in combination with origin tracking we get additional
information� Namely� for each error Ei� a relation to the part in the initial
term tc�p�� e�g�� a statement� an expression or an identi�er� responsible for
causing Ei is established�

In the ASF�SDF programming environment generator� ��� 
�� origin track�
ing has been implemented� This implementation has been used to derive
error reporters from algebraic speci�cations of static semantics of program�
ming languages� As an example� Figure 
 shows a generated editor for a
Pascal�like programming language� and an error reporting window which is
displayed as a result of the user requesting a type�check of the program�
Here the user has selected the error message �multiply�de�ned�label step��
By clicking the �Show Origin� button� the user has requested additional
information� This action has caused the relevant occurrences of �step�� in
the original program� to be high�lit�

More details concerning the application of origin tracking to error report�
ing are given in �

�� Origin tracking can also be used to link source and
target code in an algebraically speci�ed compiler� thus facilitating the gen�
eration of source�level debuggers� It has also been used to link intermediate
steps in an interpreter to the source program �given a speci�cation of an
evaluator�� thereby aiding the generation of program animators ��
��

�	
 Preliminaries� First�Order Rewriting
Before de�ning origins more rigorously� we borrow some preliminary de�ni�
tions concerning �rst�order term rewriting from �
�� 

�� Given an alphabet
containing variables and function symbols each equipped with an arity �a
natural number�� a set of terms is constructed by considering

� all variables as terms�

� f�t�� ���� tn� is a term when t�� ���� tn �n � 	� are terms and f is an n�ary
function symbol�

A term t can be reduced to a term t� according to a rewrite rule r � p� q

by identifying a context C�� and a subterm s in t such that t � C�s�� and
by �nding a substitution � such that s � p�� Then t � C�p�� rewrites
to C�q�� � t� by one elementary reduction� written t � t�� We call p�

the redex � and q� the contractum� The concatenation of reduction steps
t� � t� � ���� tn is also written t� �

� tn �n � 	��

Subterms are characterized by occurrences �paths�� which are either equal
to � � for the entire term or to a sequence of integers �the branches� �n�� ���� nm�
�m � 	� representing the access path to the subterm� The occurrence �
� ��

�ASF�SDF is the name of the formalism used to specify programming languages� it
originated from combining the Algebraic Speci�cation Formalism ASF and the Syntax
De�nition Formalism SDF�



�

denotes the second son of the �rst son of the root� i�e�� for term f�g�a� b�� c�
it denotes subterm b� The subterm in t at occurrence u is written t�u� Paths
are concatenated by the �associative� operator ���� If u� v� w are occurrences
and u � v �w� then v is above u� written v � u� or v � u if w 	� ��� If neither
u � v nor v � u then u and v are disjoint � written u j v� The set of all
occurrences in a particular term t is identi�ed by O�t�� which we furthermore
partition into a set Ovar �t� denoting variable occurrences and a set Ofun�t�
denoting function symbol occurrences�

When we wish to identify the redex� rule� and substitution explicitly� we
will write t

u��

�r t

� for the one�step rewrite relation� indicating that rule r is
applied at occurrence u in term t under substitution ��

� ��

� u

� v

� ��

� u

�v

� ��

� u

� u � v�
� u � v� � w

v � u v j u v � u � v� �w

Figure �� Relative positions of v with respect to contractum position u

�	� De�nition of the Origin Function
We give the de�nition of origins as described in �
	�� following the presenta�

tion of ���� Let t
u��

�r t

�� where r is a rule p� q� be an elementary reduction
step� With each step we associate a function org � O�t��� P�O�t�� mapping
occurrences in t� to sets of occurrences in t� Let v � O�t��� We de�ne org by
distinguishing the following cases �see Figure ���

� �Context�

If v � u or v j u then org�v� � fvg�

� �Common Variables�

If v � u � v� � w with v� � Ovar �q� denoting some variable X in the
right�hand side� and w � O�X�� an occurrence in the instantiation of
that variable� then

org�v� � fu � v�� �w j p�v�� � Xg

Hence� v�� � Ovar �p� denotes an occurrence ofX in the left�hand side p�

For the time being� we will assume that org�v� � � for the remaining case�
i�e�� where v denotes a function symbol in the right�hand side �see also
Section 
�
��



�

Function org covers one�step reductions� It is generalized to a function
org� for a multistep reduction t� �

� tn �n � 	� by considering the origin
functions for the individual steps in the complete reduction t� � t� �
� � � � tn� Let oi � O�ti� � P�O�ti���� be the origin function associated
with rewrite step ti�� � ti �	 � i 
 n�� Recursively de�ne orgj � O�tj� �
P�O�t��� for 	 
 j 
 n� and v � O�tj��

� j � 	� orgj�v� � fvg�

� 	 � j 
 n� orgj�v� � fw j w � orgj���w��� w� � oj�v�g

Then org� is equal to orgn for multistep reduction t� �� tn �n � 	��

For orthogonal �left�linear and non�overlapping� TRSs the origin function
is the reversal of the well�known notion of descendant or residual �

�� origins
�point backward�� whereas residuals indicate what remains of a term during
rewriting� In the orthogonal case� the org� function always yields a set
consisting of at most one element�

�	
 Example
As an example� Figure � shows a reduction step of a typical type checker�
The redex �tc�E� � E��� is contracted at occurrence �
� in the given con�
text� Following the de�nition of the function org just given� origins for
nodes within the context are mapped onto themselves� The context po�
sitions �on top of or next to the redex� are ��� ���� and ���
�� denoting
�conc�� �undeclared�var�� and �foo�� For these� we have� org���� � f��g�
org����� � f���g� and org���� 
�� � f��� 
�g� Within the contractum� the po�
sitions corresponding to function symbol occurrences in the right�hand side
obtain the empty set as origin� These positions are �
�� �
�
� and �
���� de�
noting �conc�� �tc�� and �tc� respectively� for which we have org��
�� �
org��
� 
�� � org��
� ��� � �� Finally� the origins within the contractum
corresponding to variable occurrences receive an origin to the recurrences
of these variables� From variable E� we have org��
� 
� 
�� � f�
� 
� 
�g and
org��
� 
� 
� 
�� � f�
� 
� 
� 
�g� and from E� we have org��
� �� 
�� � f�
� 
� ��g�

In this example� the origins are sets of at most one element� Sets with
more elements can be caused by non�linearity� E�g�� rule �and�X�X�� X�
will cause X to have origins to both occurrences of X in the left�hand side�

�	� Discussion
Are the origins in the previous example the ones we were looking for� The
origin of ��� to ��� was good� but it is doubtful that the empty set is the
best origin for the two occurrences of �tc�� Here we summarize some issues
we should be aware of when dealing with �extensions of� origins�

Typically� having origins based only on the Common Variables case is in�
su�cient� These will only establish origins for literal recurrences of terms
and not for any function symbols introduced� Therefore� in addition to rela�



�

����������

�������� ��������

������

tc���

foo�����

undeclared�var���

conc��

����������

��������

tc�����

��������

tc�����

conc���

foo�����

undeclared�var���

conc��

�

Rewrite rule� tc�E� � E��� conc�tc�E��� tc�E���
Substitution� fE� �� 
�� E� �� �g
Context� conc��� undeclared�var�foo��

Dashed Lines� Origins for Common Variables
Dotted Lines� Context Origins�

Figure �� Origins established for one rewrite step�

tions based on common variables� relations following from function symbol
occurrences in left� and right�hand sides of rewrite rules are needed�

Blindly relating any symbol in the right�hand side to all symbols in the
left�hand side will not do either� since this would result in origin sets that are
too big to give accurate information� On the other hand� it should not be too
restrictive� An error message indicating a discrepancy between declaration
and use of an identi�er should have an origin containing at least two paths�
one to the use and one to the declaration� In general� however� we will try
to keep the origin sets small�

We will refer to the origins based only on Contexts � Common Variables
as primary origins� These are clearly necessary and are useful in all applica�
tions� Moreover� we will deal with secondary origins � where the emphasis is
on relations established due to function symbols occurring in left� and right�
hand sides of rewrite rules� Proposals for secondary origins may be biased
towards particular applications� with emphasis on� e�g�� error handling or
debugger generation�

�	� Goal of this Paper
Recent experiments by Heering demonstrated that the use of higher�order
algebraic speci�cations can be advantageous for the de�nition of program�
ming languages �
��� These experiments� however� also revealed that rapid
prototyping of these speci�cations using higher�order term rewriting would
only be of limited use unless some form of origin tracking were available �
��



�

Section ����� Moreover� they suggest that a simple origin scheme based only
on the primary origins rule would be inadequate�

This paper addresses these problems� First� we brie�y summarize the
de�nitions of higher�order rewriting in Section �� along with a small example�
Next� we present primary origins for the higher�order case in Section �� and
extensions to secondary origins in Section �� In Sections 
 and � we mention
related work and draw some conclusions�

�� Higher�Order Term Rewriting

For the de�nition of Higher�Order Term Rewriting Systems �HRSs�� we
follow ���� ��� ���� The main di erence from the �rst�order case is that
terms in HRSs are constructed according to the simply�typed 	�calculus ����


	� The Simply�Typed 	�Calculus
The set of type symbols T consists of elementary type symbols from T� and
of functional type symbols �
 � ��� where 
� � � T � We may abbreviate a
type �
� � �
� � �� � � � �
n � �� � � ���� to �
�� � � � � 
n � ��� Terms are
built using constants and variables � each of which has an associated type
symbol� The type of t is written ��t�� If x is a variable with ��x� � 
�
and t a term with ��t� � �� then the abstraction �	x�t� is a term of type
�
 � ��� If t� t� are terms with ��t� � �
 � �� and ��t�� � 
� then the
application� �t t�� is a term of type �� When omitting brackets� application
is left�associative�

Occurrences in 	�terms are de�ned as for the �rst�order terms� by repre�
senting abstraction as a node with 
 son and application as a node with �
sons� As an example� Figure � shows all occurrences in the term
�add ��	N�N� zero� zero��

All occurrences of x in �	x�t� are said to be bound � Non�bound occur�
rences are free� A term is closed if it does not contain free variables� open
otherwise� Bound variables can be renamed according to the rule of 
�
conversion� A replacement of a term t at occurrence u by subterm s is
denoted by t�u� s�� A substitution � is a mapping from variables to terms�
Application of a substitution � to a term t� written t� � has the e ect that
all free occurrences of variables in the domain of � are replaced by their
associated term� Following the variable convention ���� bound variables are
renamed if necessary�

Let x be a variable� t�� t� terms� and let substitution � � fx �� t�g�
Then the term ��	x�t�� t�� is a ��redex and can be transformed to t�� by
��reduction� A term without ��redex occurrences is said to be in ��normal
form� All typed 	�terms have a ��normal form� which is unique up to 
�
conversion� A ��normal form always has the form

�We use 	
t� t�� alternatively� when there is a need to make the application operator
explicit� as in Figure �� We also use t
t�� in the context of algebraic speci�cation� as in
Figure 
�



�

�	x���	x�� � � ��	xn�f�� � ���H t�� t�� � � � tm�g� � � ���

where x�� � � � � xn are variables� t�� � � � � tm terms in ��normal form� H a con�
stant or a variable� m�n � 	� We will sometimes write this as
	x� � � �xn�H�t�� � � � � tm�� In such a term� H is called the head � H�t�� � � � � tm�
is called the matrix � and 	x� � � �xn is called the binder �

The rule of ��reduction states that terms of the form 	x��t x� can be trans�
formed to just t� provided that x does not occur freely in t� Its counterpart
is ��expansion� if a head H of a ��normal form 	x� � � �xn�H�t�� � � � � tm� is
of type �
�� � � � � 
m�k � �� �k � 	�� then clearly as H expects more ar�
guments� we can add these as extra abstractions� The term above can be
��expanded to 	x� � � �xny�H�t�� � � � � tm� y�� where y is a fresh variable of type

m��� Every term has a ��normal form�

Let 
 be any of f
� �� �� �g� If t can be transformed to t� by performing
a 
�reduction at occurrence u� we write this as t ���u t

�� or alternatively as
t� ���u t� where we may omit occurrence u� Repeated 
�reduction is written
t ��� t

�� Since ��� is a symmetric relation� we will sometimes write it as ���
The ���normal form of t is indicated by t���� The relation t ��� t

� holds if
and only if t��� �� t� ����

!��

!���

add����� !�����

	N��������

N ���������

zero�������

zero���

Figure �� Occurrences in the term ��add ��	N�N� zero�� zero��


	
 Higher�Order Rewrite Steps
If p� q are open simply�typed 	�terms of the same type and in ���normal
form� and if every free variable in q also occurs in p� then p� q is a �higher�

order� rewrite rule� A reduction t
u��

�r t

�� where t� t� are closed 	�terms in
���normal form� � is a substitution� and u is an occurrence in O�t� denoting
the redex position� is possible if�

� The types of the redex and the left�hand side of the rule are the same�

��t�u� � ��p�

� The instantiated left�hand side is ���equal to the redex�

fp�g��� �� ft�ug��



�

� Replacement of the redex by the instantiated right�hand side followed
by ���normalization yields the result t��

ft�u� q� �g��� �� t�

Notice the variety of f
� �� �g�conversions involved in the application of
one rule� This turns out to have consequences for the de�nition of origins�
Also note that matching the redex against a left�hand side may yield more
than one substitution� For origin tracking purposes� however� we are not
concerned with �nding matches� we assume that in some way it has been
decided to apply a rewrite rule under a given substitution �see also Sec�
tion �����


	� Example
Consider the second�order algebraic speci�cation of a simple type checker
shown in Figure 
� which was taken from �
��� The objective of this spec�
i�cation is to replace all simple expressions �identi�ers� string or natural
constants� by a term �tp����� where � is the type of that simple expression
�see equations �
�� ���� and ����� Next� type correct expressions are reduced
to their type �equation ����� Finally� type correct statements are eliminated
�equation �
��� The resulting normal form only contains the incorrect state�
ments�

Take the initial term P��

program� decls� decl�n�natural�� decls� decl�s�string�� emptydecls� ��

stats� assign�s� plus�id�n��id�n���� emptystats � �

It can be reduced according to equation �
� with� e�g�� the substitution� ���

f D �� 	Decl � decls�Decl� decls�decl�s�string�� emptydecls���
S �� 	Id � stats�assign�s�plus�id�Id��id�Id���� emptystats��
X �� n�
� �� natural g

Applying this rule replaces occurrences of �n� by �tp�natural��� which re�
sults in a term P��

program� decls� decl�n�natural�� decls� decl�s�string�� emptydecls� ��

stats� assign�s� plus�id� tp�natural� ��

id� tp�natural� ���� emptystats � �

Next� equation �
� can be applied again� this time replacing �s� by �tp�string���
yielding a P�� Finally� equation ��� can be used to replace the �plus� expres�
sion by a representation of its type �natural� resulting in P�� which is the
normal form of P��

�It is necessary to avoid vacuous abstraction of Decl in the assignments of D �����



	


Initially� we are allowed to apply equation �
� on P�� since under substi�
tution ��� the left�hand side of equation �
� produces a new term P ��

� � which
after two ��reductions �one for D and one for S� is exactly equal to term
P��

To construct the result P� of this one�step reduction� we �rst apply ��
to the right�hand side of equation �
�� producing some term P ��

� � Then two
more ��reductions transform P ��

� to its ��normal form� which results in the
desired P�� We can summarize this �rst single�step rewrite as follows�

P� �� P �
� �� P ��

� � l��� � r��� � P ��
� �� P �

� �� P�

where � denotes the replacement of the instantiated left�hand side by the
instantiated right�hand side� and l� and r� are the left and right�hand side of
equation �
�� Our de�nition of origins also follows this ��ow� where origins
between P� and P� are de�ned using elementary origin de�nitions between
the pairs P� � P �

�� P
�
� � P

��
� � etc�

�� Higher�Order Origins

We de�ne origins for higher�order rewriting by �i� indicating how origins
are to be established for ��� ��� ��� and �� conversion� then �ii� describing
how the inverses �� and �� can be dealt with� and �iii� explaining how origin
relations can be set up between the left� and right�hand side of a rewrite rule�
In this section we give a very basic de�nition� which we refer to as primary
origins � In the next section we discuss various proposals and heuristics to
extend these origins�

We use the following notational conventions� For a term t and variable
x� we write Ofvars�t� for all free variable occurrences in t� Ofvars	x
�t� for
the occurrences of x in t that are free� and Obfun �t� for the application�
abstraction� or constants as well as the bound variable occurrences in t�
Moreover� we abbreviate occurrences of a series of n b�branches as �bn�� For
example� for a ��normal form 	x� � � �xn�H�t�� � � � � tm�� the path to 	xj is
�
j��� �
 
 j 
 n� and the path to ti is �


n� � �
m�i� � ���� The left side of
Figure � shows a term in � normal form� and some path abbreviations�

�	� Conversions
Let t� t� be terms� u � O�t�� and let 
 be any of f
� �� �� �g� Given t ���u t

��
we de�ne org�v� for v � O�t��� First� if v j u or v � u then org�v� � fvg�
Otherwise�

� 
 � 
�


�Conversion does not change the term structure� so we simply have
org�v� � fvg�

� 
 � ��



		

sorts� prog decls decl stat stats id type exp ���
functions�

program � decls� stats � prog

decls � decl� decls � decls

emptydecls � � decls

decl � id� type � decl

natural � � type

string � � type

stats � stat� stats � stats

emptystats � � stats

assign � id� exp � stat

plus � exp� exp � exp

id � id � exp

nat � nat � exp

str � string � exp

���
tp � type � id

variables�

D � decl � decls X � id
� � type S � id � stats

S � stats N � nat
R � string

equations�

�
� program�D�decl�X ����� S�X��
� program�D�decl�X ����� S�tp�����

��� nat�N� � id�tp�natural��
��� str�R� � id�tp�string��
��� plus�id�tp�natural��� id�tp�natural��� � id�tp�natural��
�
� stats�assign�tp���� id�tp������ S� � S

Figure 
� Part of the static semantics speci�cation

Since t�u is a ��redex� we have t�u � ��	x�t�� t��� Note that the path
to t� is �
� 
�� and to t� is ���� Now let w� � O�t��� w� � O�t��� We
distinguish two cases�


� v � u � w�� Then org�v� � fu � �
� 
� � w�g�

�� v � u � w� � w�� and w� � � �� then org�v� � fu � ��� � w�g�

The condition w� � � � avoids overlap with the former case�

Thus� origins in the body t� �remain the same�� origins for the top
node of an instantiated variable have an origin to their corresponding
variable position in the body t�� which is indicated by the dashed lines
in Figure �� and origins to non�top nodes of an instantiated variable
have an origin to their position in the actual parameter t�� which is



	�

	x��

	xn�

�

tm�

ti�

H t�

���� �

�
�� � ��
�
n���
�
n�

�
n� � �
m�i� � ���

	x��

	xn�

	y�

�

� y

tm�

H t�

�
n�
�
n���

�
n��� ���
n���

Figure �� ��Expansion�

indicated by the dotted lines�

� 
 � ��

In ��reduction one 	 is eliminated� Since t�u is an ��redex� we can
assume t�u � 	x��t� x�� Realizing that the path to t� is �
� 
�� we
simply have� org�u � v�� � fu � �
� 
� � v�g�

� 
 � ��

In ��expansion� an extra 	 is added� The origins of the old parts point
to the same old parts� while the origin of the new 	 is the empty set�

Since t�u is an ��redex� we have t�u � 	x� � � �xn�H�t�� � � � � tm�� We
distinguish three cases for v � u � v��


� For v� � �
n���� org�u � v�� � fu � v�g�

�� For v� � f�
n�� �
n���� �
n��� ��g� org�u � v�� � ��

Figure � shows� using tree representations� the occurrences �
n��
�
n��� and �
n��� �� introduced by ��expansion�

�� For v� � �
n���� org�u � �
n��� � v��� � fu � �
n��� � v��g where
v� � �
n��� � v���

Assume that we have an origin function O mapping occurrences of t� to
sets of occurrences in t� Then O is said to be unitary if its result values are
always sets containing exactly one element� and unique if they contain at
most one element� If an occurrence can have the empty set as origin� we say
O is forgetful � If several occurrences in t� have an origin to the same node in
t� we may refer to O as many�to�one� while its counterpart� where an origin
set can contain more than one path� is called one�to�many � Finally� if for
every v � O�t�� we have O�v� � fvg� then we say O is identical �

Thus� the origin function is identical for 
� is unitary for �� is forgetful
for � and �nally� is unitary and many�to�one for �� None of these is one�
to�many� which is fortunate� since in Section 
�
 we concluded that it was
advisable to keep the origin sets small�

�	
 Equality modulo ���conversions
In Section ��� we discussed� reversed � and ��reductions that need to take
place� The origin functions for �f�������g de�ned in the previous section



	�

��
x

t�

x
x

	x

t�

�

��

Figure �� ��reduction in both directions�

can easily be inverted� thus yielding origin functions for �f�������g� Note
that� from an origin tracking point of view� the inverse of ��reduction is
��expansion�

Since the origin function for 
�conversion is identical� performing several

�conversions in one direction or another does not a ect the origins� This
is not the case for � or � reduction� Since ��reduction is many�to�one� its
inverse must be one�to�many� As can be seen from Figure �� this may lead
to a growth of the origin sets� Consider a reduction t �� t

� �� t��� where

t� � ��	x�t�� t��� and t� t�� � t
fx��t�g
� � then the origins from t�� to t� will cause

all instantiated occurrences of x to be related to the same t� in t
�� the origins

of t� to t in turn will link this t� to all instantiated occurrences of x in t�
Thus� transitively� one occurrence of t� in t�� has origins to all occurrences
of t� in t� This is illustrated by the dotted lines of Figure �� Note that the
de�nition of the origin function for the � reduction �case 
�� relates the top
node of t�� via the xs occurring in t� to its position in t �dashed lines of
Figure ���

Since the origins for � conversions are unique this problem does not arise
for � conversions� However� the �� are forgetful� so checking for ��equality
may result in loss of some origin information �in particular in the binders��

�	� Left� and Right�Hand Sides
We de�ne the relations between the instantiated left and right�hand side
of a rewrite rule� where we assume that these are instantiated but not yet
���normalized� We closely follow the �rst�order case de�ned in Section 
���

Let p� q be a rewrite rule� and � a substitution� The function
org � O�q��� P�O�p���� for a path v � O�q��� is de�ned as follows�

� �Common Free Variables�

If v � v� �w with v� � Ofvars�q� denoting some variable X in the right�
hand side� and w � O�X�� an occurrence in the instantiation of that
variable� Then�

org�v� � fv�� �w j q�v� � p�v��� v�� � Ofvars	X
�p�g



	�

Thus� v�� denotes an occurrence of X in left�hand side p�

� �Function Symbols�

If v � Obfun �q�� then org�v� � ��

This is obviously a forgetful de�nition� but this situation is improved in
Section �� As in the �rst�order case� it is also possibly one�to�many �in the
case of non�left�linearity��

Note that the common free variables case results in the same origins as in
the common variables case of Section 
��� when the speci�cation does not
use the higher�order features� The Context case will be dealt with in the
next section�

t� �

t�� ���� t��� ���� t���� � p� � q� � t��

���� � t�

�u �u� t���

Figure �� All conversions for one reduction step t� � t�� applying rule p� q
at occurrence u in t� under substitution ��

�	
 Rewrite Steps
Knowing how to both establish origins for 
�� ��� and ��conversions in either
direction and to set up origins between the instantiated left� and right�hand
side� we can obtain the origins for one complete reduction step t� � t��
Figure � summarizes the work to be done for one reduction� following as
described in Section ����

Note that in general the situation is slightly more complicated than in the
example of Section ���

P� �� P �
� �� P ��

� � l��� � r��� � P ��
� �� P �

� �� P�

where the rewrite rule is applied at the root of P� which has the e ect that
Figure � can be reduced to just �one level�� The context is empty �u � ����
and consequently the term t�u is already a ��normal form� hence the result
need not be put back into the context �in the �gure� � ��� t��� is just equal
to t����

�	� Example
Consider reduction P� � P� as presented in Section ���� Most occurrences
in P� have their intuitive origin� mainly because they also occur in bodies
of the instantiations of D and S in substitution ��� However� some origins
are lost� in particular for nodes occurring in the right�hand side of rule �
��
Thus� symbols �program�� �decl� �for the declaration of n�� and �tp� do



	�

not have an origin� Moreover� rule �
� is non�linear in X � and therefore the
X�occurrence in the declaration at the right�hand side has an origin to the
occurrence in the statement as well as in the declaration� Thus� the single
n in P� has origins to all n occurrences in P� �this does not seem intuitive��
All occurrences of �natural� in P� have their origin to the declaration it
came from �seems reasonable��

Now consider the entire reduction P� �
� P�� where normal form P� is�

program� decls� decl�n�natural�� decls� decl�s�string�� emptydecls� ��

stats� assign� tp�string��

plus�id� tp�natural� ��id� tp�natural� ����

emptystats � �

In this case� more origins are lost� In particular� the two �decl� nodes have
an empty origin� and the reduction according to rule ��� did not establish
any origins� so �tp�natural�� does not have any origins�

�� Extensions

The origins in the previous example were nice� but still not su�cient for
using them in practice� In this section we present some extensions of the
origin function� Some of these extensions are of a heuristic nature� based on
frequently occurring forms of �higher�order� rewrite rules�


	� Extended Contexts
Taking a close look at equation �
� of Figure 
� we see that its intention is to
identify some context �program������ in which a certain term �the identi�er
denoted by X� is to be replaced by another term �in this case tp����� This
context is exactly the same in the left� and right�hand side of the rewrite
rule�

It seems reasonable to extend the notion of a context to cover such simi�
larities within rewrite rules as well� Considering a rewrite rule p� q� we can
look for a �possibly empty� common context C and holes �terms� h�� � � � � hm
and h�� � � �h

�
m �m � 	� such that p �� C�h�� � � � � hm� and q �� C�h��� � � � � h

�
m��

where hj 	��h
�
j for all 
 
 j 
 m� We are actually looking for the biggest

of such contexts which contain the smallest possible number of holes where
none of the holes hj � h�j �
 
 j 
 m� start with a non�empty context C such

that hj �� C�h�� � � �hn� and h�j �� C�h��� � � �h�n�� As an example� equa�
tion �
� of Figure 
 has a common context C � �program�D�decl�X �����
S������ where the hole h� at the left is equal to �X�� and h�� at the right to
�tp�����

For every node in this extended context� the origin should point only
to its corresponding occurrence in that same context at the left�hand side�
Note that� as a consequence� the common variables case should not apply to
variables occurring in the common context� For example� in equation �
�� the
origin of X at the right will only point to its counterpart under the �decl�



	�

at the left and not to the X in the statements� Moreover� when trying to
�nd origins for a node in a hole h�j � it seems reasonable to focus on origins
that can be found within the corresponding hole hj � Only if it is impossible
to �nd origins there� an origin can be looked for in the rest of the left�hand
side�

There is� however� a minor catch in this� If two consecutive holes hj
and hj�� are only separated by an application in the context C� i�e� they
actually occur as !�hj � hj��� at the left and as !�h

�
j � h

�
j��� at the right� then

it is more natural to regard these two as one hole �H � !�hj � hj��� instead
of hj and hj���� As an example� equation ��� in applicative form reads as
!�nat�N� � !�id� !�tp� natural��� It would be counter�intuitive to regard
the top�application as a common context !����� with two holes� h� � nat�
h�� � id� and h� � N � h�� � !�tp� natural��

Note that this new extended context case would be useful in the �rst�order
case as well�


	
 Origins for Constants
Let p � C�h�� � � � � hm� � C�h��� � � � � h

�
m� � q be a rewrite rule with the

common context C and m �m � 	� holes� We de�ne origins for constants
occurring in the h�j �
 
 j 
 m� according to the following three cases�


� Head�to�Head

The origin for the occurrence of the head symbol of a hole h�j at the
right is the occurrence of the head symbol of that same hole hj at
the left� For example� the �tp� symbol in equation �
� is linked to the
occurrence of X in the statements at the left� This head�to�head rule
corresponds to the �redex�contractum� rule of the �rst�order origins
as described in �
	�� Note that if the head symbol at the right is a free
variable� the common variables case is applicable as well� This can� in
general� have the e ect that the origin set for the head symbols consist
of more than one path�

�� Common Subterms�

If a term s is a subterm of both h�j and hj � then these occurrences of
s are related� For example� the subterm �tp�natural�� at the right of
equation ��� �Figure 
� is related to both occurrences of �tp�natural��
at the left� Note that these common subterms are identi�ed in the un�
instantiated left� and right�hand side� This rule can in some cases lead
to seemingly wild connections� but has already proven its usefulness
for the �rst�order case �
	� 

�� The common subterms behave slightly
di erent in the higher�order case� due to the applicative form of the
	�terms� In the �rst�order case� function symbols were only related if
all arguments were identical at the left and right� In the higher�order
case� function symbols are constants� Each constant F in h�j is related
to all occurrences of F in hj � This e ect is similar to the tokenization
discussed in �

��



	�

If for a subterm s of h�j no occurrences of s can be found in hj � then
the entire left�hand side p can be used to �nd a common subterm
occurrence of s�

�� Any to All�

If after application of the head�to�head and common subterms case
there are still constants in h�j with an empty origin� the set of all
constant occurrences at the left�hole hj is de�ned as its origin set� For
example� in equation ���� the subterms �tp�natural�� and �natural�
relate to both �nat�N�� and �N��


	� Abstraction and Concretization Degree
Let us end our discussion with an interesting observation� Recall from Sec�
tion ��� that �� conversions are one�to�many� Assume that t� �� t with
t � ��	x�t�� t��� It would be useful to call the number of free occurrences
of x in t� the abstraction degree of 	x�t�� and the number of occurrences
of term t� in t� the concretization degree� When trying to �nd a matching
substitution � in order to apply a rewrite rule� freedom exists concerning the
abstraction and concretization degree� For example� if � assigns F a value
T with abstraction degree N � 	 and concretization degree M � 	� then an
alternative match �� can also be possible which assigns F a term T � with
abstraction degree N 
 
 and concretization degree M � 
� The problems
with �� are minimized if matches with abstraction degree 
 are preferred
over those with a higher abstraction degree�

In practice� however� such a preference may be somewhat problematic�
Firstly� a substitution with a lower degree of abstraction may not even ex�
ist� Secondly� the repeated application of a substitution with abstraction
degree 
 need not yield the same result as a single application with a higher
abstraction degree� Finally� repeated applications may be more expensive in
terms of run time behavior� than a single application with a high abstraction
degree�


	
 Example
With these extensions� suitable origins for the example in Section ��� are
obtained� We assume that equation �
� is applied with substitutions of ab�
straction degree 
 only� The extended contexts assure that �program� and
�decl� are linked� Moreover� the e ect of linking variables in contexts only to
the same occurrence in the context� guarantees that the n and s in the dec�
laration have the proper unitary origin� Furthermore� relating heads of holes
guarantees that the �tp� nodes get the right origin to the variable they were
substituted for� Likewise� the application of equation ��� results in �plus�
as the origin of �tp�� Finally� common subterms results in �tp�natural��
to be linked to both occurrences of �tp�natural�� in the �plus� expression
�equation �����

The example given here is only part of the speci�cation discussed in �
���



	�

The origins with extensions create the proper relations for the full speci��
cation as well�

�� Related Work

The current document is part of a series of papers studying origins and their
applications to the automatic generation of parts of compilers or program�
ming environments � in particular error handlers� symbolic debuggers� and
animators� The extensions to primary origins studied in �
	� establishes rela�
tions between common subterms in left and right�hand side of rewrite rules�
as well as a link between the top�node of the redex and the contractum�
Moreover� origins are de�ned for conditional rewrite rules� Several issues
related to the e�cient implementation of origin tracking in the ASF�SDF
Meta�Environment �
�� are discussed in �
	�� The applicability of origins
in practice� using a speci�cation of the semantics of a subset of Pascal� is
studied by Dinesh and Tip where the static semantics and generated er�
ror handler is covered in �

� and the dynamic semantics and generated
animator is described in ��
�� In order to improve origin tracking for syntax�
directed speci�cations �typically translators or type checkers�� an extension
for primitive recursive schemes is proposed in ���� An origin�like relation�
called dynamic�dependence relation is studied by Field and Tip �
��� They
show that the dependence tracking technique is useful in the context of
program slicing�

The study of origins was pioneered by Bertot ��� 
�� who was concerned
with origins in natural semantics� �orthogonal� term rewriting� and the �un�
typed� 	�calculus� He describes a language for the de�nition and representa�
tion of origins� In his setting� origins are unitary �consisting of at most one
path�� Secondary origins are represented by marking functions � This work
was done in the framework of the Centaur system ���� In particular� the
speci�cation language Typol �
�� has been extended with subject tracking
����

Closely related to origins are residual maps � descendants � or labelings
��	� 

� �
� 
��� which are used to study reduction strategies� Residuals
indicate which redexes survive if a particular redex is contracted� One can
think of this as giving interesting parts in the initial term a particular color�
and then looking how this color survives during reduction� An interesting
combination of origins and labeling systems is presented by Bertot �
� where
he investigates how origins for TRSs can be used to simulate labeling systems
for the 	�calculus� The labels of ��	� suggest that alternative representations
for origins containing more structure than the �simple� sets of paths could
be fruitful�

Nipkow"s de�nition of higher�order TRSs requires the rewrite rules to
satisfy several syntactic constraints ����� We have discussed origins using
the more liberal setting of Wolfram ����� Obviously� the same origins can be
established for Nipkow"s HRSs� The nicer matching behavior of Nipkow"s
HRSs will probably have a favorable e ect on the origins� The mapping



	�

between Nipkow"s HRSs and Klop"s combinatory reduction systems �CRSs�
�
�� as described in ���� can be the basis for a de�nition of origins for CRSs�

Another issue is the study of origins as transformations on HRSs� Tip has
conducted such experiments for the �rst�order case� For the higher�order
case� it may be useful to use speci�cations of the 	�calculus with explicit
substitutions as in �
��

�� Conclusions

Origin tracking for higher�order speci�cations is considerably more di�cult
than establishing origin relations for the �rst�order case� Various conversions
to be performed� both as reductions and as expansions� have to be taken into
account� Nevertheless� we have found a satisfactory origin scheme� which is
applicable to arbitrary higher�order term rewriting systems

There is� however� still some future work to do� The most important
thing is to gain experience with these origins� More speci�cations of realistic
problems and their applicability for origin tracking should be studied�

Finally� after having seen many variants of origin tracking� it may be
worthwhile to investigate the possibility of generalizing to some kind of origin
scheme� This may clarify and ease future discussions of further extensions
of origin tracking�

Acknowledgments This paper would not have been possible without Jan
Heering"s support and advice� Comments of Jan Heering� Femke van Raams�
donk� Susan #Usk#udarl$� Machteld Vonk and the reviewers have helped im�
prove the presentation�

References


� M� Abadi� L� Cardelli� P��L� Currien� and J��J� L%evy� Explicit substitu�
tions� In Proceedings of the ��th conference on Principles of Program�
ming Languages� pages �
���� 
��	�

�� H�P� Barendregt� The Lambda Calculus� its Syntax and Semantics� vol�
ume 
	� of Studies in Logic and the Foundations of Mathatematics�
North�Holland� 
����

�� J�A� Bergstra� J� Heering� and P� Klint� editors� Algebraic Speci�ca�
tion� ACM Press Frontier Series� The ACM Press in co�operation with
Addison�Wesley� 
����

�� Y� Bertot� Une Automatisation du Calcul des R�esidus en S�emantique
Naturelle� PhD thesis� INRIA� Sophia�Antipolis� 
��
� In French�


� Y� Bertot� Origin functions in lambda�calculus and term rewriting sys�
tems� In J��C� Raoult� editor� Proceedings of the ��th Colloquium on
Trees in Algebra and Programming �CAAP ��
�� volume 
�
 of LNCS�
Springer�Verlag� 
����

�� P� Borras� D� Cl%ement� Th� Despeyroux� J� Incerpi� B� Lang� and
V� Pascual� Centaur� the system� In Proceedings of the ACM SIG�



�


SOFT�SIGPLAN Software Engineering Symposium on Practical Soft�
ware Development Environments� pages 
����� 
���� Appeared as SIG�
PLAN Notices ������

�� A� Church� A formulation of a Simple Theory of Types� Journal of
Symbolic Logic� 
�
����� 
��	�

�� Th� Despeyroux� Typol� a formalism to implement natural semantics�
Technical Report ��� INRIA� 
����

�� A� van Deursen� Origin tracking in primitive recursive schemes� In
H�A� Wijsho � editor� Conference Proceedings Computing Science in the
Netherlands CSN���� pages 
���
��� 
����


	� A� van Deursen� P� Klint� and F� Tip� Origin tracking� Journal of
Symbolic Computation� 

�
���
�
� 
���� Special Issue on Automatic
Programming�



� T�B� Dinesh� Type checking revisited� Modular error handling� In
Proceedings of the Workshop on Semantics of Speci�cation Languages�
Utrecht� 
���� Springer�Verlag� LNCS� To Appear�


�� J� H� Field and F� Tip� Dynamic dependence in term rewriting systems
and its application to program slicing� Technical report� Centrum voor
Wiskunde en Informatica �CWI�� 
���� To appear�


�� J�H� Field� Incremental Reduction in the Lambda Calculus and Related
Reduction Systems� PhD thesis� Cornell University� 
��
�


�� J� Heering� Second�order algebraic speci�cation of static semantics�
Technical Report CS�R��
�� Centrum voor Wiskunde en Informatica
�CWI�� 
���� Extented version to appear� 
����



� G� Huet and J��J� L%evy� Computations in orthogonal rewriting systems
part I and II� In J��L� Lassez and G� Plotkin� editors� Computational
Logic� essays in honour of Alan Robinson� pages ��
����� MIT Press�

��
�


�� G� Kahn� Natural semantics� In F�J� Brandenburg� G� Vidal�Naquet�
and M� Wirsing� editors� Fourth Annual Symposium on Theoretical As�
pects of Computer Science� volume ��� of LNCS� pages ������ Springer�
Verlag� 
����


�� P� Klint� A meta�environment for generating programming environ�
ments� ACM Transactions on Software Engineering and Methodology�
�����
����	
� 
����


�� J�W� Klop� Combinatory Reduction Systems� Number 
�� in Mathe�
matical Center Tracts� Mathematisch Centrum� Amsterdam� 
��	�


�� J�W� Klop� Term rewriting systems� In S� Abramsky� D� Gabbay� and
T� Maibaum� editors� Handbook of Logic in Computer Science� Volume

	 Background� Computational Structures� pages 
�

�� Oxford Univer�
sity Press� 
����

�	� J��J� L%evy� An algebraic interpretation of the 	�K�calculus and a la�



�	

belled 	�calculus� In C� B#ohm� editor� 	�Calculus and Computer Science
Theory� number �� in LNCS� Springer�Verlag� 
��
�

�
� L� Maranget� Optimal derivations in weak lambda�calculi and in orthog�
onal term rewriting systems� In Proceedings of the Eighteenth conference
on Principles of Programming Languages POPL ���� pages ��
�����

��
�

��� T� Nipkow� Higher�order critical pairs� In Proceedings of the Sixth
Annual IEEE Symposium on Logic in Computer Science� pages ����
���� IEEE Computer Society Press� 
��
�

��� V� van Oostrom� Con�uence for Abstract and Higher�Order Rewriting�
PhD thesis� Vrije Universiteit� Amsterdam� March 
����

��� V� van Oostrom and F� van Raamsdonk� Comparing combinatory reduc�
tion systems and higher�order rewrite systems� 
���� This proceedings�

�
� F� Tip� Animators for generated programming environments� In P� Fritz�
son� editor� Proceedings of the First International Workshop on Au�
tomated and Algorithmic Debugging AADEBUG���� LNCS� Springer�
Verlag� 
����

��� D�A� Wolfram� The Clausal Theory of Types� volume �
 of Cambridge
Tracts in Theoretical Computer Science� Cambridge University Press�

����


