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Abstract 

In order to exploit parallel computers, database management systems must 

achieve a high level of concurrency when executing transactions. In a high con-

tention environment, however, concurrency is severely limited due to transaction 

blocking, and the utilisation of parallel hardware resources, e.g. multiple CPUs, 

can be low. In this dissertation, a new transaction model, Branching Transac-

tions, is proposed. Under branching transactions, more than one possible path 

of execution of a transaction is followed up in parallel, which allows us to avoid 

unnecessary transaction blockings and restarts. This approach uses additional 

hardware resources, mainly CPU - which would otherwise sit idle due to data 

contention - to improve transaction response time and throughput. 

A new transaction model has implications for many transaction processing al-

gorithms, in particular concurrency control. A family of locking algorithms, based 

on multi-version two-phase locking, has been developed for branching transac-

tions, including an algorithm which can dynamically switch between branching 

and non-branching modes. The issues of deadlock handling and recovery are also 

considered. The correctness of all new concurrency control algorithms is proved 

by extending traditional serializability theory so that it is able to cope with the 

notion of a branching transaction. 

Architectural descriptions of branching transaction systems for shared-memory 

parallel databases and hybrid shared-disk/shared-memory systems are discussed. 

In particular, the problem of cache coherence is addressed. The performance of 

branching transactions in a shared-memory parallel database system has been 

investigated using discrete-event simulation. 

One field which may potentially benefit greatly from branching transactions is 

that of so-called "real-time" database systems, in which transactions have execu-

tion deadlines. A new real-time concurrency control algorithm based on branching 

transactions is introduced. - 
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Chapter 1 

Introduction 

In 1983, Boral and DeWitt [15] predicted that there would be no future for parallel 

database machines. Contrary to that statement, however, in the ten years that 

followed, Teradata and Tandem - two companies marketing and selling parallel 

database systems - were very successful. Partially, Boral and DeWitt's prediction 

was wrong, since they could not foresee at that time that the newly introduced 

relational data model, which is ideally suited for parallel database systems, was 

about to become the dominating database technology in the market. 

In 1992, another paper [98] critical of the need of parallel database technology 

suggested that most commercial applications do not need highly parallel database 

systems since modern processors are fast enough to cope with them. We believe 

that this assessment is similarly flawed as the one by Boral and DeWitt in 1983: it 

does not consider the emergence of new application types which will want to take 

advantage of the services, e.g. query processing and transaction management, of a 

database management system; and it does not consider growing requirements for 

transaction throughput due to an enterprise's business growth. 

Looking at the current market situation, it is obvious that industry considers 

parallel databases as a lucrative area for profits; all major commercial database 

vendors have or are working on ports of their DBMS for various parallel computer 

platforms. They are also identifying possible new application areas for database 

systems. One such area is "media server"; a media server application typically 

ffol 
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involves audio and video data and must satisfy near real-time performance con-

straints. 

Hence, in spite of the occasional doubtful paper, most indicators today suggest 

that parallel databases will occupy a considerable share of the database market in 

the future. 

The primary motivation to use parallel computers for database applications is 

performance, which typically is either expressed in the average number of trans-

actions a DBMS can process per second (throughput) or the average time required 

to execute a transaction (response time). Both are important parameters. For 

example, a bank customer using an ATM to retrieve money from his/her account 

expects to receive a response from the ATM within a few seconds after having 

typed in the request. Long delays at the ATM clearly would not be tolerated by 

the customer. Fast response time alone, however, is not sufficient. It is equally 

important to have a large enough number of ATMs available in a given area. Large 

numbers of ATMs may lead to many requests being made simultaneously. The 

throughput of a system describes how many such transactions the system is able 

to cope with within a certain period of time. 

Many of the algorithms used in parallel DBMS today were originally designed 

for single-processor or distributed computer systems and then adapted to a parallel 

environment. Although performance improvements have been achieved this way, 

we believe it is important to take a fresh look at today's DBMS and decide whether 

or not a redesign - tailored to the particular aspects of modern parallel computer 

architectures - of some of their components might be beneficial. One such area 

to be looked at is transaction management and concurrency control. 

A key component of most major DBMS products is their transaction manage 

ment subsystem, which is responsible for the correct scheduling of transactions 

and the consistency of the database in spite of possible failure situations, e.g. sys-

tem or media failure. A transaction, when executed in isolation, is assumed to 

transform the database from one consistent state to another, but serial execution 

of transactions is highly inefficient and most database systems, therefore, execute 

multiple transactions simultaneously. Not all concurrent schedules of transactions 
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can be allowed, however, or else the database may become corrupt. It is the re-

sponsibility of the Concurrency Control Manager (CCM) to prevent inconsistent 

schedules. 

Although many concurrency control algorithms have been proposed in the past 

(see [10] for an overview of basic techniques), there is still a strong interest in 

this area. In particular, in the context of parallel database systems, concurrency 

control can be a key factor in preventing a DBMS from exploiting parallel hardware 

resources to the fullest. Data contention leads to transactions being blocked, 

i.e. waiting for access permission to data which is currently accessed by other 

transactions. A number of studies have shown that under two-phase locking - 

the most commonly used concurrency control algorithm - data contention can 

be the cause of system performance degradation [5,6,21,37,48,86]. 

The central objective of this dissertation is to address this issue of data con-

tention in parallel database systems. In particular, we propose a new transaction 

model, branching transactions, which has been designed to reduce data conten-

tion by taking advantage of the higher availability of CPU resources in a parallel 

computer system. 

The key issue of almost all previous concurrency control algorithms is what 

we refer to as the "wrong decisions" problem. These algorithms take a particular 

action at the time when two transactions have a database access conflict. Pessim-

istic algorithms either block or restart the transactions involved, whereas optimistic 

algorithms allow them all to proceed, but may have to abort and restart transac-

tions later if their verification fails. Since these decisions are based on incomplete 

knowledge not until some time after the decision has been made does it become 

clear whether or not it is correct - some eventually are found to be "wrong". 

A "wrong decision" does not compromise the consistency of the database, but 

imposes a performance penalty on the system. Blocking causes response tithe 

problems since the execution of a transaction is halted for some period. Aborting 

and restarting also prolongs response time since a transaction must start execution 

all over again from the beginning after is has been aborted. Furthermore, restarts 
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lead to extra overhead for resources, e.g. CPU and I/O, since part or all of the 

execution of a transaction must be repeated. 

Our new transaction model is designed to avoid making the "wrong decision" 

to block a transaction by simultaneously following up alternative execution paths 

for a transaction. Once it becomes clear which alternative is correct, all others 

can be discarded. The key goals of our model are: that the successful branch of a 

transaction can be executed with 1) minimal delay (due to waiting for locks), and 

2) a minimal number of restarts. 

Since none of the existing transaction models are able to support the idea 

of branching, the traditional flat model has been extended to incorporate the 

notion of alternative paths of execution. To illustrate the uniqueness of our new 

model, we compare it with a variety of previously suggested models, e.g. nested 

transactions, distributed transactions, multi-level transactions, split transactions 

and flex transactions. 

Existing transaction processing algorithms cannot simply be transferred to a 

new transaction model such as branching transactions. Hence, new algorithms 

for concurrency control, transaction commit and logging and recovery had to be 

developed. 

A new multi-version two-phase locking algorithm, is proposed which supports 

the notion of alternative transaction branches. As in traditional multi-version 

algorithms, a Write operation to the database yields a new version of the cor-

responding data item. A Read request may result in branching of the reader 

transaction if currently more than one version of the requested item exists. 

We recognise that unrestricted branching may lead to an exponential growth 

of the number of transaction branches simultaneously executed. Even a very 

powerful parallel computer may not be able to cope with too much branching. 

Hence, we propose several strategies to limit the maximum level of branching 

allowed. We describe a static method, in which case each transaction is limited 

to a pre-determined number of branches, and a more dynamic view, in which 
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branching is made dependent on the availability of system resources (primarily 

CPUs). A hybrid approach is also feasible. 

To allow dynamic switching between the branching and non-branching modes 

of transaction execution, we extend our original concurrency control algorithm 

into a hybrid branching algorithm which merges single-version two-phase lock-

ing, multi-version two-phase locking and branching transaction multi-version two-

phase locking into one single concurrency control policy (we refer to this new 

algorithm as HBT-MV2PL). 

A common problem with proposals for new concurrency control mechanisms 

is that they require a substantial rewrite for many of the components of the con-

currency control system. To reduce this problem for branching transactions, we 

suggest a two-layer approach for the development of an HBT-MV2PL concurrency 

control manager, where the lower layer captures general (non-branching) 2-phase 

locking, and the higher layer provides full FIBT-MV2PL functionality. Separating 

the scheduler in these two components supports the possibility of reusing existing 

2PL scheduler code. 

As with all locking algorithms, HBT-MV2PL may lead to deadlocks. The 

notion of a deadlock is redefined in the context of branching transactions; although 

there be may a deadlock between a set of branches, the transactions to which 

these branches belong are not necessarily deadlocked as well. We take this into 

consideration when defining wait-for graphs in this new context. New deadlock 

detection and resolution algorithms are proposed for branching transactions. 

I/O overhead for logging should be kept to a minimum. We investigated al-

ternative solutions and decided to apply an incremental log with deferred updates 

strategy [10]. Using this technique, we are able to avoid any extra overhead due 

to branching of transactions. Since log records are written to disk at commit 

time only, and the correct branch of execution of a transaction is known at that 

time, no logging or undo I/O overhead is caused by transaction branches which 

are aborted. 

To illustrate how branching transactions can be used in a parallel computer en- 
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vironment, an overall system architecture for our new model is proposed. We focus 

on two parallel hardware platforms: shared memory parallel computers and shared 

something systems (multiple shared memory nodes connected via some inter-

connect - which are sharing disks) [84,93]. System architectures are described in 

terms of their component resource managers and the interaction between them. 

In the case of shared something systems, we identify how load balancing can 

be achieved; load balancing in a shared memory environment is comparatively 

easy and assumed to be handled by the underlying operating system. A further 

complication in the case of shared something is cache coherence. To speed-up 

access to data, cache memory is used to buffer database pages. Copies of the same 

database item in more than one (shared memory) node can lead to coherence 

problems. Since in a branching transaction system committed as well as uncom-

mitted data may be copied at more than one node, cache coherence is an even 

more complicated issue. 

Following the terminology used by Rahm [75], our cache coherence scheme 

for committed data could be classified as using on-request invalidation, selective 

notification, some sort of page sequence numbers, horizontal propagation for cache 

page updates, and force or no-force disk update. We apply a similar scheme to 

maintain cache coherence of uncommitted data, although no disk update strategy 

is required since uncommitted data is never written to disk. The two schemes 

interact with each other to form a new, combined cache management mechanism 

for a branching transaction system. 

As a concrete example we use the Convex Exemplar - a parallel computer 

which contains a number of connected shared-memory nodes - and map our 

proposed system architecture onto its hardware and system software environment. 

With the introduction of any new transaction model and concurrency con-

trol algorithm, the issue of correctness arises. Unless we are certain that our 

new mechanisms do not permit interleavings of transactions which can corrupt 

the database, they are of little use. Hence, a formal proof of correctness is re-

quired. Traditional serializability theory [10] is not powerful enough to cope with 

the concept of branching transactions. After considering a number of alternative 
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proof systems, e.g. I/O Automata [59] and ACTA [26], we decided to develop an 

extension of traditional serializability theory. 

We introduce the notions of basic agents, agents and agent histories which 

allow us to incorporate internal structure (branching) of transactions in the formal 

description of concurrent transaction execution. Based on these, we define the 

concept of a branching transaction history (BTFI). By formalising the properties 

of our concurrency control algorithms we can prove that the committed projection 

of a BTH is always equivalent to some (non-branching) multi-version history (as 

described in Bernstein et al. [101). With the help of existing work on such multi-

version histories we are then able to prove the correctness of our new transaction 

model and concurrency control algorithms. 

To gain some insights into the performance behaviour of branching transac-

tions, a simulation study has been carried out for the shared-memory architecture 

case. After demonstrating the problem of data contention in a parallel database 

system, the performance of a branching transaction system is compared with that 

of flat transactions using "normal" (non-branching) two-phase locking. The study 

shows that significant improvements can be achieved using branching transactions, 

even if CPU resources are limited. 

One particular area in which we believe branching transactions to be potentially 

of great benefit is real-time scheduling'. We propose a new real-time concurrency 

control algorithm which is designed to minimise tardiness of transactions (due to 

data conflicts) through the use of branching transaction's capability of parallel 

execution of alternative paths. This new algorithm also incorporates the idea of 

delayed commits, which has been shown to be beneficial in the context of real-time 

concurrency control [3]. We do not attempt to commit a transaction once it has 

reached the end of execution, but delay its commitment until shortly before its 

deadline. Under the branching transactions model, most locks on items held by a 

'A comprehensive, annotated bibliography on real-time database systems, including 

concurrency control, can be found in [92]. 
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transaction prior to its commit phase do not conflict with other transactions, and 

hence, we minimise the impact of transactions with later deadlines on transactions 

with earlier deadlines. 

The remainder of this dissertation is organised as follows. Chapter 2 provides 

a general introduction to the area of transaction processing and parallel data-

base systems. In particular, it discusses the issues of DBMS system architectures, 

concurrency control and recovery, as well as aspects of performance evaluation of 

database systems. The key concepts of the branching transaction model and our 

motivation is described in Chapter 3. Also, part of this chapter is dedicated to 

a comparison of our new transaction model with other, related work. Similarities 

and differences with existing methods are discussed and the uniqueness and nov-

elty of our approach established. Chapter 4 mostly describes the development of 

new concurrency control algorithms for branching transactions. In addition, it in-

cludes a discussion of deadlock handling and logging and recovery. Possible system 

architectures for branching transactions for parallel computer hardware platforms 

are presented in Chapter 5. In particular, we discuss shared memory and shared 

something architectures. Load balancing and load control issues are considered, 

and a cache coherence protocol introduced. This chapter uses the Convex Ex-

emplar as a concrete hardware platform example in its descriptions. Chapter 6 

contains an introduction to traditional serializability, extensions of it for branching 

transactions, the formalisation of branching transactions and a correctness proof 

of our new algorithms. Our performance study of branching transactions is presen-

ted in Chapter 7. Branching transactions for real-time scheduling are discussed in 

Chapter 8. The dissertation is concluded in Chapter 9; the primary achievements 

of this dissertation are summarised and future work discussed. 



Chapter 2 

Transaction Processing and 

Parallel Database Systems 

In this chapter, we give an introduction to the field of transaction processing in 

centralised, distributed and parallel databases. We also discuss various possibilities 

for performance evaluation of such systems. The information given in this chapter 

should provide sufficient background information for the reader to understand the 

context in which the work described in this dissertation has been carried out. 

For a comprehensive treatment of the field of transaction processing the reader is 

referred to Gray and Reuter [40]. 

21 Transactions 

A fundamental requirement for database management systems is their support of 

multi-user access to shared information. Several users must be allowed to sim-

ultaneously query and modify the content of a database. To avoid interference 

between these users, synchronisation techniques must be applied, or else the data-

base may be left in an inconsistent state. Furthermore, the database management 

system should be able to maintain the consistency of a database in spite of various 

failure situations (which will be described in more detail below). To satisfy these 

requirements the notion of transactions was introduced [40,41]. 

24 
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Definition 1 A transaction is the execution of a program that includes database 

access operations and has the following properties: 

Atomicity: a transaction is either executed entirely or not at all. 

Consistency: a correct execution of a transaction transforms the database from 

one consistent state to another. 

Isolation: even though transactions execute concurrently with transaction T, it 

appears to T that each other transaction either executed before or after T. 

Durability: changes made to the database by a committed transaction will not be 

lost through any subsequent failures in the system. 

It should be noted that the given definition does not exclude the possibility 

of temporary inconsistent states during the execution of a transaction. Through 

isolation, however, such inconsistencies are not visible to other transactions. To 

give a better understanding of the atomicity property it is helpful to discuss the 

transaction state transition diagram presented in Figure 2-1. 

read—item/ 

Figure 2-1: Transaction State Transition Diagram 

In our description, we assume the following simple structure for transactions. 

After a transaction has been initialised through the execution of a begin-transaction 
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statement it accesses the database through read-item and write-item operations. 

During this phase the transaction is active. An end-transaction statement indicates 

to the database management system that the transaction has finished its execution 

- it has partially committed— and all modifications to the database should now be 

made permanent. If these changes can be applied to the database, the transaction 

commits. 

Sometimes, however, transactions fail due to various reasons, for example be-

cause their execution would violate serializability. Since a transaction failure may 

occur while the database is in an inconsistent state, any changes made to the 

database must be undone, i.e. the state of the database prior to the execution of 

the transaction must be restored. The process of undoing a transaction is called 

rollback. 

A transaction terminates in either the committed state (the transaction has 

been executed entirely) or the aborted state (the effects are as if the transaction 

had never executed). In either case, the atomicity property is satisfied. 

In addition to other database management system components, e.g. the query 

optimiser and the data manager, there exist two modules, the concurrency con-

trol manager (CCM) and the recovery manager (RM), which are responsible for 

guaranteeing the ACID properties of transactions. While isolation and consist-

ency (and serializability) are enforced by a CCM, the RM ensures atomicity and 

durability. The details of these modules are somewhat dependent on the under-

lying system architecture on top of which the DBMS is operating. Hence, before 

discussing more about CCMs and RMs, we briefly sketch the differences between 

centralised, distributed and parallel database systems. 
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2.2 Database System Architectures 

2.2.1 Centralised Database Systems 

The simplest environment to deal with is a centralised database system, where one 

DBMS is running on a single computer, all data are held on local disks and all users 

use this computer to access the database. Centralised systems range from simple, 

one-user, PC-based databases to large mainframe databases 1  which are shared by 

many users. All DBMS modules, such as the concurrency control manager and the 

recovery manager, use "centralised" algorithms, i.e. these modules do not need to 

communicate with any other computers. 

2.2.2 Distributed Database Systems 

Although mainly centralised database systems have been used in the past (and 

still are today for small database applications), for some time now there has been 

a trend away from centralised, mainframe systems to more distributed solutions 

for medium to large-sized organisations. The de-centralised structure of modern 

companies is better served by a database system which operates across multiple 

computers which are connected through some communication network 2.  Such a 

database system is usually referred to as a distributed database system [7,24,70]. 

'Mainframes are likely to be Symmetric Multi-Processor (SMP) machines - more 

details on SMPs later in Chapter 5 - but this does not significantly impact on the 

DBMS architecture 

2With the proliferation of powerful parallel database systems which can be configured 

into several, fairly independent, database subsystems, a new trend has emerged: distrib-

uted databases are being consolidated within one parallel database server. Consolidation 

and distribution are somewhat contradictory developments and at this stage it is not 

clear how these trends will evolve in the future database markets. 
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Distributed database systems are difficult to describe within a single definition. 

Instead, it may be better to give a brief description of the three most common 

forms of distributed database technology. 

• Homogeneous distributed database systems 

• Client/Server architectures 

. Multi-database systems 

Homogeneous Distributed Database Systems In a homogeneous distrib-

uted database system each node runs the same DBMS software. Nodes are not 

autonomous and follow the same protocols throughout the system. Note that this 

does not exclude the possibility that the underlying hardware and operating sys-

tems are heterogeneous. To the user the system appears as one logical database 

system - the actual distribution of the DBMS and the database is transparent to 

him/her. Data are located at various nodes of the system and may for performance 

reasons even be replicated at one or more nodes. 

Although this kind of distributed technology has been given enormous atten-

tion by the database research community, it has not had a very significant success 

in industry. A homogeneous distributed database system does not grow out of 

a number of already existing database systems, but needs to be developed and 

planned as one entity. In most companies, however, a number of initially inde-

pendent, frequently heterogeneous, database solutions exist prior to the wish of 

integrating all of them into one coherent database system. 

Concurrency control and recovery are more complicated than in centralised 

systems. We will discuss them in more detail later in this chapter. 

Client/Server Architectures The client/server architecture is currently the 

most common form of distributed database technology. As the name indicates, 

the database system is divided into clients and servers. There must be at least 

one server and one client, which typically reside on different computers (connected 
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by some form of network, e.g. LAN). The server provides standard services such 

as storage and access to the database, transaction management and communica-

tion interfaces. The client computer runs applications which request services, e.g. 

access to the database server, as needed. The reader can find several popular ac-

counts of clieuit/server computing, and its impact on database systems technology, 

in the bibliography; see [28] [60] [68]. 

We categorise client/server architectures into three groups, depending on whether 

the client performs query processing, and whether data from the database is buf-

fered by the client. In the first group, the client merely requests data from the 

server. No data is buffered locally and all query processing is performed by the 

server. A client in the second group receives data from the server and performs 

some query processing locally. However, no data is buffered by the client and 

each request to the database requires access to the database server. In the third 

group, data from the server is actually buffered and a client only needs to access 

the server if the data needed is not in its local buffer. 

An important characteristic of these client/server systems is their capability 

to deal with heterogeneous environments. It is relatively easy to integrate clients 

and servers running on different platforms. 

If there exists only one server in the system, then concurrency control and 

recovery mechanisms developed for centralised systems can be applied. Distributed 

techniques are required if more than one server is active and a single transaction 

can access data from more than one server. 

Multidatabase Systems The development from centralised to distributed sys-

tems often happens gradually. In most cases initially a number of different, inde-

pendent databases exist and a need to integrate them arises with the introduction 

of a new application. Unfortunately, not only are these systems independent, 

but they also frequently use different software (including different DBMS) and 

hardware. The system that results from the integration of such heterogeneous, 

independent database systems is known as a multi-database system. 
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To provide the user with one logical interface and to make the heterogeneous 

and distributed nature of the system transparent, an additional software layer is 

built on top of the various existing DBMS. A significant difference between multi-

databases and homogeneous distributed databases is the level of autonomy at each 

site. In a multi-database environment it is possible to simply run an application on 

one node without making use of services provided by the multidatabase software 

layer. At any node a mix of local transactions and global transactions (issued 

through the multi-database software) may run concurrently. In a distributed ho-

mogeneous system all transactions are always managed by the distributed DBMS. 

The most difficult problems in multi-database systems arise from the autonomy 

of nodes. It leads to a mixture of different transaction management systems, 

concurrency control mechanisms, recovery schemes, and database schemes. 

This thesis does not deal with problems of multi-database systems, and there-

fore, for further details on this topic, the reader is referred to [58], [79] and [87]. 

2.2.3 Parallel Database Systems 

Unlike distributed database systems (DDBS), which typically run on a number 

of workstations which communicate through a LAN or WAN and are possibly 

hundreds or thousands of miles away from each other (e.g. airline reservation 

systems), in parallel database systems all processing elements and disks are located 

closely together. 

Parallel database systems can be categorised according to their underlying 

hardware characteristics. In [30] parallel architectures are divided into 3 groups: 

shared-memory: all processors share direct access to a common global memory 

and to all disks. 

shared-disks: each processor has a private memory but has access to all disks. 

shared-nothing: each processor has a private memory and one or more disks; 

processors act as servers for data on disks owned by them. 
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It should be noted that shared-memory architectures as described above are 

different from so-called distributed shared memory (DSM) systems [73]. The above 

definition of shared-memory implies physically shared memory by processors, whereas 

a DSM system only gives the illusion that there exists a global shared memory by 

providing a global address space (in spite of having physically distributed memory). 

Some influential researchers in this field stated that a shared-nothing archi-

tecture is the preferred option for parallel databases [30,84], and as a result a 

significant amount of research work has focussed on shared-nothing systems. Al-

though a shared-nothing architecture seems very suitable for large relational data-

bases, other types of workloads may benefit from different architectures. Valduriez 

[93] makes the case for a shared-disk system where each node itself is a shared-

memory multi-processor. He refers to such an architecture as shared-something. 

Norman et al. [66] point out that in spite of marketing statements in support of 

shared-nothing architectures, quite often the underlying hardware of such "shared-

nothing" systems displays some level of sharing, e.g. disks can be accessed by more 

than one node. 

Of the major parallel DBMS products, examples of shared-nothing DBMS 

architectures are Sybase, Tandem and Teradata. Examples of shared-disk archi-

tectures are Openingres, Oracle7 and Red Brick. Other leading products, such as 

Informix and DB2, cannot be simply put in either classification. 

We will discuss various architectures in more detail in Chapter 5 in the context 

of DBMS software architectures for branching transactions. 

2.3 Concurrency Control 

2.3.1 Concurrency Control in Centralised Database Sys-

tems 

Although the average transaction workload is known for most database applica- 

tions, in general individual arrivals of transactions follow some random distribution 
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and cannot be predicted by the database management system. The concurrency 

control manager dynamically has to decide whether a requested access to the data-

base is going to violate serializability and what actions have to be taken. A great 

number of algorithms have been proposed (see [10] for a survey) to solve this 

problem. In general they fall into two categories. 

. locking algorithms 

• timestamp algorithms 

Each of these groups can further be subdivided into: 

• optimistic algorithms 

• pessimistic algorithms 

All techniques described in this section are used to achieve serializable sched-

ules. 

Locking Techniques for Concurrency Control Locking mechanisms achieve 

transaction synchronisation through mutual exclusion of data accesses. Before a 

transaction can access a data item, it has to acquire an appropriate lock for that 

data item. -If a read-item(X) operation is requested, a read-lock on X must be 

obtained first. Several transactions can hold a read-lock on X simultaneously, and 

hence, read-locks are usually referred to as shared locks. A transaction wanting 

to modify (write) a data item X must first acquire a write-lock on X. Since 

only one transaction can have a write-lock on X at any time, and no shared-locks 

are allowed simultaneously, write-locks are called exclusive locks. If a transaction 

cannot be granted the lock it requested, it must wait until the transaction currently 

holding a lock on the item releases (unlocks) that lock. 

If each transaction acquires and releases locks in two distinct phases, i.e. all 

locking operations precede the first unlock operation of a transaction, the sched-

ules which result from such a policy will always be serializable [10]. Concurrency 
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control algorithms of this kind are called two-phase locking. To guarantee trans-

action isolation, all locks obtained by a transaction during execution are usually 

collectively released at commit time of that transaction. 

Two-phase locking algorithms, however, may lead to deadlocks, which we il-

lustrate with the example given in Table 2-1. First, transaction T1  requests and 

acquires a shared lock on item X (step 1). Then 7'2  requests and acquires a shared 

lock on item Y (step 2). When T1  tries to get an exclusive lock on Y it gets 

blocked (step 3), since T2 has a shared lock on Y already; analogous step 4. In 

this situation, both transactions are waiting for each other to release a lock and 

the system has entered a deadlock. 

Step Transaction T1  Transaction T2  Concurrency Control Manager 

1 read-lock(X) grant shared lock on X for T1  

2 readiock(Y) grant shared lock on Y for T2 

3 writeJock(Y) block transaction T1  

4 writeiock(X) block transaction T2 

Table 2-1: Transaction deadlock in locking protocol 

Algorithms which apply deadlock detection and resolution techniques are called 

general two-phase locking. There exist other algorithms which use deadlock pre-

vention techniques, e.g. wound-wait and wait-die [77]. 

Timestamp Techniques for Concurrency Control Timestamp algorithms 

[8] are based on the notion of a unique timestamp which is created by the DBMS 

to identify a transaction. Transactions usually use their startup time as their 

timestamp. We refer to the timestamp of a transaction as TS(T). Each data item 

in the database has two timestamps associated with it, following the rules given 

below (taken from [33]). 

1. The read timestamp of item X is the largest timestamp among all the 

timestamps of transactions that have successfully read item X. 



Chapter 2. Transaction Processing and Parallel Database Systems 	34 

2. The write timestarnp of item X is the largest of all the timestamps of trans-

actions that have successfully written item X. 

Timestamp ordering is a concurrency control technique that enforces a schedule 

equivalent to a serial schedule which has all transactions in the order of their 

timestamp values. The algorithm applies the following rules. (read.T5(X) is the 

read tim.estamp for item X, write 328(X) is the write timestamp for item X). 

Again these descriptions are given in [33]. 

Transaction T issues a write-item(X) operation: 

• if read-TS(X) > TS(T), then abort and roll-back T and reject the 

operation. 

• if write-TS(X) > TS(T), then do not execute the write operation, but 

continue processing. 

• if neither of the two conditions above are true, then execute the write-item(X) 

operation of T and set write .18(X) to T8(T). 

Transaction T issues a read-item(X) operation: 

• if write-TS(X) > TS(T), then abort and roll-back T and reject the 

operation. 

• if write-TS(X) < TS(T), then execute the read-item operation of T 

and set read-TS(X) to the larger of T8(T) and the current read_TS(X). 

It is possible to increase the level of concurrency by keeping more than one 

version of the same data item in the database. A timestamp ordering algorithm 

based on this principle is called multi-version concurrency control [77]. Under this 

scheme, write operations create new versions of data items, rather than overwriting 

the old values. A write operation is rejected if it arrives too late. To decide whether 

a write-item(X) operation by transaction T is too late, the version of X with the 

highest timestamp smaller than TS(T) is determined. If for this version there 

exists a read timestamp > TS(T), then the operation write-item(X) arrived too 
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late. Read operations are never rejected. If a transaction T wants to read a version 

which was created by another uncommitted transaction T', T has to wait until T' 

either commits or aborts. In the latter case the read operation is scheduled for 

another version. Although additional overhead is caused through the maintenance 

of multiple versions, various studies [17,23,57,82] have shown that a significant 

performance advantage can be achieved through multi-version techniques. Multi-

version concurrency control algorithms also exist for locking protocols. We will 

discuss multi-version two-phase locking in more detail in Chapter 4. 

Pessimistic vs. Optimistic Algorithms Both locking and timestamp order-

ing algorithms can be pessimistic or optimistic. The algorithms described above 

are pessimistic, i.e. when a request is made, the concurrency control mechanism 

immediately decides whether or not it can be granted. Optimistic algorithms [55] 

do not interfere with the execution of a transaction until it tries to commit, at 

which point the concurrency control manager will try to verify that no violation 

of serializability has happened, and if not, the transaction can commit. Otherwise 

the transaction is rolled-back. Optimistic concurrency control algorithms perform 

well under low data contention, i.e. for workloads where there is little interference 

between transactions [22]. 

2.3.2 Concurrency Control in Distributed Database Sys-

tems 

Distributed systems are designed in such a way that no single node needs to know 

the current status of the global system. Nodes have to communicate with each 

other to find out about the activities at other nodes. This partial information 

problem makes concurrency control in distributed database systems much harder. 

The following description of distributed serializability will show why. 

Distributed Serializability As in the centralised case, for a transaction sched 

ule in a distributed system to be correct it must be serializable. The problem, 
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however, is that it is not sufficient to enforce a serializable schedule at all nodes. 

Assume, for example, that transactions T1  and TI2  are both running on nodes N1  

and N2 . At node N1  a schedule may be produced which is equivalent to a serial 

execution where T1  is executed before 112. At the same time, at node N2  a schedule 

may be produced which is equivalent to a serial schedule in which 7'2  is executed 

before T1 . While both local schedules are serializable, there exists no single global 

serial order which can satisfy both local schedules, and hence, the execution is 

not serializable. In a distributed system any ordering of transactions must be the 

same at all nodes. 

Data Replication An additional difficulty is the possibility of data replication. 

In a distributed system it may be beneficial for availability and reliability purposes 

to keep more than one copy of a data item at different nodes. The 0CM has to 

ensure that no inconsistencies between copies emerge. 

Classification of Distributed Concurrency Control Algorithms To deal 

with the problems of global (distributed) serializability and data replication, three 

possible solutions were proposed: 

• Centralised Approach: One site in the system is responsible for all con-

currency control decisions. All other nodes have to communicate with the 

designated node if they want to access the database. The problem is ba-

sically reduced to that of a centralised database system, and all techniques 

discussed previously in Section 2.3.1 can be applied. 

• Primary Copy: For each data item one copy - recall that more than one 

may exist due to data replication - is designated as the primary copy. All 

concurrency control for that item is handled by the primary copy. Again, the 

problem is very similar to a centralised case, and the appropriate mechanisms 

can be used. 

• Distributed Approach Under this approach all nodes share equal responsib- 

ility for concurrency control. If data items are not replicated, this method 
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is identical to the primary copy approach. In case of data replication, the 

following two protocols can be used. Both mechanisms ensure that a conflict 

between two transactions will always be detected 

- Read-One-Write-All: If a transaction wants to read an item it will read 

only one of the copies. If a transaction wants to update a data item, it 

has to update all existing copies of the item. 

- Majority Consensus: Whether a transaction wants to read or update 

an item, it has to obtain the approval to do so by a majority of the 

nodes responsible for copies of this item. 

Distributed Locking Algorithms Locking algorithms can be used with any of 

the aforementioned distributed techniques. An additional problem of distributed 

locking mechanisms is the possibility of distributed deadlocks. We will not discuss 

any details of distributed deadlocks in this introduction; for more detail the reader 

is referred to [51]. 

Distributed Timestamp Algorithms Centralised timestamp algorithms can 

easily be adapted to a distributed environment, by generating timestamps which 

are system-wide unique. This is usually done by concatenating a locally unique 

timestamp with the node number [56]. 

A more detailed discussion of distributed concurrency control algorithms can be 

found in [7,9,24,70]. 

2.3.3 Concurrency Control in Parallel Database Systems 

There is no distinct set of concurrency control algorithms for parallel databases. 

Depending on the architecture of the system, either centralised or distributed 

concurrency control algorithms can be applied, perhaps with some modification. 

There exists, however, the added complexity of cache coherency for shared-disk 

architectures. We will discuss this in more detail in Chapter 5. 
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Although it is possible to provide a parallel implementation of a concurrency 

control algorithm for example, one may wish to implement a parallel algorithm 

for centralised deadlock detection in a shared-memory system - we do not address 

implementation details of any algorithm presented in this dissertation, but focus 

on conceptual problems instead. 

2.4 Recovery 

2.4.1 Recovery in Centralised Database Systems 

In an ideal environment transactions never conflict, the system never crashes, and 

no hardware failures occur. This, of course, is unrealistic and a DBMS has to 

provide special mechanisms to guarantee the transaction properties of atomicity 

and durability in spite of such failures. The part of a DBMS dealing with failures 

is called the Recovery Manager (RM). We categorise failures into the following two 

groups. 

• Transaction failure: a single transaction fails while the rest of the system 

remains operational. This may be caused by a concurrency control decision, 

the user aborting the transaction, or an error in the application program 

(e.g. division by zero). 

• System failure: the entire database system fails. This may be caused by 

a power failure, operating system crash, or a serious hardware failure (e.g. 

CPU). 

For either failure situation it is necessary to guarantee the atomicity of a trans-

action. Different techniques can be applied based on whether a transaction updates 

the database immediately or if updates are applied to the database at commit time. 

A more detailed discussion of the following techniques can be found in [52]. 
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Incremental Log with Deferred Updates Under this scheme, no updates to 

the database are performed immediately. Instead, a log file is maintained which 

keeps a record for each write operation issued by a transaction. In case a trans-

action fails, all records (relating to this transaction) kept in the log are simply 

discarded. Since the database was not modified, no further actions are required 

to roll-back the transaction. In case the transaction partially-commits, the log 

records are used to apply all updates to the database. Log records are kept on 

disk, rather than in main memory, to ensure atomicity in spite of system failures. 

Incremental Log with Immediate Updates All write operations by transac-

tions are immediately performed on the database. For each item updated, however, 

a record is kept in a disk-based log file containing the value of the items prior to 

their modification. In case a transaction fails these log records are used to restore 

the original state of those items which were modified by the failed transaction. 

Shadow Paging An alternative solution to log files is the use of shadow pages. 

The basic idea behind this approach is to keep two versions of a database page 

while a transaction is actively updating it. The current page is accessed and 

updated by the transaction while the shadow page is kept in its original state. If 

a transaction successfully commits, the current page becomes the new page in the 

database, otherwise the shadow page stays a part of the database. 

In case of a system failure, any transaction that has not committed yet will be 

treated as a failed transaction when the system is restarted, and hence, rolled-back. 

The recovery manager of a DBMS is also responsible for dealing with media 

failures, i.e. a disk crash. For a discussion of this area we refer the reader to the 

literature [7,33,52]. 

2.4.2 Recovery in Distributed Database Systems 

In a distributed system, a transaction may modify data on more than one node, 

depending on where the data which the transaction wants to access are located. 
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A transaction that executes on more than one node during its lifetime is called a 

distributed transaction. Since atomicity is also an essential property for distrib-

uted transactions, the recovery manager has to ensure that a transaction either 

successfully commits at all nodes or not at all. Additional failure sources, such as 

site failure and communication failure, make this a complicated problem. 

In addition to those techniques described in Section 2.4.1, a new family of proto-

cols, named atomic commit protocols, have been developed to guarantee atomicity 

in a distributed system. The most common algorithm is called two-phase commit 

protocol (which is not the same as two-phase locking). 

Two-Phase Commit Protocol The node where a transaction originates is 

called the coordinator, all other nodes visited by the transaction are participants. 

Once a transaction has partially committed, the coordinator sends a prepare mes-

sage to all participants to ask whether they are ready to commit the transaction. 

If for any reason (e.g. concurrency control) a participant cannot commit the trans-

action it replies with an abort message, otherwise it sends a ready message. The 

coordinator collects all the answers from the participants, and if one' (or more) 

participants cannot commit, the entire transaction is aborted, i.e. the coordinator 

sends abort messages to all participants who replied with a ready message. If all 

participants reply with a ready message, then the first phase of the protocol has 

successfully been completed. At this stage all participating nodes guarantee (us-

ing local recovery techniques) that they will be able to commit the transaction in 

spite of any failures that may occur. In the second phase the coordinator sends 

commit messages to all participants, which then commit the transaction at their 

node and acknowledge this to the coordinator with a committed message. Once the 

coordinator has received committed messages from all participants, the transaction 

is committed, and the protocol ends. 

In case of a site failure during the two-phase commit protocol it may happen 

that the protocol is blocked until the corresponding site has recovered. An exten-

sion of two-phase commit was developed, called the three-phase commit protocol, 

which can avoid the blocking problem in case of a site failure. There are still 
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problems in case of communication failures where all sites are still operational but 

the network has been divided into several partitions. We will not discuss these 

issues in detail; the reader is referred to [7,9,24,70]. 

2.4.3 Recovery in Parallel Database Systems 

Recovery mechanisms developed for centralised and distributed systems can also be 

applied to parallel databases. A failure in a shared-memory or shared-disk system 

is usually treated as a total failure and handled by using centralised recovery 

mechanisms. In a shared-nothing system, using distributed recovery algorithms 

would allow the system to continue to operate in spite of individual node failures. 

Since such node failures, however, occur relatively rarely, it may be tolerable to 

interrupt regular database processing for recovery purposes, i.e. to treat a single 

node failure as a total system failure. The advantage of this would be a lower 

system overhead during normal, failure free, processing. 

Although existing recovery techniques can be applied in parallel database sys-

tems, some work has been carried out which deals with the particulars of recovery 

in parallel database systems: for example, Keen and Dally [49] describe a protocol 

which reduces the problem of I/O costs for logging purposes in a parallel database 

system. Kumar et al. [54] show that multiple processors can be used to reduce 

logging overhead on transaction response time and speed up recovery after system 

failure. 

2.5 Performance Evaluation of Database Systems 

One of the issues in this thesis is the performance of concurrency control al-

gorithms. These mechanisms significantly contribute to the overall efficiency of a 

database, and the performance of a particular algorithm can be understood best 

when studied in the context of an entire system. In this section we will, therefore, 

briefly introduce several aspects of database systems performance. We begin this 
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discussion with a description of systems metrics used to express the performance 

of a database system. 

2.5.1 Database Performance Metrics 

A useful distinction between global and internal database performance analysis 

is made in [25]. In global analysis the performance metrics refer to the global 

system behaviour, i.e. the system is seen as a black box which produces certain 

outputs when given certain inputs. Examples of such metrics are response time 

and throughput. While end users are primarily interested in performance indexes 

produced through global analysis, researchers and developers try to understand 

the reasons behind a certain system behaviour. They are, therefore, looking inside 

the system (internal analysis). Internal analysis is used to determine the effect of 

particular internal hardware and software resources on global indexes (throughput 

and response time). Internal metrics such as utilisation and average queue length 

of system components are used to determine bottlenecks and poor utilisation of 

resources within the DBMS. 

Although transaction response time, transaction throughput and utilisation are 

standard performance metrics in the database literature, we discuss them briefly 

for completeness. 

Transaction Response Time is the time between the arrival of a transaction 

in the database system and the exit of the transaction from the system. The time 

elapsed between a request for withdrawal of money made by a bank customer 

using an ATM (automatic teller machine), and the dispensation of the money to 

the customer is a typical example for transaction response time. 

Transaction Throughput is a measure of how many transactions are com-

pleted per given time unit, e.g. how many requests by customers can be processed 

by an ATM in a given unit of time. It indicates the quantity of information that 

can be processed by a given system in a given period. 
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In general, if longer transaction response times are acceptable, higher through.-

put can be achieved. There are, however, many applications where response time 

is expected to stay within certain limits, e.g. it is not very desirable to let a 

customer wait for 30 minutes before he receives his money from an ATM. 

Utilisation indicates how intensively a particular resource, e.g. CPU, memory, 

10 or network, is used within the system. It is defined as the ratio between the 

length of time a resource was used during a given time interval and the length 

of that interval. Utilisation statistics help to identify bottlenecks in the system 

and/or inefficient use of resources (low utilisation). 

2.5.2 Measuring Database Performance 

If an actual implementation of a DBMS exists one can evaluate its efficiency by 

running a specific target application or a benchmark test on it and measure its 

performance. Researchers and developers, however, frequently have to make design 

decisions without implementing and analysing the alternatives first; it would be too 

expensive to do that. They, therefore, use models of database systems to study 

their performance. Analytical models and simulation models are developed to 

predict the efficiency of a particular algorithm or system design. We will examine 

each of these performance evaluation techniques in more detail next. 

Test-runs of target applications The most accurate information about the 

performance of a database system can be obtained if the target application is 

actually implemented on the DBMS of interest. This, however, is usually rather 

expensive and can only be done in very few cases. An alternative to this approach 

is the use of benchmarks. 

Benchmarks A benchmark is a program that creates an artificial workload for a 

DBMS. Measurements taken during the execution of a benchmark test give a fairly 

accurate picture of a DBMS' performance with regard to the workload modelled 
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by that benchmark. There exist a number of database benchmarks, e.g. TPC-A, 

TPC-B, TPC-C, the Wisconsin Benchmark, the Set Query Benchmark, etc. (for 

a description of these benchmarks and further references see [39]), each trying 

to capture a different kind of workload. In spite of the variety of benchmarks 

that exist today, they are sometimes criticised for not accurately representing the 

workload of real-world applications [19]. Furthermore, benchmarks developed by 

DBMS vendors are often designed around that vendors' systems. If none of the 

existing benchmarks seems fit to represent a certain workload, implementing a new 

one is often a viable alternative. Although costs of developing a comprehensive 

benchmark can be around one million US dollars and higher, it is still cheaper to 

develop a new benchmark than a complete application. 

Hitherto, we assumed the existence of the DBMS under consideration. As 

pointed out earlier, this frequently is not the case, and system models must be 

used instead. 

Analytical and Simulation Models In stochastic models (analytical and sim-

ulation models), systems are represented as queueing networks where a separate 

queue is provided for every resource, and transactions arriving in the system and 

requesting services are modelled as a number of customers circulating in the net-

work. 

Analytical models are models for which exact or approximate solution al-

gorithms exist. Their advantage is a relatively low computational overhead. They 

do, however, require a fairly sophisticated theoretical background (mathematics, 

queueing theory), and sometimes simplifying assumptions, needed to keep the 

system solvable, lead to unrealistic models. 

Most work on analytical modelling in the area of concurrency control was done 

for centralised database systems (e.g. [86,85,901), though some researchers have 

also suggested analytical models for distributed concurrency control algorithms 

([99]). It would have been very difficult to extend the latter work to include 

branching transactions. 
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On the other side, simulation models are more intuitive than analytical models 

and allow the modeller to represent a system in as much detail as desired. This 

advantage is, however, balanced by the greater computational cost of running 

simulation programs. 

A discussion of these performance measurement techniques can be found in 

[25]. 

Complexity of Database Algorithms 

Another approach to evaluate performance characteristics of database algorithms 

is to determine their computational complexity. For example, in [71] it is shown 

that implementing a conflict graph scheduler for a given set of transactions on two 

sites in order to minimise communication is PSPACE-complete. [71] also shows 

that there is a tradeoff between the computational and communication cost for 

a distributed scheduler. A proof is given which shows that unless NP=PSPACE, 

there is no distributed scheduler which realizes serializability, operates in polyno-

mial time, and uses the minimum possible number of messages. Complexity results 

of this kind are important, because they can identify performance problems of a 

particular design or architecture which are not merely the consequence of a poor 

implementation. 



Chapter 3 

Branching Transaction Model 

We begin this chapter with a discussion of the data contention problem and the 

"wrong decisions" issue of traditional concurrency control mechanisms. This will 

lead us to the basic idea of branching transactions. The principle concepts of 

this new transaction model are presented and compared with existing similar ap-

proaches. 

3.1 Data Contention 

In an ideal environment, transaction - throughput increases linearly with the num-

ber of transactions submitted to the database. A high transaction workload, 

however, can lead to the problem of thrashing. Thrashing is a well known is-

sue and has been reported, in the case of operating systems, as early as 1968 

[29]. Thrashing in the context of a database system can either manifest itself 

as resource contention or data contention [10]. Under resource contention most 

transactions are waiting for resources, such as processors, memory and I/O; under 

data contention most transactions are waiting for locks on data items. 

As discussed in Chapter 2, the most commonly used concurrency control mech-

anism in today's database management systems is two-phase locking (2PL). Vari-

ous studies have shown that 2PL can be the cause of system performance degrad-

ation due to data contention [5,6,21,37,48,86]. Since a parallel database system 
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is running on a parallel hardware platform, resources such as processors, memory 

and 1/0 are more readily available than in uni-processor systems, and hence, a 

parallel database system is more likely to be bound by data contention than by 

resource contention. There are certainly transaction workloads where this argu-

ment does not apply: for example, decision support type of queries which perform 

mostly read operations across large databases do not cause many data conflicts 

between transactions, since multiple read operations on the same data item are 

allowed concurrently. We are, however, more interested in On-Line Transaction 

Processing (OLTP) workloads, where a mix of read and write operations is leading 

to data conflicts. 

3.2 The "Wrong Decision" Problem 

In Chapter 2 we explained that almost all existing concurrency control algorithms 

make particular decisions at the time of data conflicts, i.e. the time when two 

transactions want to access the same data item. Pessimistic algorithms either block 

or restart one of the transactions involved, optimistic algorithms allow them all to 

proceed, but may have to abort and restart transactions later if their verification 

fails. 

All these algorithms share a particular problem: at the time of conflict it is 

not known which decision is the best one to make; the best decision in this con-

text is the one which guarantees serializability with the least negative impact on 

performance. Blocking and aborting transactions cause performance degradation. 

Pessimistic concurrency algorithms block and abort transactions, because other-

wise serializability might be compromised or a deadlock might occur. There is 

no guarantee that this eventually really happens, and in case it doesn't, blocking 

or aborting is unnecessary. In an optimistic algorithm, a transaction, which is 

allowed to proceed after a data conflict, may later fail its verification. In this case, 

it would have been better to abort the transaction immediately at the time of 

conflict. 
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This "wrong decision" problem exists, since the scheduler, which carries out a 

particular concurrency control policy, is forced to make a decision at a time when 

it is not yet known which decision is best. In general, this can only be determ-

ined some time in the future. Since the scheduler cannot predict the future, it 

works with certain default assumptions. In the case of pessimistic algorithms, the 

assumption is that unless some action (blocking or abort) is taken, serializability 

will become compromised. In case of optimistic algorithms, the assumption is that 

most likely no serializability problem will occur in spite of a data conflict. In either 

case, if it later turns out that this assumption was incorrect, a "wrong decision" 

has been made. We illustrate the "wrong decision" problem with the following 

example. 

Example 1 Let us assume we have two transactions, T 1  and T2  (r[x] denotes 

a read operation by transaction T on item x; w[z] denotes a write operation by 

transaction T on item x): 

Ti : ri [x] wi [x] wi [z] 

772: r2 [y] r2 [xJ w2 [xj w 2 [z] 

Basic Scenario Initially T1  has read and written data item x and TI2  has read 

item y: 

r1 [x] w i [x] 

r2  [Y] 

time 

The next operation to arrive at the scheduler is transaction T2 's read opera-

tion on x. At this point we have a data conflict, since T 1  has just written item 

x. Without any interference, i.e. no blocking and aborting of transactions, the 

following two scenarios might emerge from this point. 
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Scenario 1: 

ri[x] wj [x] 	 Wi[Z] 

r2 [y] r2 [x] w 2 [x] 	w 2 [z] 

time 

T2  reads and writes item x, then T1  writes z and finally T2 writes z. 

Scenario 2: 

ri[x] wi [x] 	 Wi[Z] 

r2[y] r2[x] w2 [x] w2 [z] 

time 

'2 continues to execute all of its operations before T1  writes item z. 

The first scenario describes a serializable schedule, whereas the second one is 

an incorrect schedule which should not be allowed'. 

In case of scenario 1, if strict 2-phase locking was applied, T2 s read operation 

on x would have been delayed until after T, has finished. The blocking of T 2  would 

be an example of a "wrong decision". In case of scenario 2, under an optimistic 

concurrency control manager, the read operation of T2  on x would not have been 

delayed. Since the schedule that follows is incorrect, transaction verification would 

have failed and at least one of the two transactions would be aborted and restarted. 

In this case, it would have been better immediately to abort T 2  at the time of 

conflict. Letting 7'2  proceed here, is another example of a "wrong decision". 

"Wrong decisions" are not wrong in the sense that they lead to incorrect sched-

ules, which can leave the database inconsistent, but they impose a performance 

penalty on the system. In branching transactions we try to avoid this problem by 

delaying a decision until it is clear which is the best action to take. We discuss 

the principles of branching transactions next. 

'Readers not familiar with the concept of serializability are referred to Chapter 6 for 

an introduction to this topic. 
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3.3 Principles of Branching Transactions 

When a transaction wants to read a data item, it may be the case that there 

currently exist temporary (uncommitted) versions of that item in the system. 

Blocking the reader until these versions have committed may not be the best 

option, as we have seen in the above example. Simply to read an uncommitted 

version, however, may also be a problem: an abort of the transaction which wrote 

the version forces an abort of the reader transaction (cascading aborts). Whatever 

decision the scheduler takes in this situation, it may be a "wrong decision". 

Since the correct decision becomes clear once the "writer" transaction termin-

ates (either aborts or commits), we propose to delay any particular action until 

that point. To do so, we must concurrently follow up alternative paths of execu-

tion (each based on a different assumption). Once the correct path of execution 

is known, all others can be aborted. 

Executing alternative paths of a transaction concurrently increases demand 

on hardware resources, in particular, CPUs. However, as we pointed out in our 

discussion of data contention, in a parallel database system data contention can 

lead to low CPU utilisation, and it seems appropriate to use this idle CPU time 

to reduce the problem caused by sharing data. The idea of "sacrificing" hardware 

resources to improve concurrency in a database system is not entirely new: multi-

version concurrency control algorithms [76] use additional memory and disk space 

- to store multiple versions of the same data item - to improve the level of 

concurrency. 

We will use the following three transactions, T1 , T2 and T3 , to illustrate the 

basic idea of branching transactions (r[x] denotes a read operation on data item 

X; w[x] denotes a write operation on data item x.). 

r[z], r[x], r[y], r[t], w[t], r[m], r[n], w[n] 

w[x], r[z], r[u], w[u] 

w[y], r[1], r[k], w[k], r[u], w[u], r[p] 
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If these transactions were executed under a two-phase locking algorithm, the sched-

ule in Table 3-1 would be a possible interleaving of their execution 2  (r[x] denotes 

T reading the value of data item x written by T; w[x] denotes T updating x; 

cj  denotes the Commit operation of T. The values of data items prior to the 

execution of this schedule are indicated by subscript 0.). At step (2), when T1  

tries to read data item x, it is blocked by T2 's lock on x; T2 has written to x at 

step (1), and must therefore hold an exclusive lock on it. T1  remains blocked until 

TI'2  releases its lock on x. Similarly, T1  gets blocked again at step (7), because of 

T3 's lock on y. 

The scheduler blocks T1  at step (2), since it cannot decide whether T1  should 

read the value written to x by T2, or the value x hathprior to step (1). In case Ti'2  

aborts, or commits after T1 , T1  should read x 0 , otherwise it should read x 2 . Since 

T2 's fate is not known at the time of conflict, the scheduler delays its decision 

- blocks T1  - until it has sufficient information to decide. In case Ti'2  commits 

before T1 , blocking of T1 , and the delay of its response time that follows from it, 

is unnecessary. 

Table 3-2 shows a schedule in which T1  is executed as a branching transaction. 

This time when T1  tries to read data item x, it branches into two components: 

T1 , 2  and T1 , 3 , the first proceeds using the original value of x, the second reads x 2 . 

At step (3), further branching is necessary since y has been updated by T3  at step 

(2). At step (6), it has become clear - since T2  just committed - that the correct 

decision at step (2) was to read x 2 . Therefore, it is not necessary to pursue further 

those components that were started under the assumption that x 0  should be read, 

and T1 , 4  and T1 , 5  abort. 

When a particular path of a branching transaction has executed all operations, 

it is not allowed to commit until it is known whether all assumptions made by it 

'The notion of a step in this table does not mean that actions at the same step have 

to be executed exactly at the same time, but an action at step ii is executed before an 

action at step n + 1. 

- 
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Step T  T2 T3 

1 ri [zo] w 2 [x 2 ] 

2 blocked r2 [zo] W3 [Y31 

3 blocked r2  [uo ] r3  [10 ] 

4 blocked w 2 [u2 ] r3[ko] 

5 blocked c2  w3  [k3 ] 

6 ri [x 2 } r3 [u2 ] 

7 blocked w 3  [it3] 

8 blocked r3 [POI 

9 blocked 

10 rj [y3] 

11 ri[to] 

12 wi [t i ] 

13 r 1 [mo] 

14 r i [no ] 

15 w i [ni ] 

16 c1  

Table 3-1: Schedule under Two-phase Locking (No Branching) 

are fulfilled: T1 ,6  and T17  are blocked at step (9) since they cannot commit until 

after 773  committed (or aborted). Since 773 indeed commits, T1 ,6  aborts and T17  

commits at step (10). 

3.3.1 Transaction Graphs and Components: 

To be able to refer to the various parts of a branching transaction we use the 

term (branching) transaction component (BTC). A branching transaction origin-

ally starts as a single transaction component. In case the transaction needs to 

branch, the original component creates two (or more) new components. If neces-

sary, these new components can then themselves branch again, and so on. 

We represent the branching hierarchy of a branching transaction T by a trans- 
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Step Branching Transaction T1  T2 723 

- T1 , j : 

1 rii [zoJ w 2 [x 2 ] 

- T1 ,2 : T1 ,3 : 

2 ri , 2 [xo ] r13 [x 2 ] r2 [zo ] w 3 [y3 ] 

- T1 ,4 : T1 , 5 : T16 : T1 , 7 : 

3 fl,4[/O] r15 [y3] ri ,6 [yo ] ri , 7 [y3 ] r2[uo] r3 [10 ] 

4 ri ,4to J ri , 5 [to ] ri ,6 [t o ] r 1 ,7 [t o ] w 2 [u2 ] ra [ko ] 

5 w1 14[ti,4] w i , s [t i ,s } w 1 ,6 [t 1 ,6] w 1 ,7 [t 1 ,7] c2  w3  [k3 ] 

6 a 1 ,4  a1 ,5  ri ,6 [rno] ri , 7 [mo ] r3 [u2] 

7 r1 ,6 [no } ri , 7 [rto ] w3 [u3 } 

8 w 1 ,6 [n1 ,6 ] w 1 , 7 [n1 ,7 } r3 [po ] 

9 blocked blocked c3  

10 a1 ,6  C1,7 

Table 3-2: Schedule for Branching Transaction 

action graph (a rooted, directed tree), with Ti 's BTCs as nodes (Ti,1  as root), and 

an edge Tjj  -+ Ti,k, if Tij  created Tj,k•  The transaction graph for T  in our example 

is shown in Figure 3-1. A BTC Tij  is a descendant of BTC T1,k, if there exists a 

path from T,3 to T,k in Ti's transaction graph. 

Figure 3-1: Transaction Graph 

Figure 3-2 shows the state transition diagram of BTCs. After a component has 

been created, it is ACTIVE, i.e. it is executing the operations of the corresponding 
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transaction. (We include the temporary blocking of a component in this state.) 

If the component is involved in a conflict and branching is necessary, it creates 

two or more descendant components and enters the BRANCHED state. In this 

state no more operations are executed by the component. If all descendants of a 

component eventually abort, then it must be aborted as well. An active transaction 

component can be aborted either by the system or by an explicit abort command 

issued by the component itself. If a component is active and has executed the last 

operation of its transaction, it needs to be verified: the assumptions under which 

it was running must be confirmed to be true. Once all components along one path 

in the transaction graph have been verified, that path (all of its components) can 

be committed. A branching transaction is only committed if all components along 

(exactly) one path are committed, and if a component is committed, it must be 

part of a committed path. The problem of ensuring this "all-or-nothing" commit 

condition is similar to the 2-phase commit protocol for distributed transactions. 

We will discuss this in more detail in Chapter 4. 

ACTIVE 
	

VERIFIED ) 	 ( COMMITrED 

a 

ABORTED 
all descendants 

aborted 

Figure 3-2: Transaction Component State Transition Diagram 

In Figure 3-3 we show the dynamic creation and abortion of transaction com-

ponents for our example branching transaction of Table 3-2. Originally, a single 

component (T1 , 1 ) is created. Due to a conflict on item x, two new components 

are created by T1 , 1  and the original component enters the branched state. The 

new components (T1 , 2  and T1 , 3 ) execute in parallel. Both have to branch as well 

because of a conflict on item y. We now have 4 new active components and three 
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branched ones (after step 3). Once TI 2  committed, it was clear that T1 , 1  and all 

its descendants were executed under a wrong assumption - that TI2  will abort 

- and hence they are all aborted, After TI3  commits, it is known that the path 

containing TI1 ,7  has been executed under the right assumptions - that T2 and T3  

commit - and all of its components can be verified, and T1 , 6  must be aborted. 

Subsequently, the verified path is committed. 

ranrai rrgrryy 
(d) step 6 
	

(I) step 10 (part 2) 

0 =active 0 =branched • = aborted (" = verified 0 = committed 

Figure 3-3: Transaction Component State Changes within a Branching Trans-

action 

It is a key property of branching transactions that only one path in every trans-

action graph can commit, and all components not part of this path are aborted. 

Any updates on the database performed by aborted transaction components are 

rolled-back. 

Any two transaction components of the same transaction tree can be executed 

in parallel, unless there exists a path in the tree between them. Components from 

different paths execute in isolation: they do not read any updates made by the 

other and are allowed to update the same data items independently. 
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Although we have not shown this in our example, it is possible that although 

a component has been verified, it must later be aborted. For example, it may 

be the case that, even though a component can be verified, one of its ancestor 

components cannot. 

Since we need to support concurrent access to more than just the most recently 

committed version of a data item, multi-version concurrency control algorithms 

are required for branching transactions. We will discuss these algorithms in detail 

in Chapter 4. 

3.3.2 Performance Considerations 

As pointed out before, "wrong decisions" cause performance problems through 

blocking and rollbacks (with subsequent restarts) of transactions. In this section, 

we present an intuitive argument why branching transactions help to reduce the 

data contention problem in parallel database systems. A simulation based per-

formance study is presented in Chapter 7. 

Blocking: Under two-phase locking, a read operation is blocked if a transaction 

cannot obtain the appropriate read lock. This is only the case if there exists a 

write lock on the same item. Such a write lock indicates that there is currently 

another active transaction which created a new, so far uncommitted, version of the 

same item. As we explained earlier, under BT the reader transaction would branch 

and continue to execute alternative paths without any delay due to blocking. If a 

write operation is blocked under two-phase locking, some other active transaction 

has either read or written the same data item. The BT multi-version concurrency 

control algorithm described in Chapter 4 never delays a write operation, but simply 

creates a new version of the item. Hence, write operations don't have to be blocked 

either. 

Restarts: Earlier we saw an example (of an optimistic scheduler) where it would 

have been better to abort a transaction at the time of conflict, rather than letting 
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it continue and fail during validation. Clearly, running the entire transaction, 

aborting it, and then running it again from the beginning has a negative impact 

on transaction response time. Using branching transactions, the goal is to have 

at least one path of execution to complete without ever having been aborted and 

restarted, even though other paths need to be aborted. If we label the two  runs - 

the original, aborted one and the restarted one - of a restarted transaction under 

an optimistic scheduler as "Runi" and "Run2", then we can think of a branching 

transaction as executing these two runs in parallel, while the optimistic scheduler 

executes them in sequence. This should lead to shortening of transaction response 

times when using branching transactions. 

Undoubtedly, branching transactions require more CPU resources than non 

branching systems, since alternative paths must be computed in parallel; though 

this extra overhead may be limited when one considers the additional computa-

tional resources required for rolling back and restarting of (non-branching) trans-

actions. As we pointed out before, in a multi-processor environment suffering from 

data contention, CPUs are largely underutilised, and hence, increased CPU needs 

will in general not pose a problem. Depending on the level of data contention, 

the transaction workload and the actual number of CPUs, it is, however, possible 

that unlimited branching might lead to an overload of the system. A mechanism 

to prevent such "BT thrashing" is discussed next. 

3.3.3 Branching Control 

To prevent "BT thrashing" we need a policy to regulate the branching of transac-

tions, a policy which will only allow transactions to branch if sufficient system re-

sources are available. A function branch-control must be defined which determines 

whether branching should be permitted. Since BT requires primarily additional 

'For the sake of argument we assume here that the transaction successfully completed 

after one restart. The same comparison, however, would also apply to more than one 

restart. In fact, the case for branching transactions would then be even more compelling. 
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CPU time, branch-control may allow branching only if the average CPU utilisa-

tion is below a certain threshold. To prevent a single branching transaction from 

monopolising too many resources we can also apply a static control policy: each 

branching transaction is only allowed a maximum number of components. Once 

this limit has been reached, no further branching for this transaction is allowed. 

Combining the dynamic and static control we can define branch-control as follows 

(NurrzComp(btid) is the total of number of components created for branching 

transaction Tb t_d ; Av9CPUUiiI describes the current average CPU utilisation in 

the system): 

true if NumCornp(bLid) < MAX-COMPS and 

branch_conirol(btJd) = 	 AvgCPUUti1 C MAXCPUUTL 

false otherwise 

In case branching of a transaction component is denied by branch-control, the 

corresponding read operation follows a non-branching concurrency control policy. 

A concurrency control algorithm which can deal with the integration of branching 

and non-branching policies is discussed in Chapter 4. 

Using a branching control policy, branching of transactions can be controlled 

dynamically. It is adapted to the current system workload in the sense that branch-

ing is only allowed as long as enough resources are available. 

3.4 Related Work 

Transaction models and concurrency control algorithms are very active research 

topics. A number of extensions to the flat transaction model have been proposed in 

the literature [32}. Furthermore, work has been done in exploiting the semantics of 

database operations beyond the scope of read and write operations. To underline 

the differences between branching transactions and other work in the same area, 

we discuss various transaction models and approaches and compare them with our 

own transaction model. 
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3.4.1 Transaction Models 

All advanced transaction models described below have extended the traditional flat 

model with some form of subtransaction 4  structure. As in the case of branching 

transactions, most use a hierarchy of sub transactions, some only allow a set of 

subtransactions without further subdivision. In spite of this similarity, they differ 

in their objectives and approaches. We only discuss those models which appear 

similar in their approach or their goals to branching transactions. When we refer 

to ACID properties, we mean the usual characteristics: atomicity, consistency, 

isolation and duration of transactions. 

Nested Transactions 

Introduction: A nested transaction [63,64] is a tree of subtransactions, where 

each subtransaction may contain other subtransactions. Nested transactions are 

ACID at the top level, i.e. they are isolated from each other and in case of fail-

ure they must be rolled-back entirely. If a subtransaction fails, all of its child 

subtransactions must be aborted as well. The parent of a failed subtransaction, 

however, does not have to be aborted just because one of its child subtransactions 

fails. In fact, it may react to such a failure by initiating a contingency subtrans-

action which implements an alternative solution to the failed one, or simply retry 

the failed subtransaction. Even if a subtransaction commits, it may have to be 

aborted later, if one of its parents has to be aborted 5 . 

There are two main advantages of nested transactions: 1) finer control of trans-

action failure, and 2) intra-transaction parallelism. Better transaction failure 

4A subtransaction in the context of branching transaction, is what we call a "branch-

ing transaction component". 

'This is the reason why a subtransaction alone only has ACI properties, i.e. 

Durability of the effects of a subtransaction is not guaranteed once the subtransaction 

commits, but only after the entire nested transaction commits. 
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handling is due to the ability of a subtransaction to take "evasive action" and 

continue operating in case a child subtransaction aborts, unlike in the traditional 

flat model, where the abort of any operation always leads to an abort of the entire 

transaction. Intra-transaction parallelism is achieved by executing subtransactions 

concurrently 6. 

Comparison with Branching Transactions Although both models are based 

on a hierarchical structure of substransactions, there are a number of important 

differences between nested and branching transactions: (1) nested transactions 

support a higher level of concurrency within a transaction, while branching trans-

actions are designed to improve concurrency between transactions; thus, nested 

transactions support higher intra-transaction parallelism, while branching transac-

tions support a higher level of inter-transaction parallelism; (2) siblings within nes-

ted transactions must be synchronised, "sibling transaction components" within a 

branching transaction execute independently from each other; or in other words: 

all subtransactions under nested transactions execute within the same context, 

whereas different branches of a branching transaction are executed in different 

contexts, i.e. under different assumptions; (3) only one descendant of a branching 

transaction component is allowed to commit, but all subtransactions in a nested 

transaction can commit (and in fact should, unless the transaction explicitly deals 

with the failure of subtransactions); and (4) in nested transactions the nesting 

structure is designed by the user, whereas branching of transactions is transparent 

to the user. Although both models can be applied to relatively simple as well as 

more complex transactions, there is probably little use for nesting transactions 

which are comparatively simple already. 

It appears that nested transactions and branching transactions are two fairly 

orthogonal concepts, and it may be possible to combine these models to gain 

6 1t should be pointed out that not every commercial DBMS which claims to support 

nested transactions, necessarily implements the full functionality of nested transactions 

as described above. 
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both benefits: higher inter-transaction parallelism and higher intra-transaction 

parallelism. A detailed study of such a hybrid model is, however, beyond the 

scope of this thesis and not discussed any further here. 

Distributed Transactions 

Introduction: The term distributed transactions is usually used to refer to flat 

transactions executing in a distributed environment. Since data is located at dif-

ferent nodes within a network, different parts of a transaction may have to be 

executed on different hosts. The part of a transaction executing at one node is in 

general called a subtransaction. Unlike nested transactions, if any of its subtrans-

actions fails, the entire distributed transaction must be aborted. The division of 

a distributed transaction into subtransactions depends on the data distribution in 

the network, and not on a functional decomposition of the transaction (as in nes-

ted transactions) or the existence of data conflicts during runtime (as in branching 

transactions). 

Comparison with Branching Transactions: Distributed transactions were 

not designed to address the issue of data contention, but to deal with transaction 

management in a distributed database environment. Unlike all the other models 

discussed here, the motivation for distributed transactions was not to improve 

concurrency control related problems. Hence, branching transactions and distrib-

uted transactions are two fairly independent concepts, and again it appears as if 

a hybrid model would be feasible. 

Multi-Level Transactions 

Introduction: Multi-level transactions [96,97] are a variant of nested transac-

tions where the tree of subtransactions is balanced. Different levels in the sub-

transaction tree correspond to different levels of abstraction of operations. All 

transaction trees have the same height, which reflects the number of layers in the 

underlying system architecture. The child nodes in the tree correspond to a se- 
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quence of lower level operations which are executed to implement the operation of 

the (parent) node at the level above. The key idea of multi-level transactions is to 

exploit level specific semantics to achieve a higher degree of concurrency than in 

traditional transaction systems. A special case of this model are sagas [38], where 

we only have a two-level system and there are no conflicts at the higher level. 

Comparison with Branching Transactions: Multi-level transactions and 

branching transactions are designed for the same problem: performance loss due 

to data contention. While the basic idea in branching transactions is to follow up 

alternative paths of solutions in parallel, multi-level transactions try to solve the 

problem by exploiting the semantics of operations. Neither approach employs the 

tactics of the other. Due to the complexity of analysing and resolving conflicts 

at higher abstract levels - not merely at the read/write level - it is currently 

difficult to envision a combination of branching and multi-level transactions. 

Split Transactions 

Introduction: The basic idea of split transactions is to split an ongoing trans-

action into two serializabl.e transactions [74]. Resources held by the original trans-

action are shared between the two new ones. While one of the new transactions 

commits, the other continues its execution. This allows the early release of results 

from the original transaction without compromising the ACID properties of it. 

Comparison with Branching Transactions Split transactions were designed 

to address the issue of open-ended applications such as CAD/CAM projects, VLSI 

design and software development. Transactions in such environments typically run 

from hours to months. Although splitting such long transaction is a feasible task, it 

does not seem an appropriate approach to deal with data contention in OLTP type 

transaction workloads - which, of course, was never the target of split transactions 

in the first place. Hence, except that both models, split transactions and branching 

transactions, were designed to address concurrency control problems, they do so 

for rather different workloads. 
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Flex Transactions 

Introduction: Under the flex transaction model [31], a transaction consists of 

a set of tasks. For each of these tasks the user can specify a set of functionally 

equivalent subtransactions. As long as one of the corresponding subtransactions 

successfully completes, a task is accomplished. A flex transaction succeeds if all 

of its tasks are successfully completed. Failure and success dependencies between 

subtransactions of a flex transaction can be specified by the user. These depend-

encies are used to define the execution order, such as parallel or sequential, of 

subtransactions. The flex transaction model has been implemented in VPL [53], 

a superset of Prolog. 

Comparison with Branching Transactions Flex transactions were designed 

to address the issue of transaction management in multidatabase systems. Hence, 

this model is looking at problems of how to integrate various independent trans-

action management systems, rather than data contention. There is, however, an 

interesting similarity to branching transactions. Given the possibility of parallel-

ism and dependencies between flex subtransactions, various possible solutions for a 

task can be followed up in parallel and once a subtransaction accomplishes a task, 

all other alternative solutions, i.e. subtransactions for the same task, can be abor-

ted. The difference is that alternative subtransactions are designed by the user 

before execution time and not driven by data conflicts (as is the case in branching 

transactions) during runtime. Also, alternative paths of execution in a branching 

transaction are transparent to the user, but alternative solutions to a task of a flex 

transaction must be specified by the user. Finally, different subtransactions for 

the same task are only semantically equivalent, but may run completely different 

transaction code. Sibling transaction components in a branching transaction run 

the exact same code, but with a different data set. 
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3.4.2 Semantics Based Concurrency Control 

In traditional concurrency control, data objects are passive entities which are 

either read from or written to. Consequently, synchronisation of transactions was 

performed with respect to read and write operations. In his Ph.D. thesis [78], 

Schwarz redefined transactions as a sequence of typed operations on instances of 

shared abstract types. Object-oriented databases follow this idea: a data object 

is an instance of an abstract data type (referred to as a "class" in object-oriented 

terminology) - OODBs are more than just abstract data type systems; they (in 

addition to persistence) incorporate such concepts as inheritance and polymorph-

ism. With this new view of transactions it was possible to define synchronisation 

protocols which could take into account the operational semantics of data objects. 

Such protocols allow a higher level of concurrency than traditional protocols, which 

only consider read and write operations. 

Skarra et al. [80} divide semantics based synchronisation protocols into in-

tertype synchronisation and local concurrency controL Intertype synchronisation 

protocols consist of local concurrency control components, i.e. protocols that im-

plement type-specific synchronisation policies within data objects, and a global 

protocol through which different types cooperate to ensure global consistency. 

The global protocol may guarantee serializability, or it may use a weaker correct-

ness criterion. Local Concurrency Control was discussed in [36,45,94,95}. What is 

different about local concurrency control, is its ability to achieve global atomicity 

by enforcing properties that are local to individual data objects. As long as each 

object guarantees a local atomicity property, it follows that every execution of 

transactions in the system is atomic. Since no single global algorithm is required, 

each object can use a different concurrency control algorithm. An example of such 

a local atomicity property is dynamic atomicity. A brief introduction to dynamic 

atomicity and other concurrency control concepts based on data object semantics 

can be found in [80]. 

Considering the semantics of operations to reduce conflicts between transac- 

tions is a useful approach to limit performance problems caused by concurrency 
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control.. The disadvantage of it, however, is the added complexity of determining 

conflict relationships between operations. Not only is it necessary to define these 

relationships for any two existing operations on the same data item (object), but 

for any new operation added to an object the relationships with existing operations 

must be determined. Branching transactions do not consider extra semantic in-

formation; rather, conflicts are dealt with at the read/write level (as in traditional 

concurrency control protocols). 

3.4.3 Ordered Shared Locks 

Introduction: Ordered Shared Locks [2,4] are the basis for a family of new 

locking protocols. While traditional locking algorithms only distinguish between 

two kinds of relationships between locks: shared and non-shared, a new mode has 

been introduced here: ordered shared. Agrawal et al. [2,4] argue that traditional 

locking algorithms only take into consideration whether operations conflict with 

each other or not, but they do not take into account the order in which two 

conflicting operations are executed. For serializability theory, however, this order 

is essential. Using ordered shared locks, their concurrency control algorithms 

allow (serializable) schedules which would not be allowed using traditional locking 

algorithms. In fact, they state that their locking protocol is the first one that can 

recognise the entire class of conflict-preserving serializable schedules. 

As with traditional locking, a shared relationship between lock types implies 

that multiple locks of these types can exist for the same data item simultaneously, 

and a non-shared relationship between lock types implies that no such multiple 

locks are allowed. Read locks can usually be shared with other read locks, but write 

locks are exclusive. This reflects the fact that read operations do not conflict with 

each other, but write locks conflict with read locks and other write locks. Ordered 

shared locks allow conflicting operations to proceed without blocking, but only 

with certain constraints. These constraints are expressed in the Ordered Sharing 

Acquisition Rule and the Lock Relinquishing Rule. The first rule says that for 

any two ordered shared locks, the corresponding operations must be executed in 
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the same relative order in which the locks were acquired. For example, if one 

transaction acquires a read lock before a second transaction acquires a write lock 

for the same item (and read and write locks have an ordered-shared relationship), 

then the read operation of the first transaction must be executed before the write 

operation of the second. The Lock Relinquishing Rule says that a transaction 

must not release any locks as long as it is waiting for some other transactions. A 

transaction T is waiting for another transaction, say Ti , if Tj  acquired a lock with 

an ordered shared relationship with respect to a lock held by T1, and T has not 

released any of its locks. 

Comparison with Branching Transactions: 	Ordered shared locks were 

developed to address the same issue as branching transactions: data contention 

through locking protocols. By considering the order of operations in their protocol, 

Agrawal et al. have successfully addressed some of the issues of what we call the 

"wrong decision" problem, i.e. their protocols recognise more correct schedules 

than normal two-phase locking. They are, however, left with the problem that 

some of the decisions taken by their scheduler may later turn out to be incor-

rect. This problem manifests itself in the form of deadlocks when transactions get 

blocked due to the Lock Relinquishing Rule. Some transactions need to be abor-

ted and restarted. The restarts have the usual negative performance impact; the 

initial run and subsequent re-runs of a transaction are executed in sequence. As 

explained earlier, branching transactions aim to reduce this problem by effectively 

running the initial run and re-runs in parallel. 

Both mechanisms, ordered shared locks and branching transactions, are based 

on the same observation: due to data contention, concurrency control algorithms 

using traditional locking protocols are not well suited for modern database sys-

tems with their ever increasing hardware resources. In both cases, performance 

improvements are achieved by making better use of hardware resources. Perform-

ance studies by Agrawal et al. [4] have shown that their algorithms perform better 

if the availability of hardware resources is high. The same is true for branching 

transactions (see Chapter 4). 
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3.4.4 Speculative Computing 

Introduction: Speculative computing is an approach in parallel computing 

where results are computed before it is certain that they will be required [18, 

691. It is based on the idea that one trades additional, possibly unnecessary, com-

putation for potentially faster execution. For example, in a functional language if 

it takes some time to compute the truth value of a condition of an if-statement, 

one could in parallel compute the values of the "then-expression" as well as the 

"else-expression". Once the condition has been evaluated, the value of the required 

"then" (or "else") part will already have been computed (at least partially). Since 

computation resources are generally limited, two policies are applied: 1) once it 

is known that a particular computation is unnecessary, it is stopped as soon as 

possible and its resources reclaimed, and 2) the allocation of resources favours 

computations which are more promising than others. 

Comparison with Branching Transactions: There is clearly a similarity 

between branching transactions and speculative computing. In fact, one could 

refer to branching transactions as speculative transactions instead. Branching 

transactions apply the concept of speculation in the context of transactions. The 

speculation here is whether some other transactions, which created new versions 

of data, will eventually commit or abort. Although the approaches are similar, 

the goals are very different: speculative computation tries to improve parallel-

ism within a program, whereas branching transactions try to improve parallelism 

between transactions. 

In spite of the particular meaning of speculative computing in the context of 

parallelising functional programs and the idea of speculation in branching transac-

tions, speculative computing can be considered as a general approach to computing. 

Other examples of the general concept of speculative computing can be found in 

pipeline execution of instructions within processors and speculative concurrency 

control, the latter of which we describe next. 
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3.4.5 Speculative Concurrency Control 

Introduction: Speculative Concurrency Control (8CC) is the approach most 

similar to branching transactions. It was developed at the Computer Science 

Department at Boston University and first published [11, 12,13] at about the same 

time as branching transactions [16]. 3CC is based on the idea of running so-

called shadow transactions for a transaction; each shadow speculates on a different 

possible outcome of conflicts between transactions. The original transaction is 

executed on the assumption that it will commit before the commit of any of the 

transactions with which it has a conflict. If conflicts materialise which do not allow 

the original transaction to commit, it is aborted and one of the shadow transactions 

takes over its role. Multiple shadow transactions can execute in parallel. Only one 

version (original or shadow) will eventually commit, all others abort. 

Comparison with Branching Transactions: Speculative concurrency control 

and branching transactions are rooted in the same basic idea: the use of redundant 

computation of transaction versions  in order to anticipate possible outcomes of 

conflicts between transactions. Both mechanisms assume that sufficient resources, 

primarily CPUs, are available to achieve performance improvements in spite of 

higher resource requirements. The developers of 3CC see this to be the case in 

real-time database systems and have concentrated most of their work in that area. 

The development of branching transactions is primarily concerned with the ex-

ploitation of parallel computers for database systems, although we also recognise 

the potential of this approach in the context of real-time transaction scheduling; 

a real-time concurrency control algorithm based on branching transactions is pro-

posed in Chapter 8. 

In spite of their obvious similarities, there are a number of significant differ-

ences between 3CC and BT. 3CC is described in the context of the traditional flat 

7 I SCC these versions are called shadow transactions, in BT they are called trans- 

action branches. 
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transaction model; forking of a transaction leads to a new fiat (shadow) transac-

tion. In BT, we have conceptualised this forking into a new transaction model, 

which incorporates the notion of alternative executions and explicitly supports a 

branch (or fork) operation for transactions. This is very useful when one has to 

reason about such transactions. 

A key difference between these two approaches is the way that transaction 

access to the database is synchronised. SCC adopts an approach where for each 

transaction shadow a so-called "speculated order of serialization" (SOS) is main-

tained. An SOS specifies the orderings of transactions that must be observed by 

a shadow. SOSs are similar to serialization graphs. In the past, however, seri-

alization graph based approaches for concurrency control have not been adopted 

in commercial DBMSs due to their high overheads. Whether or not this might 

also prove problematic for SCC is an open question. Most commercial DBMS 

today use a locking approach to concurrency control. Synchronisation of branch-

ing transactions is also based on locking (see Chapter 4). A key advantage of our 

approach is its ability to dynamically switch - at run-time - between branching 

and non-branching modes, i.e. as long as there are enough resources available we 

employ our branching strategy, but when resources are scarce the system changes 

to "normal" two-phase locking, which is known to perform well under resource 

contention. 

For branching transactions we have proposed a possible two-layer approach for 

implementation, where the lower layer represents a basic two-phase locking policy 

and the upper layer provides the full branching transaction locking algorithm. This 

layered approach supports an easier migration path for existing DBMS that wish 

to provide branching transaction facilities. Since SCC is not based on locking, 

moving an existing DBMS to 5CC would be more complicated. 

Since branching transactions are considered in the context of parallel databases, 

this dissertation addresses a number of issues, e.g. cache coherence and parallel 

DBMS architectures, which are not looked at in the context of SCC (neither was 

there any need to do so, since the developers of SCC were focussing their work on 

real-time DBMS and not parallel DBMS). 



Chapter 4 

Concurrency Control and 

Recovery 

Existing concurrency control algorithms cannot directly be applied to our new 

transaction model, and hence, a new concurrency control mechanism was de-

veloped for branching transactions. In this chapter, we explain this new mechanism 

in detail. We also describe the problems of deadlock detection and resolution, and 

logging and recovery in the context of branching transactions. Since the new con-

currency control algorithm is based on multi-version two-phase locking, we begin 

our discussion with a brief review of single-version 1  and multi-version two phase 

locking. 

4.1 Two-Phase Locking (Single-Version) 

Under 2PL, a transaction has to acquire a Read lock before it can read a data item 

in the database, and it must acquire a Write lock before it can update an item. A 

transaction can acquire a Read lock if no other transaction is holding a Write lock 

on the same item; multiple Read locks are allowed. A transaction can acquire a 

'Although an introduction to two-phase locking (2PL) was given in Section 2.3.1, we 

briefly repeat it here to keep this chapter as self contained as possible. 

70 



Chapter 4. Concurrency Control and Recovery 	 71 

Write lock on an item if no other locks (Read or Write) exist at the time for that 

item. This kind of lock compatibility information is usually given in so-called lock 

compatibility matrices. The lock compatibility matrix for 2PL is shown in Table 

4-i. 

2PL Lock Held 

Lock Requested Read Write 

Read 

Write 

yes 

no 

no 

no 

Table 4-1: Lock Compatibility Matrix for 2PL 

The two-phase property of 2PL says that the life time of a transaction can be 

divided into two distinct phases. During the first phase a transaction is allowed 

to acquire locks; during the second phase a transaction can release locks, but it 

cannot acquire new ones. In other words, as soon as a transaction has released 

one of its locks, it is not allowed to acquire any new ones. 

A particular variant of 2PL is called strict 2PL: all locks of a transaction are 

released together after the transaction commits or aborts. Strict 2PL prevents 

transactions from reading "uncommitted data", i.e. data that was written by a 

transaction which has not yet committed. 

So far, we have assumed that at any point of time there is only one version of 

every data item available in the database and that a transaction can only read the 

most recently updated version of an item. To allow a higher level of concurrency, 

some mechanisms keep older versions of data items in addition to the most recent 

one. They are referred to as multi-version concurrency control mechanisms. A 

multi-version two-phase locking algorithm is described in the following section. 
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4.2 Multi-Version Two-Phase Locking 

Under multi-version two-phase locking (MV-2PL), when a transaction wants to 

update a data item, it does not overwrite the previous value of it, but creates a 

new version of the same item. There are two key advantages of MV-2PL: 1) two 

transactions can write the same data item concurrently (although some synchron-

isation must take place at commit time; more detail below), and 2) a transaction 

can read one version of an item, while another transaction creates another version 

at the same time. 

Under MV-2PL, for any data item in the database there exists exactly one 

committed version, and zero or more uncommitted versions 2.  Once a transaction 

which created a new version of an item commits, the previously committed version 

of the item is discarded. It follows that a transaction can in principle read either 

the most recently committed version or one of the currently existing, uncommitted 

versions of an item, though some versions of MV-2PL restrict transactions to 

reading committed versions of data only. 

In general MV-2PL allows more concurrency in schedules than would be pos-

sible under single-version 2PL, but it must impose some ordering on operations 

to prevent non-serializable concurrent executions of transactions. In addition to 

Read locks and Write locks, MV-2PL makes use of a third kind of lock: the Certify 

Lock. Certify locks are used at commit time to synchronise transactions' Read and 

Write operations. We discuss a locking protocol based on these lock types next. 

Although it is not a necessary condition for MV-2PL, for now we assume that 

transactions only read committed versions to avoid cascading rollbacks. 

If a transaction wants to read an item, it first has to acquire a Read lock on 

the last certified version. A Read lock is granted if there are currently no Certify 

2  W consider a version to be committed, if the transaction which created it has 

committed, otherwise the version is said to be uncommitted. 
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locks or pending Certify lock requests on that version. Read locks are compatible 

with Write locks on different versions of the same item. If another transaction 

holds a Certify lock or has a pending lock request on the last committed version, 

the reader must wait until that lock has been released. 

If a transaction wants to write an item, it simply creates a new version. The 

transaction is automatically granted a Write lock for that version. Hence, Write 

operations are not delayed. In case it is necessary to limit the total number of 

uncommitted versions in the system, a more restrictive protocol can be used. We 

will return to this issue later in this chapter when we discuss a hybrid branching 

transaction MV-2PL algorithm. 

At commit time, a transaction has to "certify" all its updates, i.e. for every 

data item it updated it must acquire a Certify lock on (the committed version of) 

that item; it must upgrade its Write lock to a Certify lock on the corresponding 

committed version of a data item. 

A Write lock can be upgraded if there are currently no Read locks on the 

committed version of that item. If a Read lock exists, the transaction requesting 

the Certify lock is blocked until all Read locks on that item are released. A 

transaction can be committed, once all of its Write locks have been certified. The 

compatibility of locks under MV-2PL is summarised in Table 4-2. 

MV-2PL Lock Held 

Lock Requested Read Write Certify 

Read yes yes no 

Write yes yes yes 

Certify no yes no 

Table 4-2: Lock Compatibility Matrix for MV-2PL 

Since Write locks never conflict with any other locks, one might question their 

purpose. In fact, for the particular variant of MV-2PL discussed here, they are 

only used to determine for which items a transaction has to acquire Certify locks 

at commit time. Write locks, however, can be used to implement a more restrictive 

MV-2PL protocol which allows at most two versions of an item at any time [10]. 
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So far we have assumed that a transaction will always read the committed 

version of a data item. We will now see what happens if we relax this condition, 

i.e. if we allow transactions to read uncommitted data. 

If a transaction which created a number of new data item versions during its 

execution has to be aborted, then all other transactions which read these versions 

must also be aborted. In turn, this may cause yet more transactions to be aborted 

for the same reason (cascading aborts). Since a committed transaction cannot 

subsequently be aborted, the commit of a transaction must be delayed until all 

data versions it read have become committed. Hence, if we allow transactions 

to read uncommitted data, the transaction must perform a two-step certification 

process: 1) wait until all read data is committed, and 2) certify all write locks, 

before it is allowed to commit. 

4.3 Branching Transaction Multi-Version Two-

Phase Locking 

The concurrency control algorithm used for branching transactions is an extension 

of the MV-2PL algorithm described above. Before we discuss branching transac-

tion multi-version two-phase locking (BT-MV-2PL) in more detail, it is necessary 

to take a brief look at some of the aspects of a branching transaction system 

architecture. Figure 4-1 shows part of such an architecture 3. 

A transaction is submitted to the transaction manager (TM) for execution. The 

TM creates the initial branching transaction component (BTC) for this transac-

tion. The BTC executes the transaction code, and hence, it is the BTC which 

makes lock requests to the concurrency control manager (CCM). The CCM replies 

to a BTC directly if a lock request is granted, but in case a roll-back decision is 

made, the CCM informs the TM instead. The TM in turn communicates the 

'Architectural issues are discussed in great detail in Chapter 5. 
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Transaction Manager 

Branching Transaction Component LJ- 	I Concurrency Control Manager 

Figure 4-1: Simple Module Architecture 

roll-back decision to the BTC which requested the lock, and all other BTCs which 

need to be aborted as a consequence. 

If a BTC wants to update a data item, it follows the same protocol as under 

MV-2PL: it simply creates a new version, for which it is automatically granted a 

Write lock. As before, these Write locks must be certified at commit time. 

If a BTC wants to read a data item, it requests a Read lock for it. Depending on 

whether there exist any uncommitted versions for that item, two possible scenarios 

No uncommitted versions exist: Since there are no uncommitted versions, 

there exists no uncommitted transaction which has updated this data item. 

It follows that there are no Certify locks or lock requests on that item. The 

Read lock of the requesting BTC is, therefore, granted and a Read lock is 

set on the committed version of the requested data item. 

Uncommitted versions exist: At least two versions of the data item exist 

(one committed and at least one uncommitted one), and the requesting 

transaction needs to branch. The CCM contacts the TM to get the ID's for 

the new BTC's and to inform the TM about the branching decision. The 

CCM assigns one data item version to each new BTC and records Read locks 

accordingly. The TM creates the new BTCs which continue by reading the 

data version they were assigned; they are automatically granted Read locks 

for the respective data item versions as part of the branching process. 
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The second case is somewhat problematic. Read locks on the committed ver-

sion of a data item are not compatible with Certify locks. Since, at the time of 

branching, a BTC may be granted such a Read lock irrespective of any existing 

Certify lock, the locking rules of MV-2PL may become violated 4 . To prevent pos-

sible database inconsistencies (violation of serializability), if a BTC holds a Certify 

lock on (the committed version of) an item and it commits, then all BTCs which 

hold Read locks on that committed version must be aborted. We illustrate this 

point in Example 2. 

Example 2 Let us assume the case of two very simple transactions: 

Ti :w1  [x] 

T2 : r 2 [x] 

The following sequence of events illustrates the case of a Read/Certify lock 

conflict on item x: 

Both transactions are submitted to the transaction manager for execution. 

BTC 1 , 1  and ETC2 , 1  are created and start execution. 

BTC 1 , 1  wants to write x and thus requests a Write lock on x. The request 

is granted and ETC,,, creates a new version of x: x 1 , 1 . The lock table for x 

after this step is shown in Figure 4-2, part a). 

8. BTC 1 , 1  requests to be certified; it requests a Certify lock on the committed 

version of x. Since there are no other locks, the Certify lock is granted. The 

lock table for x after this step is shown in Figure 4-2, part b). 

4. Now ETC 2 , 1  requests a Read lock on x. Since there exist two versions, i.e. 

the original one and the one newly created by BTC 1 , 1 , branching takes place. 

'The lock compatibility rules do not change from MV-2PL to BT-MV-2PL; compare 

Tables 4-2 and 4-3, 
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ETC2 , 1  branches into ETC2 , 2  and ETC2 , 3 . ETC2 , 2  is assigned the original 

version of x (x o ,o) and a Read lock is set accordingly. Similarly, for ETC 2 , 3 . 

The lock table for x after this step is shown in Figure 4-2, part c). 

At this point we have violated the MV-2PL rule that Read locks and Certify 

locks are not compatible, and only one, ETC,,, or ETC 2 , 2  must be allowed 

to commit. 

If ETC,,, can be certified - in our simple example there is no reason why it 

shouldn't, since the Write on x is its only operation and it has been certified 

already - it eventually commits. In this case ETC 2 , 2  aborts. Since ETC2 ,3  

had a Read lock on x 1 , 1 , it has now a lock on the committed version of x. 

The lock table for x after this step is shown in Figure 4-2, part d). 

(alternative to the previous step) If for some reason ETC,,, was aborted, 

BTC 2 , 3  needs to be aborted as well, but ETC22  keeps its lock on the com-

mitted version of x. The lock table for x in this case is shown in Figure 4-2, 

part e). 

Once a BTC has reached the end of its transaction code, it informs the TM 

that certification should be performed. Before a transaction can commit, all BTCs 

along one root-to-leaf path of the corresponding branching transaction tree must 

be certified first. The certification of a ETC follows the same two steps as for 

transactions under MV-2PL: 

Read Certification: the ETC must wait until all versions it read have become 

committed. 

Write Certification: all Write locks held by the BTC must be certified, i.e. 

corresponding Certify locks must be obtained. 

In Example 2, in Figure 4-2, Part c), ETC2 , 3  has a Read lock on an uncommit-

ted version of x, hence, the corresponding Read operation is not certified. In Part 

d), however, this Read lock has become a lock on the now committed version of 
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Con,mited Version: I 
d
U

er tfy 	I 
1.  BY 

: 
STATUS:  Holder 	I 

Uncommitted Version: 	j I BTC: i 	i 	F 

Xu I) 
 TYPE: Write 

STATUS: Holder 

after a Certify lock requcstby ETC (1,1) on itemX 

Locktable for item: X 

TYPE: 	Certi fy 	I-1 TYPE: 	Read 
sited Version: 	 ETO 	1,1 	I 	I BTC: 	2,2 

K (0,0) 	 STATUS: Holder 	I 	I STATUS: Holder 

after a Read lock request by ETC (2,1) on item X 

Locktable for item: X 

I 
Comm ited Version: 	 BTC: 	2,3 	I 

Xu 	 TYPE: Readj) 	 STATUS: Holder 

after ETC (1,1) committed and ETC (2,2) aborted (alternative to part e) 

Locktable for item: X 

Commited Version: 	 ETC 	2,2 I 	I 
X(oQ) 	 1 TYPE: 	Read 	I 

STATUS: Holder 

after ETC (1,1) aborted and ETC (2,3) aborted (alternative to part d) 

Figure 4-2: BT-MV-2PL Example 

x, and hence, the Read is now certified. There is an important difference between 

Read and Write certification. Read operations may be certified before a RTC 

has entered its actual certification phase. The certification of Read operations is 

entirely outside the control of a BTC. It merely depends on whether or not the 

transaction which has written the corresponding version commits. Write certific-

ation, however, takes place during the certification phase and the RTC (which is 

trying to be certified) has to actually request Certify locks for its updates. The 

lock compatibility matrix for BT-MV-2PL is shown in Table 4-3. 
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BT-MV-2PL Lock Held 

Lock Requested Read Write Certify 

Read yes yes no 

Write yes yes yes 

Certify no yes no 

Table 4-3: Lock Compatibility Matrix for BT-MV-2PL 

Commitment of Branching Transactions: In Chapter 3, we pointed out 

that when a branching transaction commits, only the BTCs along one root-to-leaf 

path of the branching transaction tree can commit; all others are aborted. Once 

all BTCs of such a path are certified, the TM initiates a commit protocol. The 

protocol is similar to the two-phase commit protocol in distributed systems (a 

description of which was given in Chapter 2). During the first phase, all BTCs 

are requested to prepare for commits  . They reply to the TM once they have 

carried out all logging activities needed to guarantee their ability to commit even 

in the event of various system failures. After the TM has been informed by all 

committing BTCs that they are prepared to commit, it sends a Commit message to 

them. At that time, BTCs can commit and release their locks on data items. This 

commit protocol is required to ensure the atomicity of branching transactions; it 

guarantees that either all BTCs along the selected path of a transaction tree are 

committed or none are. 

BTC Non-Interference Rule: Once a transaction has branched, it is quite 

likely that BTCs belonging to alternative paths of execution access the same data 

items, and hence, in principle, conflict with each other. Since eventually only 

one path commits and all others abort, their interference can be ignored: Read, 

Write and Certify locks of "sibling" BTCs never conflict with each other. It is, for 

'Although we explain this protocol in terms of participation of BTCs, in reality 

certain resource managers are involved and operate on behalf of BTCs. The following 

chapter discusses such architectural issues in more detail, 
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example possible, that two BTCs of the same branching transaction simultaneously 

hold Certify locks on the same data item. Furthermore, BTCs belonging to the 

same transaction, but executing in different paths, will never read data from each 

other. For example, let us assume that BTC, 1  branched into BTC, 2  and BTC, 3 , 

and BTC, 2  created a new version of x. In case BTC, 3  issues a Read operation 

on x, the version created by its sibling (BTC 2 ) is ignored. 

The logging and recovery techniques required for this algorithm are the same 

as for the hybrid algorithm described below; they will be discussed in detail later 

in this chapter. 

The above BT-MV-2PL algorithm and the hybrid locking algorithm that fol-

lows are "strict", i.e. a BTC does not release any of its locks until it is aborted or 

committed. In case of a commit, all locks of BTCs along the committing branch 

are released together after the commit of that transaction. 

4.4 Hybrid Branching Transaction Multi-Version 

Two-Phase Locking 

In Chapter 3, we have considered the problem of unlimited branching and intro-

duced a control function to allow branching only if enough system resources are 

available. If we dynamically turn branching on and off, we must adapt our con-

currency control algorithm accordingly; we need a mechanism which can switch 

between different concurrency control algorithms without having to shutdown the 

system in between. Such a hybrid algorithm is the subject of this section. 

4.4.1 Hybrid Locking Algorithm 

The first step towards integrating 2PL, MV-2PL and BT-MV-2PL is to establish 

the relationships between the various lock types in these algorithms. Read locks in 
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2PL and MV-2PL are always locks on committed versions of data items 6 . A Read 

lock in BT-MV-2PL may exist for an uncommitted or a committed data item 

version. Write locks in 2PL are always on committed versions, whereas Write 

locks in MV-2PL and BT-MV-2PL exist only for uncommitted versions. Certify 

locks are only used in MV-2PL and BT-MV-2PL, where they are only applied 

on committed versions. Comparing the various lock compatibility matrices, it 

becomes clear that Certify locks in MV-2PL and BT-MV-2PL play the same role 

as Write locks in 2PL, i.e. they ensure exclusive access to the committed version of 

a data item. Read locks in 2PL and MV-2PL make sure that no other transaction 

can overwrite the committed version of a data item while the reader transaction 

has not committed (or aborted) yet. As discussed above, under BT-MV-2PL a 

Read lock on the committed version of an item may be pre-empted by a Certify 

lock. 

To be able to capture the semantics of all three locking algorithms, we use the 

following five new lock types instead of Read, Write and Certify locks: 

VRL (Version Read Lock): equivalent to Read locks in BT-MV-2PL; 

VWL (Version Write Lock): equivalent to Write locks in MV-2PL and BT-

MV-2PL; 

CRL (Certified Read Lock): equivalent to Read locks in 2PL and MV-2PL; 

CWL (Certified Write Lock): equivalent to Write locks in 2PL and equivalent 

to Certify locks in MV-2PL and BT-MV-2PL; 

TCRL (Tentative Certified Read Lock): similar to CRL, but it can be pre-

empted; 

These relationships between our new lock types and the traditional Read, Write 

and Certify locks are summarized in Table 4-4 (= indicates equivalence, p indicates 

equivalence with the possibility of a lock being preempted). 

6  W are assuming a version of MV-2PL which does not read uncommitted data. 
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2PL MV-2PL BT-MV-2PL 

RWR WIC RW C 

VRL = 

VWL = = 

CRL = = 

CWL = • = = 

TCRL P P 

Table 4-4: Lock Type Relationships 

During the execution of a transaction, the mode of concurrency control may 

dynamically change between 2PL, MV-2PL and BT-MV-2PL. Depending on which 

mode is active at the time of request, Read and Write requests must be handled in 

different ways. The six possible locking request scenarios are as follows (NOTE: 

CWL and CRL locks are always on the committed version of data items; VRL 

and VWL are always on uncommitted versions of data items): 

. Read Request under 2PL: the BTC must first obtain a CRL on the re-

quested item. It then reads the committed version of the item. 

. Write Request under 2PL: the BTC must first obtain a CWL on the 

requested item. It then overwrites the existing committed version of the 

item7 . 

• Read Request under MV-2PL: same as Read request under 2PL. 

• Write Request under MV-2PL: the BTC simply creates a new version of 

the corresponding data item and is automatically granted a VWL for it. 

71t does not actually overwrite the committed version, since we apply a deferred-

update recovery policy, but the old committed version is not accessible to any other 

BTC any longer, unless it is recovered due to a failure of the BTC which has overwritten 

it. 
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o Read Request under BT-MV-2PL: if no uncommitted versions exist, the 

BTC simply reads the committed version and a TCRL is set. If uncommitted 

versions exist, branching takes place; one new BTC for each existing version 

that has not been created by another BTC of the same transaction (which 

is branching). The new BTCs read the corresponding versions; accordingly 

VRLs are set on the relevant uncommitted data item versions and a TCRL 

is set on the committed version. 

o Write Request under BT-MV-2PL: same as Write request under MV-

2PL. 

As with MV-2PL and BT-MV-2PL, before a BTC can be committed, it must 

be certified. Certification follows the same rules as before: 1) a BTC must wait 

until all versions it has read have become committed, and 2) all Write locks (VWL) 

must be certified, i.e. a CWL must be obtained. VRLs are automatically converted 

to CELs once the corresponding writer BTCs have committed. A TCRL must 

explicitly be upgraded to CRL before the corresponding BTC can be certified. 

The circumstances under which a TCRL can be upgraded, as well as all other lock 

compatibility modes (as described in Table 4-5) are discussed next. 

VRLs and VWLs are never rejected: they do not conflict with any other locks. 

There exists, however, by definition, always only one VWL per uncommitted ver-

sion. Since version locks (VRL and VWL) only exist on uncommitted data and 

certified locks (CRL and CWL) are only requested for committed data, there can 

be no conflict between these two groups. CRLs are compatible with TCRLs and 

other CRLs. TCRLs are compatible with all other locks, except CWLs. CWLs 

are incompatible with TCRLs, CRLs and other CWLs. 

If a lock request is made for which there exists an incompatible lock already, the 

requesting BTC is blocked. As with all blocking concurrency control algorithms, 

deadlocks must be dealt with. A later section in this chapter will deal with dead-

lock detection and resolution in more detail. 

The relationship between CWLs and TCRLs is somewhat different from all 

other lock conflicts; depending on the circumstances, a CWL may pre-empt a 
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TCRL and abort the corresponding BTC. We allow this if the BTC which is 

holding that TCRL has a "sibling" BTC that read the version of the item which 

was created by the BTC which is requesting the CWL; this sibling allows the 

possibility that the corresponding transaction can eventually commit (without a 

restart) in spite of the abort of the branches which contain the BTC with the 

pre-empted TCRL. We illustrate this case later in Example 3. Table 4-5 shows 

the lock compatibility matrix for HBT-MV2PL. 

HBT-MV2PL Lock Held 

Lock Requested VRL VWL TCRL GILL CWL 

VRL yes yes yes yes yes 

VWL yes yes yes yes yes 

TCRL yes yes yes yes no 

GILL yes yes yes yes no 

CWL yes yes no no no 

Table 4-5: Lock Compatibility Matrix for HBT-MV2PL 

The certification and commitment of transactions under HBT-MV2PL follows 

the same principles as for BT-MV-2PL. Before a transaction can commit, all 

branching transaction components (BTCs) along one branch of the transaction 

must be certified. For a BTC to become certified, all its version locks must be 

upgraded to the appropriate certified locks (VRL-*CRL, VWL-+CWL) and all 

TCRLs must be upgraded to CRLs (TCRL-+CRL). 

Once all BTCs along one path are certified, the transaction manager follows 

the same protocol described for BT-MV-2PL's commit policy in order to ensure 

that either all or none of the BTCs along the certified path commit. As in the 

case of BT-MV-2PL, if a transaction did not branch, it is simply enough to certify 

the transaction's only BTC and commit its changes to the database. 

If a transaction was entirely or partially executed in 2PL mode or MV-2PL 

mode, some or all of the locks it holds are certified locks. The certification process 

of such transactions is only concerned with their VRLs, VWLs and TCRLs. In 

the special case of a transaction which was executed entirely in 2PL mode, there 
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is no need for certification since all locks are either CRLs or CWLs, and since only 

one BTC has been created - branching only happens in BT-MV-2PL mode - 

there is also no need for a 2 phase commit protocol (as described above). 

4.4.2 Properties of HBT-MV2PL 

We will not formally establish the correctness of HBT-MV2PL in this chapter, but 

instead describe several properties of it. We formulate these properties in terms of 

5 rules which are always observed by HBT-MV2PL. These rules will be formalised 

in Chapter 6, and used within a formal proof of correctness. 

Overwrite Rule If a transaction commits, it must have acquired a CRL on 

every item it read. It follows that it must have read the most recently com-

mitted versions of these data items. Another transaction cannot overwrite 

the (committed) versions read by the committing transaction, since it would 

have to acquire corresponding CWLs, which are incompatible with the ex-

isting CRLs of the committing transaction, and the CRLs are not released 

until the transaction has committed. 

Write Lock Rule When a transaction writes a data item, it can either over-

write the existing committed version, in which case it needs to acquire a 

CWL first, or it can create a new version of the item first and then over-

write the existing committed version at commit time. In the latter case it 

is sufficient to acquire a VWL first, which is then later (during certifica-

tion) upgraded to a certified write lock. In both cases it holds that a CWL 

must have been obtained for an item that is updated, before the updating 

transaction can commit. 

Read Lock Rule : If a transaction reads the committed version of a data item, 

it must acquire a CRL or TCRL for it first. A TCRL must be upgraded 

to a CRL before a transaction can commit. If the transaction reads an 

uncommitted version it acquires a VRL on that version, but the transaction 

which created the version must commit before the reading transaction can, 
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which automatically upgrades the corresponding VRLs to CRLs. Hence, 

in all cases it holds that a CRL is obtained for every read item before a 

transaction can commit. 

Write/Write Lock Conflict Rule : A transaction can only acquire a CWL on 

a data item version if no other transaction holds a CWL on the same item. 

In other words, no two CWLs can exist for the same data item at any point 

in time. 

Read/Write Lock Conflict Rule : A transaction can only obtain a CWL on 

a data item if no other transaction holds a CRL on that data item at the 

same time, and vice versa, i.e. CRL and CWL are not compatible. 

4.4.3 HBT-MV2PL Example 

To illustrate various aspects of HBT-MV2PL, in Example 3 we now describe a 

possible execution schedule for a set of 5 transactions and show the corresponding 

lock tables at various stages. 

To simplify our example, we only use two possible modes: 2PL and BT-MV-

2PL. This is sufficient to illustrate all points of interest. Adding MV-2PL would 

not add any more useful scenarios. The switch between 2PL and BT-MV-2PL 

is assumed to be caused by some kind of resource contention, which we leave 

unspecified here. It should be noted though, since branching mostly requires 

additional CPU overhead and multi-version algorithms have increased memory re-

quirements, a sensible policy for switching between these three modes is to change 

from BT-MV-2PL to MV-2PL if CPU utilisation is high and from MV-2PL to 

2PL if memory becomes a bottleneck. 

Example 3 	T1 : r[x] w[x] r[z] 

w[y] r[x] 

w[z] r[u] 

w[x} 

1F: r[x] 
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We assume that initially the system operates in BT-MV-2PL mode and there 

exist no uncommitted versions for items u, x, y and z. At first ETC1 , 1  starts 

execution in behalf of T1 . Since it wants to read item x, it sends a Read request 

to the scheduler. A TCRL lock is granted on the committed version of x and 

ETC,,, reads x. The next request by ETC,,, is a Write operation on x, which 

leads to a new version of it: (xi,i);  a new YWL is set accordingly. Now ETC2 , 1  

starts execution and writes a new version of y ( y2,1); a corresponding VWL is 

set for it. BTC 2 , 1 's next operation is a Read on x. Since we currently operate 

under BT-MV-2PL and more than one version of x exists, branching takes place. 

Two new components are created: ETC2 , 2  and ETC2 , 3 . ETC2 , 2  reads the original 

version of x; we denote it by x 0 ,0 . ETC2 ,3  reads x 1 , 1 . TCRL and VRL locks are 

set accordingly. At this stage, the lock tables look as shown in Figure 4-3. 

Locktable for item: X 

	

H TYPE: TCRL
1 	I I 

1-1 TYPE: TRL 
nitea Version: 	 ETc: 	1, 	 BT 	2,2 
X (0,0) 	 STATUS: Holder 	I 	I STATUS: Holder 

Locktable for item: V 

Co,n,nited Version: 

Y (0,0) 

Uncommitted Version: 	BTc: 	2,1 

Y 	
TYPE: VWL (2,1) 	 STATUS: Holder 

Figure 4-3: HBT-MV2PL Locktable 

We now assume that due to resource shortage the concurrency control mode 

is dynamically switched to 2PL. At this point T3  is submitted for execution and 

ETC3 , 1  requests write access to item z. Since the system operates in 2PL mode, 

a CWL on z is requested and granted; we assume that no other transaction has 

accessed z at that moment. Next, ETC 1 , 1  wants to read item z. The corresponding 

CRL request is blocked because of BTC 3 , 1 's CWL on z. 

Due to a drop in resource utilisation, the concurrency control mode is now 

switched back to BT-MV-2PL. ETC3 , 1  requests a Read on item u, is granted a 

TCRL on it and reads the committed version of the item. The lock tables at this 

stage are shown in Figure 4-4, 
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Locktable for item: U 

Commited Version: 	I 	I BTc 	3,1 
U(00) 	 TYPE: TCRL 

STATUS: Holder 

Locktable for item: X 

iiited Version: 	I BTC: 1,1 	I I BTC: 2,2 
X TYPE: TRL L—.I TYPE: TCRL 

(00) STATUS: Holder STATUS: Holder 

nunitted Version: 	I I BTC: 11 	I I BTC: 2,3 

xu I) TYPE: VWL k-1 TYPE: VIII. 
I I STATUS: Holder 	I I STATUS: Holder 

Locktable for item: Y 

Commited Version: 
Y(o,0) 

Uncommitted Version: 
H'ITYPE: 

BTc: 	2,1 
VWL  

STATUS,  Holder 

Locktable for item: Z 

k-4 
eztea Version: 	HH BTC: 	3,1 	I 	BTC: 	M

TYPE: 	CWL 	TYPE: 	CR1. Z 	 TYPE: 
	Holder 	I 	[ STATUS: Reuu 

Figure 4-4: HBT-MV2PL Locktable 

ETC3 , 1  has completed its execution and wants to commit. It must, therefore, 

be certified first. Its TCRL (on u) can be upgraded to a CRL since no other 

locks exist on that item, and its write lock on z is already certified since it was 

obtained under 2PL mode. BTC31  never branched and, therefore, all BTCs for 

transaction T3  are certified and the transaction can commit. As all its locks are 

released, BTC 1 , 1 's CRL on z can be granted now. 

After another switch to 2PL mode, 1L'4  and T5  arrived and requested Write and 

Read access to x, respectively. The corresponding CWL request from ETC4 , 1  was 

blocked, because of the existing TCRLs on x. BTC 5 , 1 's CRL request on x was 

blocked, because of the blocked CWL by ETC4 , 1 . Figure 4-5 shows the lock tables 

at this stage. 

After the switch back to BT-MV-2PL mode, ETC 1 , 1  has reached the end of 

its execution and needs to be certified. Its TCRL on x can be upgraded to a 

CRL, since there are currently no CWL holders for x. The Read on z is already 
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Locktable for item: X 

Uncommitted Version: I 	I fTC: 	1,1 	I 	I BTQ 	23 	I 

	

X1) 	 TYPE: VWL 	TYPE: VRL 	I 

	

I STATUS: 1-lolder 	 STATUS: Holder 	I 

Locktable for item: V 

rcommired Version: 
' (0,0) 

Unconuniued Version: 	ETC: 	2,1 
1' TYPE: VWL 

	

(2,1) 	 STATUS: Holder 

Locktable for item: Z 

Co,nmited Version: 	I fTC: 	1,1 	I 

	

Z(31) 	HHTYPE; CRL 	I 

	

STATUS: Holder 	I 

Figure 4-5: HBT-MV2PL Locktable 

certified, since it was requested under 2PL mode. The upgrade from a VWL to 

a CWL on x can also be granted to BTC J , 1 , in spite of the existence of BTC 2 , 2 's 

TCRL; that TCRL can be pre-empted since there exists an alternative branch, 

BTC 2 ,3 , which has read the new version of x written by ETCI , I . Due to the pre-

emption of its TCRL, BTC 2 ,2  is aborted. Once T1  committed, ETC2 , 3 's VRL on 

x is automatically promoted to a CRL. Since it is now a lock on the committed 

version of x, it has been moved from the queue for an uncommitted version to the 

queue for the committed version of x 8 . Since this CRL is actually held by ETC2 ,3  

rather than requested, it is placed in front of all currently blocked requestors. 

Hence, the CWL requested by ETC4 , 1  and the CRL requested by ETC5 , 1  are 

now queued after the CRL of BTC 2 ,3 . The locktable for item x after BTC 1 , 1 's 

certification and then after T1 's commit is shown in Figure 4-6. 

At this point ETC23  reaches end of execution. Certification of BTC 2 , 1  and 

8Note that there may be zero, one or more queues for uncommitted versions of 

data items, but there is always only one "committed version" queue, even though the 

committed version changes, in this case from x 00  to 
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Locktable for item: X 

uted Version: 	F-H RTC: 	1,1 
TYPE: CRL 

X (0,0) 	 STATUS: Holder 

RTC: 	4,1 
TYPE: CWL 
STATUS: Reauestor 

RTC 	1,1 
TYPE: CWL 
STATUS: Holder 

RTC: 	5,1 
TYPE: CRL 
STATUS: Requestor 

(,J) 	 L'l TYPE: X  
STATUS: 

after certification of BTC(1,1) 

Locktable for item: X 

after commit of BTC(1,1) 

Figure 4-6: HBT-M.V2PL Locktable 

BTC 2 ,3  takes place and TI2  commits. The remainder of the execution of BTC 4 , 1  

and BTC 5 , 1  is omitted here, since it does not illustrate any particular aspect of 

HBT-MV2PL. 

4.4.4 HBT-MV2PL Layered Approach 

Implementing a branching transaction scheduler from scratch is not an easy task. 

To be able to make use of existing DBMS components, we suggest a two-layer 

approach for the development of a HBT-MV2PL concurrency control manager, 

where the lower layer captures general (non-branching) 2-phase locking, and the 

higher layer provides full IIBT-MV2PL functionality. Separating the scheduler in 

these two components supports the possibility of reusing existing 2PL scheduler 

code. 

In addition to the usual Read and Write lock, and Commit and Abort requests, 

a 2PL module used in our two layer model would also need to support the following 

features: 

Read/upgrade: a Read lock request which is granted if no Write locks exist for 
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that item at that time (blocked Write lock -requests may exist). If the lock 

cannot be granted, the requesting BTC must be aborted. This request is 

needed to upgrade TCRLs to CRLs, 

Read/set: Sets a Read lock for a given BTC. This is needed to upgrade a VRL 

to a CRL. 

Write/upgrade: A Write lock request which, if it cannot be granted, is queued 

in front of other blocked requests; except for other blocked upgrade requests. 

Upgrade requests from VWL to CWL should be handled with higher priority 

than regular lock requests. 

We will now describe how requests to the HBT-MV2PL layer can be imple-

mented on top of a 2PL layer which includes the aforementioned features. Figure 

4-7 shows the overall two-layer structure. 

A Write request to the HBT layer can directly be passed as a Write request 

to the 2PL layer, if the current CCM mode is 2PL. Otherwise, in MV-2PL and 

BT-MV-2PL mode, a VWL entry is made in the HBT lock table. Under 2PL 

and MV-2PL mode, Read requests are passed directly to the 2PL layer. A Read 

request under BT-MV-2PL mode is entirely handled by the HBT-MV2PL layer: 

it decides whether branching needs to be performed and sets TCRLs and VRLs 

accordingly. 

When certification of a BTC is requested, the HBT-MV2PL layer first waits 

until all VRLs for that BTC have been upgraded to CRL. It then tries to upgrade 

all of this BTC's TCRLs by making Read/upgrade requests to the 2PL layer. 

Finally, it tries to upgrade the BTC's VWLs. For each VWL it must first determine 

if there are any conflicting TCRLs and whether they can be preempted. If no 

conflicting TCRLs remain, a Write/upgrade request is made to the 2PL layer. 

To commit a BTC, the HBT-MV2PL layer must upgrade all VRLs which 

have read data which was written by the committing BTC. It does so by sending 

Read/set requests to the 2PL layer for the appropriate items. All locks held by 
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HBT—MY2PL Layer 

	

Write H Read 
	

Certify H Commit  H Abort 

HBT Lock Tables 

(TCRL, VRL, VWL) 

2PL Layer 
Write 
	

Read 
	

Commit H Abort 

2PL Lock Tables 

(CRL, CWL) 

	

O 2PL mode 
	

2PL mode or MV-2PL mode 

	

MV-2PL 	mode or BT—MV-2PL mode 
	

BT—MV-2PL mode 

Figure 4-7: HBT-MV2PL Two-Layer Structure 

the committing BTC are then released in the HBT lock table. A commit message 

is sent to the 2PL layer to release the BTC's locks there as well. 

Abort processing also affects both layers. Hence, in addition to aborting the 

BTC within the HBT-MV2PL layer, an Abort request is also sent to the 2PL 

layer. 

Any DBMS vendor considering the implementation of a branching transaction 

system as part of their DBMS will clearly consider the costs involved in developing 

the corresponding software and compare these with the potentially higher sales of 

their product. Only if the expected costs do not outweigh the perceived benefits, 

will it be of interest to pursue the idea of branching transactions in a commercial 

system. The proposed two-layer structure described above is one step towards 

keeping such software development costs sufficiently low. 
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4.5 Deadlock Detection and Resolution 

Due to the blocking nature of HBT-MV2PL, deadlocks between transactions are 

possible. These deadlocks must be detected and resolved. Traditional deadlock 

detection and resolution policies cannot be applied, since they are unable to deal 

with the particular aspects of branching transactions. Before discussing solutions 

to this problem, we first describe what makes deadlock handling in branching 

transaction systems different. 

In a non-branching environment, transactions are blocked by other transac-

tions, whereas in a BT system, branching transaction components are blocked by 

other branching transaction components. As a result, it is quite possible that there 

exists a deadlock between BTCs of two (or more) transactions although there is 

no deadlock between these two (or more) transactions. The following example 

illustrates this point. 

Example 4 Let us assume the following two transactions: 

w[x] w[yJ 

r[x] r[y] 

Initially the system is in BT-MV-2PL mode. ETC,,, writes a new version of 

x. Next, ETC 2 , 1  wants to read x and branching takes place: BTC2 , 2  reads the 

committed version of x, ETC2 , 3  reads x1 , 1 . At this time, the concurrency control 

mode switches to 2FL. The new components of T2  obtain CRLs on y. When 

ETC,,, requests Write access to y, it is blocked since the corresponding CWL 

cannot be granted. If ETC2 , 3  was to request certification at this stage, a deadlock 

between ETC 1 , 1  and BTC2 , 3  occurs. ETC,,, is blocked by ETC 2 , 3  because of the 

CRL/CWL conflict on y. ETC 2 , 3  is blocked by ETC,, since its VRL on x cannot 

be certified until ETC,, commits. There is, however, still possibility for both 

transactions to commit without any special handling of this deadlock situation: if 

ETC2 , 2  reaches its end of execution, it can be certified immediately —its TCRL on 
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x can be upgraded to a GIlL and it already holds a CRL on y - and since BTC 21  

hasn't actually performed any operation, this branch of T2  can be committed. This 

leads to an Abort of BTC 2 ,3  and a resolution of the deadlock situation. 

From the above example it follows that we need to distinguish between two 

kinds of deadlocks in a branching transaction system: branching transaction com-

ponent deadlocks and branching transaction deadlocks. 

Definition 2 A set of branching transaction components SBTC is deadlocked, 

i.e. a branching transaction component deadlock exists, if each component 

(BTC) in 8ETC  is blocked by one or more other components (BTCs) in 5BTC 

Definition 3 A set of branching transactions SET is deadlocked, i.e. a branch-

ing transaction deadlock exists, if all transaction components of transactions 

in 5BT  are deadlocked. 

The above example also shows that a BTC may be blocked not only by another 

BTC because of a lock conflict, but also because of a read dependency. This read 

dependency wait-for relationship is not unique to branching transactions, but is a 

consequence of applying multi-version concurrency control and allowing BTC's to 

read uncommitted data. There is, however, a further wait-for relationship, which 

is due to parent-child relationships between BTCs. Again, we use examples to 

illustrate the issue. 

Example 5 Let us assume the following two transactions: 

Ti : r[x] r[y] w[z] 

1'2: r[z] w[xJ 

At the beginning, 2PL mode is active and BTC 1 , 1  and BTC2 , 1  acquire GIlLs 

on x and z, respectively. Let us suppose that, during a phase of BT-MV-2FL 

mode, BTC 1 , 1  has to branch because of the existence of an uncommitted version 

of y. Subsequently, once again in 2PL mode, BTC 2 , 1  attempts to update x, but is 

blocked due to a CWL/CRL conflict with BTC 1 , j ; and ETC1 , 2  is trying to acquire 
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a CWL for z, but is blocked due to a CWL/CRL, conflict with BTC 2 , 1 . If we 

further assume that BTC1 , 3  has been aborted due to reading a version of y which 

has meanwhile been aborted, Figure 4-8 describes the wait-for situation between 

the remaining BTCs. 

1,2 

Figure 4-8: BTC-based Wait-For Graph 

Although there exists no branching transaction component deadlock (as defined 

above) in Example 5, BTC 1 , 1 , BTC 1 , 2  and BTC 2 , 1  are effectively deadlocked, since 

BTC 1 , 1 , is not able to commit before BTC 1 , 2  is certified. Hence, we have actually 

another wait-for dependency between BTC 1 , 1  and BTC 12 . 

One could consider the possibility of adding edges from parent to child BTCs 

in a wait-for-graph to capture this sort of parent/child dependency. Unfortunately, 

this is not a solution to the problem as can be demonstrated with Example 6. 

Example 6 Let us assume the situation of Figure 4-9. BTC, 2  may have read a 

data item version created by BTC, 1  and it, therefore, needs to wait for BTC, 1  's 

- commitment before it can be certified. BTC, 1  is blocked by BTC1, 4; there might 

be some CRL/CWL conflict similar to the ones described in the previous example. 

Although BTC, 4  can be certified, it will not commit until BTC 1 , 2  has also been 

certified, and hence, we arrive at a deadlock situation involving BTC, 2, BTC1, 4  

and BTC, 1 . Adding a BTC1 2  -* BTC1 4  edge to the wait-for graph would not 

solve the problem, since the wait-for dependency in this case goes from child to 

parent BTC. 
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T±,4 

Figure 4-9: BTC-based Wait-For Graph 

4.5.1 Branch-Based Wait-For-Graphs for Branching Trans-

actions 

The key to the above problem is the fact that no BTC can commit on its own, 

but only as part of an entire path of a branching transaction. Hence, if any BTC 

along a branch is in a wait-for relationship with some other BTC, then effectively 

all other BTCs of that path are also included in this wait-for dependency. This 

leads to yet another definition of deadlocks in a BT system: 

Definition 4 A set of branching transaction branches 8BTB  is deadlocked, i.e. 

a branching transaction branch deadlock exists, if each branch in 8BTB  is 

blocked by one or more other branches in 8BrB 

To detect such branch-based deadlocks, we use a special variation of wait-for-

graphs (WFG), where a node represents an entire branch of a transaction - each 

branch is identified by its leaf-node BTC - and there exists an arc from BTC 1 , 

(a leaf node BTC of T) to BTCIV ,! (a leaf node BTC of Tk), if BTC, or any of its 

ancestors is blocked by BTCkj or any of its ancestors. As we pointed out earlier, 

a BTC may be blocked by another BTC for two reasons: 1) a BTC has read data 

which was created by another BTC which has not committed yet, and 2) a lock 

conflict between two BTCs. 

Proposition 1 Let 8BT  be a set of branching transactions, SBTB the set of all 

branches of transactions in 83T,  and SBTC the set of all branching transaction 

components of transactions in 8BT  If there exists a branching transaction corn- 
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ponent deadlock between components in 8BTC,  then there also exists a branching 

transaction branch deadlock between branches in SBTh 

Proof: A component deadlock exists if there is a cyclic wait-for relationship 

between components in 8BTC  For every wait-for arc between two components, 

there is a wait-for arc between the corresponding transaction branches in 8BTB• 

Hence, a cycle in a component-based WFG has a corresponding cycle in the branch-

based WFG. To prove that not every branch-based deadlock is associated with a 

component-based deadlock, we refer to the counter example in Example 5. 0 

Proposition 1 has important implications for the definition of a branching trans 

action deadlock: it is possible for a set of branching transactions to be deadlocked, 

even so not all of its BTCs are involved in a component-based deadlock. A branch-

based deadlock which involves all branches of all branching transactions in 8BT  is 

sufficient for a system wide BT deadlock. We modify the definition of a branching 

transaction deadlock accordingly: 

Definition 5 A set of branching transactions 8BT  is deadlocked, i.e. a branch-

ing transaction deadlock exists, if all branches of transactions in 8BT  are 

deadlocked. 

4.5.2 Deadlock Detection and Resolution 

When implementing a deadlock handling mechanism for branching transactions, 

one of the decisions to be made is when deadlock detection should take place. The 

two basic options are: 1) when a transaction gets blocked, or 2) periodically. By 

choosing the first option, we can eliminate deadlocks as soon as they occur, but 

the overhead for deadlock detection may be considerable if blocking takes place 

often. Using periodic checks limits the overhead caused by deadlock detection, but 

if time intervals between checks are too long, deadlocks may remain unresolved 

for relatively long periods. The correct choice depends on the frequency with 

which deadlocks occur: the more often deadlocks happen, the more often the 
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detection mechanism should be called. Clearly, checking for deadlocks every time 

a transaction gets blocked is only useful if deadlocks develop relatively often. 

Once a deadlock has been detected, we must distinguish whether a branch-

based deadlock occurred which does not involve all active branches of transactions 

- in this case the deadlock may still be resolved without any need for intervention 

(as seen in Example 5) - or if indeed a branching transaction deadlock exists and 

some deadlock resolution policy must be applied. 

In case of a branch-based deadlock, which may or may not resolve itself later, 

the deadlock manager can either intervene immediately and resolve this deadlock, 

or it can delay any action until an actual branching transaction deadlock occurs. 

Not resolving it immediately allows for the possibility that the deadlock gets re-

solved "naturally", i.e. the branches which are aborted are those which need to 

be aborted anyway due to the commit of alternative branches or due to cascading 

rollbacks. 

Once the decision has been made that a deadlock needs to be resolved, one or 

more branching transaction components must be selected for abort. Various victim 

selection policies can be applied. A simple solution is to abort the most recently 

blocked BTC. Alternatively, one might take into consideration the progress which 

has been made by all victim candidates so far, and then abort those which have 

made the least progress so far. Yet another possibility is to consider possible 

alternative branches of victim candidates; the prefered victim BTCs are those for 

which there exists an alternative branch which may still succeed in committing a 

branching transaction in spite of the forced abort of one of its branches. Again, 

there is a tradeoff: to apply a good victim selection policy may cause considerable 

overhead in deciding on the victim. 

4.5.3 Deadlock Prevention using Cautious Waiting 

Instead of allowing deadlocks to occur, detecting and then resolving them, several 

deadlock prevention algorithms have been proposed in the past, e.g. Wait-Die 

and Wound-Wait [77), Cautious Waiting [47] and Running Priority [37]. These 
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algorithms are designed to prevent any deadlocks from occurring. In this section 

we describe a variation of Cautious Waiting (CW) for branching transactions which 

has been used as the deadlock handling mechanism in our simulation study in 

Chapter 7. 

Under Cautious Waiting (for flat transactions), a transaction is aborted if it 

gets blocked by another transaction which itself is already blocked. This prevents 

any cyclic wait-for dependencies; deadlocks cannot, therefore, occur. 

In the case of branching transactions, a BTC is aborted if it gets blocked by 

another BTC which belongs to a transaction which has all of its own BTCs either 

blocked, aborted or branched. This will prevent branching transaction deadlocks, 

as defined in Definition 5, since it prevents cycles of blocked transactions. 

To deal with issues of transaction aborts due to deadlock handling as well as 

other reasons, e.g. system failure, some recovery mechanism must be in place in 

a branching transaction processing system. Logging and recovery is, therefore, 

discussed next. 

4.6 Logging and Recovery 

In Chapter 2 we discussed the need for a recovery manager and the kind of logging 

and recovery techniques which have been proposed in the past. To maintain 

database consistency in spite of various failure situations, a branching transaction 

processing system must also apply some form of recovery management. 

Since a branching transaction system follows several alternative paths of exe-

cution of transactions in parallel, and only one path per transaction can eventually 

be committed, aborting of BTCs is a frequent operation and must, therefore, be 

performed as efficiently as possible. 

To avoid excessive I/O overhead for BTC roll-backs we apply a modified in-

cremental log with deferred updates strategy [52]. During execution of a BTC, 

all updates to the database are kept as new versions of an item in main memory 
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only; the database on disk is not updated and no log records are written. If a BTC 

aborts, all data versions created by it are simply discarded; no I/O is necessary for 

aborting BTCs. To commit a BTC, for each item to be written, first a log record 

is written and then the database is updated on disk. Assuming that log records 

and the database are stored on different disks, I/O to log disks and database disks 

can proceed in parallel (as long as for each item the log record is written before 

updating the database). Recovery from a system crash works as with traditional 

recovery techniques (see [10]). Since no log records are written until commit time 

- the time at which it is known which path of execution of a branching transaction 

is correct - logging is only required for one path of a branching transaction, and 

hence, branching does not impose any extra I/O overhead for logging on the sys-

tem; in both cases, branching and non-branching, two I/O accesses (one to write 

a log record and one to update the database) are required per database update. 



Chapter 5 

System Architecture 

The previous two chapters introduced the basic concept of branching transactions 

and described concurrency control and recovery mechanisms for this new trans-

action model. So far, the discussion has been on an abstract level and did not 

consider aspects of the underlying computer architecture on which we expect a 

branching transaction processing system to run. Clearly though, the actual sys-

tem architecture is to some extent influenced by what kind of parallel computer 

we intend to use. In this chapter, therefore, we. describe branching transaction 

system architectures for various parallel computer configurations. In addition to 

the overall architecture, issues of cache coherence, centralised vs. distributed lock 

management and load balancing and load control are discussed in more detail. 

We begin this chapter with a review of current parallel computer architectures 

and a classification model of parallel DBMS. This creates a context which relates 

hardware and software aspects of a parallel database system within which we then 

discuss various issues of branching transaction system architectures. 

101 
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5.1 Parallel Computer Architecture 

The most commonly used categorisation of parallel computer architectures for 

database management systems is the one proposed by Stonebraker [84]. He dis-

tinguishes the following architectures: 

shared-memory (SM): 1  all processors access one global, shared memory and 

the same set of disks; 

shared-disk (SD): each processor has its own private memory, but can access 

all of the disks; 

shared-nothing (SN): each processor has its own private memory and has ex-

elusive access to its own set of disks; 

A 4th category has evolved in recent years and is described by Valduriez [93]: 

shared-something (55): the multi-computer comprises a set of nodes, where 

each node is a shared-memory multi-processor, possibly with its own disks. 

The nodes communicate by message passing through an interconnect. 

Although Valduriez suggests that the shared-memory nodes access a set of 

shared disks, it is also possible that each node has its own set of disks instead. 

An example of such an architecture is the Convex Exemplar [91], which we will 

discuss in more detail below. In the following sections we will take a closer look 

at each of these architectures. Figure 5-1 shows the four architectures discussed 

in this chapter. (One should note that although commercial systems are classified 

according to these architectures, they do not always strictly follow their definitions. 

For example, commercial shared-nothing systems quite often have some level of 

disk sharing for fault tolerance purposes.) 

'As mentioned in Section 2.2.3, this refers to physically shared memory and not 

distributed shared memory. 
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Shared—disk System 

shared—memory (shared—memory 
node 	) 	node 

shared—memory 
node 

Shared—nothing System 
Shared—something System 

Figure 5-1: Parallel Hardware Architectures 

51.1 Shared Memory 

In a shared memory architecture  each processor has access to a global, shared 

memory and to each disk in the system. Each processor typically uses its own 

cache memory (processor cache) to improve access times to the memory. Coherence 

between these caches is often ensured via some hardware mechanism, for example 

a shared bus which is continuously "snooped" on behalf of each processor; if a 

processor does not have the latest version of data in its cache, it ignores the cache 

content and retrieves it from memory. 

Shared memory systems allow good load balancing, since tasks can be assigned 

to any processor; all processors have fast access to all data, since memory as well 

as disks are shared. There is no significant communication overhead between 

2 Shared memory architectures are also known as Symmetric Multi-Processor (SMP) 

or shared everything architectures. 
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processors, as they communicate via shared memory, instead of sending messages 

across an interconnect. 

The primary disadvantage of shared memory systems is their limited scalabil-

ity. If the number of processors becomes too large, the bus becomes a bottleneck. 

Currently, manufacturers claim to be able to build machines with up to 64 pro-

cessors (Cray CS6400 [91]), although most systems used today use less than that. 

A second problem of these systems is low availability. Since memory is shared by 

all processors, a memory fault can effect the entire system. Furthermore, the bus 

is a single point of failure. 

The structure of a shared memory architecture is shown in Figure 5-2. 

ICPu_j 	FCPUI 	CPU 	CPU] 	CPU 
____ 	 ____ 	I  

Cache I F Cache I I Cache 	Cache I I Cache 

Shared Bus 

Memory 
Sn 

Disk F I Disk r I Disk 

Figure 5-2: Shared Memory Architecture 

5.1.2 Shared Disk 

In a shared disk system, each processor has access to all disks through an inter-

connect, but exclusive access to its own memory module. As before, processor 

caches are used to improve access times to memory, but cache coherence is less of 

a problem as there is no shared memory. 

Shared disk systems have better scalability, since memory access is now local 

to a processor's own memory module; to access data in memory the processor does 

not have to use a shared bus anymore, but its own local bus. The bottleneck of 

the shared bus is thereby eliminated. Load balancing is still relatively easy, since 

all processors can access all data in the database without the need to commu-

nicate with other processors; the disks on which the database resides are shared. 
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Availability is better than in a shared memory system since a memory fault only 

affects one processor rather than all. 

Copying data from the database (shared disks) to processors' own memories, 

however, creates a new form of coherence problem. Conflicting access to the same 

page by different processors must be controlled using certain protocols. We will 

discuss so-called "cache coherence" protocols in more detail below. "Cache" in 

this context does not refer to the processor cache discussed earlier, but copies 

of database pages in a processor's local memory. Shared disks may become a 

bottleneck if too many processors try to access them frequently. To address this 

issue, one could use larger cache memories for each processor, or replicate data on 

disk. 

The structure of a shared disk architecture is shown in Figure 5-3. 

CPU 	ICPuI 	lCPul 	FCPu 

Cache I 	I Cache I 	I Cache F 	I Cache 

Controller I I Controller  I 	I Controller 	I Controller 

D Sk ~4 	~4 
Figure 5-3: Shared Disk Architecture 

5.1.3 Shared Nothing 

The architecture promoted by several researchers, in particular by Stonebraker [84] 

and DeWitt and Gray [30], as the most appropriate for parallel database systems 

is shared nothing. In a shared nothing system, each processor has its own private 
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memory - again, processor caches are used - and its own set of disks. Any 

access to data on disk can only be performed by the processor which "owns" the 

disk, or by communicating with that processor; the processor acts as a server to 

that disk. To access their local memory and disks, processors use a local bus; to 

communicate with other processors, however, some interconnect network is used. 

The perceived advantages of shared nothing systems are very good scalability 

and good availability. Load balancing is known to be more difficult, since commu-

nication between processors is expensive and data cannot be shared easily between 

processors. 

The structure of a pure shared nothing architecture is shown in Figure 5-4. 

Imor
ntrllr I I 
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Tape 
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Figure 5-4: Shared Nothing Architecture 

5.1.4 Shared Something 

Contrary to what supporters of shared nothing are saying, several people [65,66,93] 

have suggested that pure shared nothing systems are not the best way forward, but 

that hybrid architectures with some aspects of sharing are to be favoured. Their 

claim is supported by current trends in the parallel database systems market: 

currently very few manufacturers actually produce pure shared-nothing systems. 
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The motivation behind hybrid architectures is to combine the advantages of 

the architectures described above, i.e. to achieve good scalability and availability 

without losing the advantages of sharing. Valduriez [93] coined the term shared 

something. In his definition, a shared something system consists of a number of 

shared-memory nodes (with more than one processor each) connected with each 

other through some interconnection network. Disks are attached to the intercon-

nect and are shared by all nodes. Alternatively, instead of connecting the disks to 

the interconnect, each shared memory node may have its own set of disks attached 

to it. The Convex Exemplar is an example of such an architecture (more detail 

below). 

Figure 5-5 shows the structure of a shared something architecture. We have 

drawn the disks attached to shared memory nodes in dashed lines to indicate that 

it is not likely that there are disks attached to each node in addition to the shared 

disks connected to the interconnect. As explained above, we consider these to be 

alternative versions of a shared something system. 
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Figure 5-5: Shared Something Architecture 
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5.1.5 Example: Convex Exemplar 

Convex Computer Corporation (which has been owned by Hewlett Packard since 

1995) produces a computer, the Exemplar, which we will look at in more detail. 

It will serve as an example for a modern architecture for parallel database systems 

and we will map the software architecture of a branching transaction system to 

this machine architecture. 

Following the above categorisation, the Exemplar is a shared something archi-

tecture where disks are attached to shared memory nodes, rather than the inter-

connect. Each node consists of up to eight PA 7100 or PA 7200 processors from 

Hewlett Packard. Each processor has a local cache (processor cache). Processors 

in one node share one cache coherent, global memory. Instead of the traditional 

approach of using a bus, processors and memory are connected via a 5 by 5 crossbar 

switch for better performance. Up to 16 shared memory nodes may be connected 

by the Convex Toroidal Interconnect (CTI). CTI has a ring topology. Each node 

may have up to 105 disks (4GB each) connected - via some I/O adapter - to 

it. Figure 5-6 shows the architecture of the Convex Exemplar. 

A key feature of the Exemplar is its support of one single global address space 

across all nodes. The system maintains memory coherence between the nodes. 

Hence, logically it can be treated as one large shared memory system, although 

currently its total address space is limited to 4GBytes. Memory access across the 

CTI is slower than within a single node. To reduce this added memory access 

latency, a part of the local node memory is used as "node cache" for memory 

which resides on a different node. 

5.2 Parallel DBMS Architecture Classification 

Although the architecture of a parallel DBMS is to some extent dependent on 

the architecture of the parallel computer it is running on, different versions of 

the same DBMS may run on different hardware platforms. Hence, instead of 
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Figure 5-6: Convex Exemplar Architecture 

classifying parallel DBMS based on the hardware platform they are running on, 

Norman and Thanisch [65] have suggested a comparison based on a 5 layer model 

of the DBMS software architecture. 

We discuss this 5 layer model here, since later in the chapter we will map 

the architecture of a parallel DBMS using branching transactions onto this model. 

This mapping will help us to discuss aspects of cache coherence and load balancing. 

In this section, we introduce their 5 layer model, first in general terms and then 

by using the example of the DBMS Oracle7 [67]. We use Oracle7, since it is 

very flexible and illustrates many aspects of a modern parallel DBMS, such as for 

example load balancing and query parallelism. 

The 5 layers of this model are: dispatchers, servers, slaves, disk aceessors and 
disks; each representing DBMS components at a different level of abstraction. 

The dispatchers communicate with the users. They accept query requests and 

pass them on to servers. A server either executes a query itself or breaks it down 

into sub-queries which are dispatched to slaves. The slaves execute sub-queries 

and use disk accessors for access 'to the database. At the bottom of these layers 

are the actual disks which contain the database (Figure 5-7). 

Figure 5-8 shows a possible configuration of the DBMS Oracle 7, running on 

a machine with two SMP nodes, where each node contains a couple of processors 
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Figure 5-7: General 5 Layer Model 

and some shared memory. No memory is shared between nodes and each disk can 

be accessed by each node. In the above hardware classification, this corresponds 

to a shared-something architecture (with shared disks). 

We assume that Oracle's multi-threaded server is running, so that users can 

connect to dispatchers, which distribute queries from the users to server processes 3. 

A query may be processed sequentially by one server process (running on one node) 

or, using Oracle Parallel Query, the query may be broken down into several sub-

queries which are then executed by query slaves. A sub-query may be executed 

on a node different to the one from which it originated. Disk access is performed 

by disk accessors - database writers, in Oracle's terminology - which can access 

all disks in the system (shared disks). 

Having discussed a hardware and a software oriented model for parallel data-

base systems in general, the next section looks at possible system architectures for 

branching transactions in particular. The discussion focusses on what has previ-

ously been described as shared-memory and shared-something environments and 

31n Oracle 7, it is also possible for a connection to be established which bypasses the 

dispatchers layer. 
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Figure 5-8: 5 Layer Model for Oracle 7 

it uses the above five layer DBMS architecture model to explain such issues as 

load balancing and cache coherency. 

5.3 Branching Transaction System Architecture 

The architecture of a system describes the overall decomposition of the system 

into its primary functional components (subsystems). In the context of transac-

tion processing (TP) systems, these components are often referred to as resource 

managers; a resource manager is a subsystem of the TP system, offering particular 

services to applications or other resource managers. For example, Gray and Reuter 

[40] describe a transaction processing monitor as the combined functionality of a 

transaction processing operating system (TPOS), e.g. transactional remote proced-

ure calls, transaction identifiers, lock management, log management, transaction 

commit processing, and authentication; and the functionality of transaction pro-

cessing services (TRAPS), e.g. operations interfaces, monitoring, load balancing, 

security mechanisms and configuration management. 
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In this section, we give an overview of resource managers which are required 

to run a branching transaction processing system. This division into a number 

of resource managers is primarily functional and does not directly correspond to 

the implementation of such a system, i.e. not every resource manager needs to 

be implemented as a separate process'. We will first describe the situation for a 

shared-memory hardware platform and then for shard-something systems. 

5.3.1 BTs in a Shared Memory Environment 	

, 
We identify below resource managers for a brahching tranation processing system 

on a shared memry hardware platform. The same set of resource managers is 

actually used for other architectures as well, but at this tithe we only focus on' 
* 

	

	
their functionality within shared memory environment. The dveiall architecture• 
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Communication Manager (CM): The CM provides an interface between user-

level applications and the transaction coordinator. 

Transaction Coordinator (TC): A user submits (via the communication man-

ager) a transaction for execution to the transaction coordinator. The TC 

queues the transaction if the current system workload is too high or submits 

it to the transaction manager for execution'. 

Transaction Manager (TM): The TM is responsible for the execution of a 

transaction. It creates, aborts, and coordinates the commit of the branching 

transaction components (BTCs) for a transaction. 

Load Control Manager (LCM): The LCM maintains resource utilisation data 

and system performance statistics, which are used to control submission of 

new transactions to the system and branching of currently running transac-

tions. The LCM's responsibility is to prevent thrashing behaviour. 

Concurrency Control Manager (CCM): The CCM implements the hybrid 

branching transaction multi-version two-phase locking algorithm described 

previously. It consists of three subsystems: 1) the lock manager responsible 

for locking and unlocking of data items, 2) the deadlock manager: responsible 

for deadlock detection and resolution, and 3) the branch control manager 

responsible for when and how transaction components should branch; it 

consults the LCM for necessary system statistics. 

Version Manager (VM): The VM provides access to uncommitted versions of 

data objects. 

5 1n a shared memory system, the functionality of the transaction coordinator could 

easily be included within the transaction manager. The TC, however, assumes more 

functionality in a shared something environment. 
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Disk Manager (DM): The DM is responsible for disk space management. It 

stores and retrieves data objects and log records on hard disks. It also 

manages the database cache in main memory. 

Recovery Manager (RM): The RM facilitates transaction abort and recovery, 

as well as recovery from system and media failure. 

To get a better understanding of the role of these resource managers and their 

interaction, we now discuss the execution of a transaction in such an environment 

in more detail. 

When a user-level transaction is submitted to the transaction coordinator for 

execution, the TC consults the load control manager whether enough resources are 

available to execute the new transaction. If not, the new transaction is queued 

within the TC, waiting to be scheduled at some later time. If yes, the TC passes 

the transaction to the transaction manager for execution. Upon receipt of a new 

transaction, the TM creates a new branching transaction component (BTC) and 

schedules it for execution. 

BTCs request Read/Write locks from the concurrency control manager. If a 

lock request is granted for a Read operation, the BTC either requests the item 

from the VM (if it wants to read uncommitted data) or the DM (if it wants to read 

committed data). Whether the item to be read is committed or not, is indicated 

in the Grant message from the CCM. A Write request is always directed at the 

VM, which creates a new version of the corresponding item. If a Read request is 

made to the DM, and the requested item is not in main memory yet, it is fetched 

from disk by the DM. If the CCM decides - after consultation with the LCM - 

to branch an existing BTC, it informs the TM, which creates the required, new 

BTCs. 

The commit of a branching transaction's components is coordinated by the TM. 

Once an entire path has been certified, all its BTCs must be committed. The TM 

sends appropriate commit instructions to the recovery manager. The RM instructs 

the VM to copy the newly committed versions to the DM and removes them from 
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VM's memory. The DM then writes log records of updated data to the log disk 

and flushes updated items to the database disks. The TM also instructs the RM 

to abort all BTCs (of that transaction) which are not part of the committing path. 

Since all updates to the database are deferred, i.e. no data is written to disk until 

commit time, to abort a ETC the RM simply informs the VM to discard any 

data versions which were created by the aborting BTC. The RM informs the TM 

once the abort of a transaction is complete, at which time the TM instructs the 

concurrency control manager to release all locks which were held by that BTC. 

Similarly, the RM informs the TM about the completion of a BTC commit. After 

all - we apply strict two-phase locking - BTCs of a path have been committed by 

the RM, the TM informs the CCM to release their locks. The successful completion. 

of a transaction is communicated back to the user via the TC and CM. 

5.3.2 BTs in a Shared Something Environment 

As described earlier, under shared something we assume that the system consists 

of a number of shared memory nodes (where each node contains more than one 

processor), that nodes are connected with each other through some interconnect 

hardware, and that transactions on all nodes can access data on all disks (whether 

these disks are shared, or some inter-node communication needs to take place). 

The architecture of a branching transaction system in such an environment is 

very similar to the one described above, In fact, there is no need to introduce 

any additional resource managers, though the functionality of existing ones must 

be extended. Furthermore, we designate one node to be the central system node 

(CSN), and all others as general transaction processing nodes. The CSN consists 

of a communication manager, the transaction coordinator, the concurrency con-

trol manager and the load control manager. All other (general processing) nodes 

consist of a communication manager, a transaction manager, a version manager, 

a recovery manager and a disk manager. 

A transaction is submitted to the CSN, where the TC either queues it for later 

execution (to avoid system thrashing) or sends it to the TM of one of the general 
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processing nodes. A TM is responsible for the execution of transactions on its 

node. Its basic functionality is the same as it was for the shared memory case. 

Newly created BTCs remain on the same node as their parent node. Sibling BTCs, 

however, are likely to be executed by different processors within that node. Lock 

requests by BTCs are sent across the interconnect to the GUM on the GSN. Again 

BTCs request access to data items through either the VM or the DM; the fact 

that items may be located at other nodes or disks on other nodes is hidden from 

BTCs. If an uncommitted version of an item is located on a different node, it must 

be fetched from there. Similarly, a disk manager may need to access data on any 

of the disks within the system. This data transfer between VMS and DMs across 

the system raises issues of data buffering (caching) and, therefore, the problem of 

cache coherence must be addressed. We will discuss it in more detail in Section 

5.5 below. 

The overall architecture of a branching transaction system is largely independ-

ent of how disks are shared, i.e. whether disks are attached to nodes, as in Figure 

5-10, or whether they are directly connected to the interconnect (shared disks), as 

in Figure 5-11. The specifics of these aspects are hidden within the disk managers. 

There are two important aspects which need further discussion: 1) cache co-

herence, and 2) submission of transactions from the CSN to general processing 

nodes (load balancing). The following two sections deal with these aspects in 

more detail. 
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Figure 5-10: BT Architecture for Shared-Something System (Version 1) 

5.4 Load Balancing and Load Control 

An uneven distribution of workload between nodes and within nodes leads to poor 

resource utilisation and, therefore, to low performance. We apply a load balancing 

strategy to address this issue. To have a better basis for this discussion, we map the 

architecture of a branching transaction system in a shared something environment 

onto the 5 layer model of parallel DBMS introduced earlier. 

As shown in Figure 5-12, the transaction coordinator on the CSN assumes the 

role of the dispatcher. It sends a transaction to one of the transaction managers 

(servers, in the general model terminology). BTCs correspond to slaves. The 

recovery manager, version manager and disk manager fall roughly into the level of 

disk accessors. Although our BT architecture does not match the 5 layer model 
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Figure 5-11: BT Architecture for Shared-Something System (Version 2) 

perfectly, it clearly illustrates where load balancing can be applied: 1) by TC 

when allocating transactions to TMs, and 2) by TM when scheduling BTCs on 

local processors. 

Scheduling BTCs on a shared memory node is relatively easy, since all pro-

cessors share the same memory. In fact, load balancing within a node needs little 

interference from the DBMS and is left to the underlying operating system. 

A more difficult task is to determine a good scheduling strategy for the TC. 

The basic rule is that the TC allocates a transaction to the TM on the node with 

the lowest average CPU utilisation at the time. This may, however, not always 

be the best solution. Another factor that needs to be considered is data locality. 

If it is known in advance which data items a transaction wants to access, it may 
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Figure 5-12: Layer Model for Branching Transaction System 

be beneficial to execute that transaction on a node which will require the least 

amount of inter-node data transfer. Reducing communication costs and balancing 

CPU utilisation may become conflicting goals. There is no general answer to 

this problem. The optimal load balancing strategy depends on the actual system 

particulars, i.e whether or not its inter-connect is a bottleneck, whether CPU 

utilisation is relatively low or rather high, what kind of access patterns transactions 

display, etc. The actual architecture of our system, however, does not depend on 

which load balancing policy is applied. The details of the policy are encapsulated 

within the load control manager. 

In addition to load balancing, the LCM also determines the load control policy 

of the system; it is responsible for the prevention of thrashing. Thrashing may 

happen for two reasons: 1) too many transaction are allowed into the system, and 

2) too much branching of transactions leads to too many BTCs. 

The most common approach to restrict the number of transactions in a system 

is to define a multi-programming level (MPL). The MPL is the maximum number 

of active transactions allowed in the system. Once that level has been reached, 
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any transaction sent to TC is held in a waiting queue until one of the active trans-

action completes its execution. Although this is a very effective way of preventing 

thrashing, it has been criticised for its static decision process; the MPL approach 

does not take into consideration whether or not thrashing actually occurs. Several 

researchers [20,61,62] have proposed more dynamic methods which use current 

system statistics to decide whether a transaction's execution should be delayed. 

The LCM may apply any appropriate load control policy 6. 

We have already described the need of a branch-control function in Section 

3.3.3. Such a control function should be implemented by the LCM. The CCM 

consults the LCM before making a branching decision. Branching may be rejected 

by the LCM if thrashing becomes a problem. 

5.5 Cache Coherence 

To speed-up access to data, cache memory is used in several places of the memory 

hierarchy within a computer system (see Figure 5-13). Main memory data is 

buffered within the processor cache for faster CPU access. Database data is usually 

buffered within the main memory to reduce disk I/O, and the disk device itself may 

make use of a disk cache (on-board cache) to reduce delays due to disk rotation 

and read/write hSd movements. 

A problem of cache coherence exists if more than one cache buffers data of 

the same memory entity. For example, if two processor caches contain a copy of 

the same main memory page and one is changing its value, then the copy in the 

other processor cache is out-of-date, and we have an inconsistency. Similarly, if 

the same database item was read from disk into two different database caches, as 

'Since the work in [20,61,62] is based on fiat transactions, it is not clear how these 

techniques perform for branching transactions. More performance studies would be 

required to evaluate their suitability. 
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Figure 5-13: Memory Hierarchy 

soon as an update takes place at one of the two database caches, the other one is 

out-of--date. 

Each processor in a shared memory node accesses the same "node memory", 

and since each processor makes use of a processor cache, some form of cache 

coherence control must be applied. As we explained earlier (Section 5.1.1), this 

control is usually carried out by some hardware mechanism, and there is no need 

for the DBMS to interfere with it. Hence, in this section we are only concerned 

about the problem of inconsistencies between database caches on different shared-

memory nodes. (From now on, when we discuss cache coherence problems, we 

only refer to the database caches, unless stated otherwise.) 

5.5.1 Cache Coherence in Disk Manager 

The database cache in our BT architecture is part of the DM. Hence, each shared 

memory node maintains its copy of cache memory. Clearly, if two DMs contain 

a copy of the same item, and one updates it, the other copy becomes invalid. To 



Chapter 5. System Architecture 	 122 

deal with this problem, we must apply some cache coherence protocol. For any 

such protocol, there are two fundamental problems: 1) invalidation of out-of-date 

data in the cache, and 2) propagation of newly updated items. 

Following the terminology used by Rahm [75], our cache coherence scheme 

could be classified as using on-request invalidation, selective notification, some 

sort of page sequence numbers, horizontal propagation for cache page updates, and 

force or no-force disk update. Each of these is discussed below. 

On-request invalidation, which is also referred to as "check-on-access", can 

be used together with locking protocols. The basic idea is to keep database cache 

information together with the lock tables, so that the validity of a cache page 

can be checked during the processing of a lock request, thus eliminating extra 

communication overhead for separate cache invalidation messages. Hence, it is 

the task of the concurrency control manager to determine whether the cache at 

the node from where the lock request was sent has an up-to-date copy of the 

requested item. For this, we use a technique similar to what Rahm refers to as 

"page sequence numbers". 

"Page sequence numbers" are attached to pages. The CCM keeps track of 

which is the most up-to-date sequence number for any given page. Since the 

CCM also knows the sequence numbers of the cached pages at each node, it can 

easily decide whether or not a cache is up-to-date. In our case, the page sequence 

numbers are the indices of the BTC which created the page, i.e. a page created by 

BTC 23  has the "sequence number" (2,3). If a cache does not hold the requested 

data, it is updated, using a horizontal propagation policy. 

Horizontal Propagation describes a cache update scheme where the most up-

to-date copy of a page is forwarded to a cache which needs access but does not 

have a copy of it. In the case of a BT system, the CCM finds out that a request 

from one node, say N1 , needs to read x, but that the latest version of x is only 

available from the cache at another node, say N2 . In this case, the CCM sends 
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a "forward request" to the DM of N2 , which in turn sends its (up-to-date) copy 

of x to N1 's PM; x has been (horizontally) propagated from one node's cache to 

another. 

Force and NoForce Disk Update: Earlier in this chapter we said that data-

base updates made by a transaction are flushed to disk before that transaction 

is allowed to commit. This technique is referred to as the force approach. Rahm 

[75] points out that this may not be suitable for high performance transaction 

processing since its high I/O overhead causes significant response time delays for 

update transactions. To avoid this problem, the noforce approach only ensures 

that all relevant redo log records are written to disk before commit time, and that 

updates to the database can take place after the commit. To prevent transactions 

reading out-of-date data from disk, the horizontal propagation scheme described 

above must be used to allow each PM to have access to the latest version of an 

item. Since we use a horizontal propagation scheme already, it would only require 

minor changes to our PM to switch from a force to a noforce disk update strategy. 

5.5.2 Cache Coherence in Version Manager 

The version managers at each node are faced with a problem similar to the one 

faced by the disk managers: they may need to access a version of an item which 

only exists at a remote node's VM. The solution is the same as for DMs: the CCM 

maintains information about the existence of versions within its locktables, and 

the same kind of horizontal propagation scheme is used to update a VM memory. 

It is important to remember that VMs are only concerned with uncommitted data, 

and hence, there is no issue of disk updates. What happens at commit time, i.e. 

when uncommitted data become committed data, and how the version managers 

interact with disk managers is discussed below. 
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5.5.3 Combined Disk Manager and Version Manager Cache 

Coherence 

A transaction requests read access to a data item, but not a particular version of 

an item. It is the CCM which decides which version of the requested item should 

be read by the requesting BTC. This version information is tagged to the Grant 

reply from the CCM to the BTC, The Grant message includes two other pieces of 

information: 

Commit Flag: indicates whether the specified version of the item should be re-

quested from the local VM. (if flag is not set) or the local DM (if flag is 

set); 

Forward Flag: indicates whether the specified version will be forwarded from a 

remote node to the local VM/DM; 

When a BTC receives a Grant message after a Read lock request, it first checks 

the Commit flag. Depending on the value of the flag, it then makes a read request 

to either VM or DM. In either case, the Forward flag is attached to the read 

request. Four possible scenarios exist: 

Read request to VM, Forward flag not set: the requested data item version 

should be in the local VM, and a copy is passed to the requesting BTC; 

Read request to YM, Forward flag set: the requested data item version has 

to be forwarded from a remote VM. The local VM has to wait for the ar-

rival of the (horizontally) propagating version, before it can satisfy the read 

request; 

Read request to DM, Forward flag not set: the requested data item version 

should be in the local DM, and a copy is passed to the requesting BTC; 

Read request to DM, Forward flag set: the requested data item version has 

to be forwarded from a remote DM. The local DM has to wait for the ar- 
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rival of the (horizontally) propagating version before it can satisfy the read 

request; 

It may happen that none of the DMs has a copy of the most recently committed 

version of the requested item; it only exists on disk. In this case, the DM needs 

to fetch it from disk. 

When a transaction commits, all its updates change from non-committed to 

committed status, and hence, they need to be moved from VM to DM. This is 

not only true for the node where the transaction was executed, but also for those 

nodes to where a copy of the item version has propagated. Hence, the CCM has to 

send Commit messages to all nodes where copies of items exist which were created 

by the committing transaction. 

To illustrate some aspects of the overall cache management mechanism in a 

branching transaction DBMS running on a shared something (or shared disk) 

platform we use the following example. 

Example 7 Assume that we have a system with 9 nodes, where each node is a 

shared memory system. One node is the designated CSN, the other two are general 

processing nodes. A copy of data item x (zoo) is on disk; no copy exists in any of 

the caches. We are assuming a Force disk update approach. Figure 5-14, part a) 

shows the initial cache situation. 

Now BTC 11 , which executes at node N 2 , wants to read x, and a copy of x 00  

is read into N2  s DM (Figure 5-14, part b). Next BTC 21 , which executes at node 

N2 , also wants to read x, and a copy of x 00  is propagated from N2  's DM to N 1  s 

DM. A Write request of BTC 11  at N2  leads to a new version of x (xn), which is 

held in N2  '.s VM (Figure 5-14, part c). After the Commit of BTC 11 , x 11  becomes 

a committed data item, i.e. it is copied to N 2  s DM and removed from the VM 

there. 

Copies of x 00  are eventually purged from all DMs, since it is no longer the last 

committed version of x, so no transaction will ever be allowed access to it again 

(Remember, we only keep the most recent of all committed versions of an item.) 
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Figure 5-14: Cache Management Example 

To avoid additional communication overhead, the instruction from CCM to DMs 

to discard x00  can be "piggy-backed" whenever the CCM has to send a message 

to the corresponding nodes next time. There is no need to immediately remove 

these copies from the DMs, since the CCM will not allow access to it in any case. 

Finally, we will be left with the updated version of x on disk and in N 2  's DM 

(Figure 5-14, part d). 
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5.6 Centralised vs. Distributed Lock Manage-

ment 

It is easier to implement a centralised concurrency control/lock manager rather 

than a distributed one, but centralisation creates several potential problems: 

communication overhead: each lock request involves the sending of two mes-

sages across the node interconnect: one to the CSN (Central System Node) 

for the lock request and one for the reply; 

system bottleneck: the progress of all transactions depends on how fast the 

CSN can reply to their lock requests and, hence, an overloaded CSN can 

become a system performance bottleneck; 

single point of failure: a failure of the CSN would lead to a total system failure, 

since none of the other nodes is designed to take over the functionality of 

the CSN; 

To avoid these problems, the lock manager can be distributed over several 

nodes. Distributed concurrency control has been studied extensively ([10,24,70]). 

Most of the algorithms proposed in this field, however, are targeted at distributed 

databases, where the database is partitioned over several nodes and in general a 

transaction at one node does not have access to data at a remote node (unless it 

spawns a sub-transaction at that node). As a consequence, the performance and 

behaviour of distributed lock management is closely linked to how the database 

has been partitioned. 

Since we are assuming that all transactions, no matter on which node they are 

executed, have access to all database disks, the distribution of lock management is 

less restricted. We can either use dedicated lock management nodes or assign lock 

management responsibilities to general processing nodes. In either case, the lock 

space is partitioned using some hashing function. This hashing function must be 
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known to all nodes, so they can send their lock requests to the right lock manager. 

Although this scheme still suffers from a high communication overhead, it reduces 

the problem of a system bottleneck and achieves a higher level of fault tolerance. 

It is, however, important to find a good hashing function to distribute lock pro-

cessing overhead evenly; it may be necessary to recalibrate this hashing function 

occasionally to adapt to changing system characteristics (e.g. transaction workload 

changes). A more flexible approach is to assign lock management responsibilities 

dynamically and allow them to migrate from one node to another. In this case, 

though, extra communication overhead is caused by the need to constantly update 

all nodes about the current lock management distribution. 

These issues of distributed lock management are largely the same whether or 

not branching transactions are involved. We will, therefore, not discuss the various 

solutions to this problem in more detail here. For a good overview in this area, 

the reader is referred to Rahm [75]. 

5.7 Branching Transactions on a Convex Exem-

plar 

We introduced the hardware architecture of the Convex Exemplar earlier in this 

chapter. In this section, we will briefly outline its system software architecture 

and how a BT DBMS can be mapped to it. 

5.7.1 System Software Architecture of a Convex Exemplar 

As described earlier, the Convex Exemplar consists of a number of shared memory 

nodes, called hype modes, which are connected through a Coherent Toroidal Inter-

connect (CTI). Each hypernode runs a copy of a micro kernel which provides basic 

kernel functionality such as virtual memory and scheduling of processors. All 

other system functions are provided through servers running in user space. The 

entire operating system, called SPP-UX, is based on the Open Software Founda- 
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tion OSF/1 AD distributed microkernel, and is binary compatible with HP-UX, 

Hewlett-Packard's Unix operating system. 

To support more efficient and easier management of a potentially large number 

of resources, e.g. processors and memory, the system can be divided into a number 

of sub-complexes. A sub-complex is allocated processors and memory, possibly 

from different hypernodes. Each resource can only be allocated to at most one 

sub-complex, and every user process is executed within one sub-complex, i.e. it 

can only use the resources which were allocated to that sub-complex. 

A process consists of one or more tasks, which may be executing multiple 

threads. A task is executed on one hypernode; all threads belonging to this task 

are run on the same hypernode. 

5.7.2 Branching Transaction System Architecture on a Con-

vex Exemplar 

It is not the purpose of this section to describe an optimal configuration of a Convex 

Exemplar for branching transactions, but to demonstrate how the elements of a 

BT architecture can be related to the concepts of the system software architecture 

of the Exemplar. 

For the purpose of running a BT DBMS, the resources of a Convex Exemplar 

could be divided into the following three sub-complexes (Figure 5-15): 

CSN Sub-Complex: runs a transaction coordinator process and a load control 

manager process and handles all communication with the user; 

Distributed Lock Management Sub-Complex: runs the concuri'ency control 

manager process, which consists of four tasks, one responsible for each hy-

pernode; 

General TP Sub-Complex: contains processes for transaction management, re-

covery management, version management and disk management; 



Chapter 5. System Architecture .130 

r 

ON Sub- 
Complex 

Distributed Lock 
Management 
Sub-Complex 

General TP 
Sub-Complex 

Hypornodo I 
	

Hypornodo 2 	Hypomodo 3 	Hypomodo 4 

Figure 5-15: BT Configuration of Convex Exemplar 

The separation of the resources for lock management and general transaction 

processing should always allow us to maintain a quick response to lock requests, 

whether or not the system is heavily loaded at the time of the request. Since 

the lock management sub-task is spread over more than one hypernode, we are 

obviously assuming a distributed approach in this example; another measure to 

achieve quick lock request responses. 

The system may run one global transaction manager process which is divided 

into three tasks (one for each general TP node), or one transaction manager pro-

cess at each general TP node. In either case, BTCs are executed as threads within 

the TM. The transaction manager may maintain a pool of threads to reduce the 

overhead of creating and destroying BTCs, and only create new ones if neces-

sary. BTCs are automatically scheduled by the operating system on any of the 

local CPUs which are allocated to the general TP sub-complex, and no separate 

scheduling mechanism needs to be implemented by the BT DBMS. If, however, it 

is necessary to take some control of scheduling of BTCs - for example, to imple-

ment a particular real-time scheduling policy - one can do so by setting priorities 

of threads as needed. 

The BT transaction coordinator runs as a user process in the CSN sub-complex. 
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The load control manager could be part of this process or a separate one. Also, the 

recovery managers, version managers and disk managers execute as user processes. 

Although SPP-UX provides support for a distributed file system and maintains 

cache coherence across its file servers, a disk manager of a BT system will need to 

implement its own disk access, since the cache coherence protocol for branching 

transactions (as described above) is different from the one supported by SPP-UX. 

The implementation of communication services is largely dependent on which 

programming model one would adapt; the Exemplar provides support for several 

levels of memory sharing and/or message passing communication. 

Figure 5-16 describes the layer model for a branching transaction system on a 

Convex Exemplar configuration as shown in Figure 5-15. The model is in principle 

- the example here uses 4 instead of 3 nodes - identical to the one shown in 

Figure 5-12, except for concurrency control management. 

In the previous case (Figure 5-12) a centralised concurrency control manager 

was used, which was located at the CSN. To avoid some of the problems associated 

with centralised concurrency control, the CCM has been distributed across all 

nodes in this example. Whenever a BTC needs to make a lock request, it submits 

it to its local CCM. If the local CCM is not responsible for that particular data 

item, it forwards the request to one of the other CCMs in the system. Although 

the requesting BTC is located on the same hypernode as its local CCM, they do 

not compete for resources, since they are part of different sub-complexes (each 

with its own pool of resources). 
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Layer Model for Branching Transaction System on a Convex Exemplar 
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Chapter 6 

Correctness of BT Schedulers 

6.1 Introduction 

6.1.1 Transactions and Serializability 

While performance is an important issue for any database system, a certain delay 

in transaction response time is acceptable. Except for real-time applications, a 

temporary performance drop of the database can often be tolerated. Not accept-

able, however, would be the loss of consistency in the database and wrong trans-

action results due to an incorrect scheduler mechanism. For any new transaction 

model and concurrency control algorithm it is, therefore, necessary to show that 

no concurrent executions of multiple transactions are allowed which would either 

leave the database inconsistent, or result in a transaction seeing the database in 

a, possibly temporary, inconsistent state. 

To prove the correctness of branching transactions we considered various exist-

ing methods for reasoning about transactions. Although all of them are based on 

the idea of serializability (a detailed discussion of serializability will follow below), 

they differ in notation, complexity, power, and the proof methods they apply. The 

most widely used method is traditional serializability theory, as described in Bern-

stein et al. [10]. Many algorithms have been proved using this approach, including 

133 
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multi-version concurrency control. Traditional serializability, however, does not 

allow one to reason about transactions with internal structure, such as nested 

transactions and branching transactions. An alternative method is described by 

Lynch et al. [59]. Based on their notion of I/O automata, they have proved the 

correctness of a wide variety of algorithms. Their model is very powerful and al-

lows reasoning about multi-version algorithms as well as transactions with internal 

structure. The disadvantage of this method is its relative complexity compared 

to traditional serializability. At this time, it also is not as widely used as the 

traditional approach. A second alternative is the ACTA framework [26]. ACTA 

allows one to reason about transactions with internal structure and is less complex 

to work with than the I/O automata model. It has become increasingly popular 

in recent years. Although the authors of ACTA have shown how one can model 

multiple versions of data, at the time of this writing no explicit work has been 

done on proving correctness of multi-version concurrency control algorithms'. 

We decided to adopt traditional serializability theory and make the necessary 

extensions to deal with the internal structure of branching transactions. There 

were two reasons for this: 1) this would allow us to draw on the existing work of 

correctness of multi-version concurrency control, and 2) the proofs presented in 

this dissertation are accessible to a wider audience. It should be noted, however, 

that both the I/O automata model and ACTA, could have been used to reason 

about branching transactions. 

6,1.2 Partially Ordered Sets 

Throughout this chapter we will use the mathematical notation of a partially 

ordered set (poset). We found that the definitions of posets in database texts 

[10,59,71] differ somewhat from those in mathematics texts [46,83]. Since proofs 

'This was confirmed by direct communication with one of the ACTA developers, Dr. 

K. Ramamritham, 
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presented in this dissertation are based on the work by Bernstein et al. [10], we 

will follow their definition of a poset: 

Definition 6 A relation ft is said to be a partial ordering on a set X, if and only 

if I? is an antisymmetric, irreflexive 2  and transitive binary relation on X. We call 

the ordered pair (X, R) a partially ordered set or poset, for short. 

We sometimes use Hasse diagrams to describe posets. For example, let X = 

{a, b, c} and R = {(a, b), (a, c), (b, c)}; we can then describe the poset (X, R) with 

the Hasse diagram shown in Figure 6-1. Also, we usually write aftb instead of 

(a, b) ER. 

Figure 6-1: Hasse Diagram of Poset 

Given a partially ordered set, say L = {X, <}, we say that L' = {X', <'} is 

a restriction of L on domain X' if X' c X and for all a, b E X', a <' b if and 

only if a < b. A restriction L' of L is called a prefix of L, if for each a E X', all 

predecessors of a in L (i.e. all elements b E X such that b < a) are also in X'. 

2 1n mathematics texts, the binary relation of a poset is often defined to be reflexive 

rather than irreflexive. 
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6.2 Classical Serializability Theory 

The correctness proofs presented in this chapter are based on "classical serializab-

ility theory", a theory which has its origins in work by Gray et al. [42] and Eswaran 

et al. [35]. A comprehensive treatment of it is given by Bernstein et al. [10] in 

their book Concurrency Control and Recovery in Database Systems. To keep this 

dissertation as self-contained as possible, a summary of classical serializability is 

given next. Definitions, propositions and theorems included in this summary are 

taken from Bernstein et al. For the convenience of the reader who wishes to study 

their material in more depth, we give the details of where these definitions and 

theorems appear in the book. With a few exceptions, the proofs of their theorems 

are not repeated here. The interested reader is referred to the book. 

6.2.1 Transactions and Histories 

The scheduler of a database management system tries to make efficient use of 

hardware resources, such as CPUs and disks, by interleaving the execution of 

multiple transactions. This concurrent execution of transactions may, however,. 

lead to inconsistencies in the database, due to interferences between transactions. 

It is the responsibility of the scheduler to prevent such incorrectly interleaved 

executions. 

It is assumed that a transaction, if executed in isolation, does not corrupt the 

database and produces correct results. It follows that executing multiple transac-

tions in serial order, i.e. each transaction is executed entirely before the next one 

is started, also produces correct results and the database remains consistent. To 

prove the correctness of an interleaved execution of a set of transactions, it is suffi-

cient to show that the interleaved execution is equivalent to some serial execution 

of the same transactions. This is the basic idea of serializability theory. 

The classical serializability theory model of a transaction represents a partic-

ular execution of a program by describing the Read and Write operations which 
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were executed by the transaction as well as some ordering of these operations. It 

is assumed that no transaction reads or writes an item more than once. Serial-

izability theory does not depend on this assumption, but it keeps the notation 

simpler. In addition to Reads and Writes, Commit and Abort operations are used 

to specify whether a transaction committed or aborted. For each Read and Write 

operation, the name, but not the value, of the data item involved is given. In 

addition, various other aspects of the execution, such as the initial state of the 

database and assignments and conditional statements, are not specified. The ana-

lysis of a scheduler must be independent of these so-called uninterpreted features, 

i.e. it must hold for all possible initial states of the database and for all possible 

executions of a program. Formally, a transaction is defined as follows: 

Definition 7 A transaction T is a partially ordered set (OP, <i), where 

OP1 c {r1[x], w1 [x] I x is a data item} U {a 1 , cj}; 

ajEOP1 iffej$OPj; 

9. if t is ci or a1  (which ever is in OF1), for any other operation p E 0P1, 

P <j t; 

4. if rj[x],wj [x] E OF, then either r1 [x] <, w1[x] or w€ [x] <j  r1[x]. 

(Bernstein et at [10], page 27.) 

Condition (1) describes the type of operations which can be executed by a 

transaction. Condition (2) says that a transaction either commits or aborts, but 

not both. Condition (3) requires that the Abort or Commit operation (whichever 

is in OF1 ) is the last operation of a transaction. Condition (4) says that if a 

transaction reads as well as writes a data item, then these two operations have to 

be ordered in some way. 

Note that operations c1 and a1  model the actual event of transaction commits 

and aborts, respectively. This is not to be confused with commit and abort state- 

ments in the program of which the transaction is a particular execution. Although 
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an abort statement will always lead to the actual abort of a transaction, the exe-

cution of a commit statement may trigger a transaction abort instead of a commit; 

e.g. the certification of a transaction in an optimistic concurrency control environ-

ment may fail or a system failure may prevent a server from being able to commit 

a transaction. Similarly, r[x] and wjx] describe the events of reading from and 

writing to the database. Again, the statements in a program which cause a read 

or write attempt may actually lead to transaction aborts; the corresponding lock 

request of a transaction may precipitate a deadlock which needs to be resolved via 

a transaction abort. 

Two transactions potentially interfere with each other through Read and Write 

operations on shared data items; Read operations do not interfere with each other. 

Hence, if two transactions access the same data item, and at least one writes the 

item, then an order on these two operations must be specified in the corresponding 

history; two such operations are said to conflict. Furthermore, any ordering on 

operations specified by a transaction must also hold in a history which involves 

that transaction. 

Definition $ Let T = {T 1 , T2 ,. . . , T,j be a set of transactions. A complete 

history H over T is a partially ordered set (OPH, <H), where 

H=UL, OF1, 

<H ç U 1  <, 

for any two conflicting operations p, q E OPH, either p <H q or q <H p. 

(Bernstein et at. [10], page 29,) 

Condition (1) requires that all operations executed by transactions T 1 ,. . . ,T, 

are included in the history, and that no other operations are involved. Condition 

(2) says that any ordering stipulated by a transaction T1  is also honoured by the 

history. Condition (3) requires that some ordering is imposed on any pair of 

conflicting operations in the history. 
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A complete history models the execution of a set of transactions which all 

either committed or aborted. A transaction which has done neither yet is said to 

be active. A history which involves active transactions is simply referred to as a 

history, instead of a complete history, and is simply a prefix (as defined in Section 

6.1.2) of a complete history. Histories which are not complete can be used to model 

failure situations. Given a history H, C(H) refers to the committed projection of 

H. The committed projection of a history is obtained by deleting all operations 

from the history which do not belong to transactions which have committed in H. 

Clearly, for any H, C(H) is a complete history over the committed transactions 

in H. 

We illustrate the definitions of transactions and histories with the following 

example. The three transactions used are the same as in Section 3.3. Note that 

although these transactions are actually described as total orders, this is not a 

requirement for the definition of a transaction. 

Example 8 Given the following three transactions, Figure 6-2 shows a possible 

history of an interleaved execution of them. Note that the diagram for the history 

does not show orderings (arrows in the diagram) which follow by transitivity. For 

example, although the definition of a history requires an ordering on all conflicting 

operations, their is no arrow from r2 [u] to ws [u]. It has not been drawn since it 

follows by transitivity from r 2 [u] -* W2[U] -4 r3 [u] -~ w3 [u]. 

T: ri [z] 	r i [x] 	ri [y] 	ri ft' 	w j [t] 	ri [m]--- ri[n] 	w j [n} 

7'2: w2 [x] -* r2 [z] -* r2 [u] -* W2[U] -~ c2  

723 : w3 [y] -.+ r3 [l] -* r3 [k] -+ W3[k] -* r3 [u] -* w 3 [u] -* r3 [p] -* c3  

6.2.2 Serializable Histories 

As mentioned earlier, an interleaved execution of transactions is correct if its 

results and effects on the database are the same as some serial execution of the 

same transactions. The equivalence of two histories is defined as follows. 
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ri [z] -.-ri [x] .-.-ri [y] -.-ri [t] -.-wi [t] -.-ri [m] -.-ri [n] -.-wi [n] —c 1  

/ 
w2[xIi-.-r2[z] -.-r2[u] -W2[U]-'-c2 

/ 
w3 [y] —r 3 [l] -t.-r3 [k] -o-w 3 [7_] -.-r3 [u] -.-w3 [u] -r3[p] --c3  

Figure 6-2: A History 

Definition 9 Two histories H and H' are equivalent (s), if 

they are defined over the same set of transactions and have the same opera-

tions; and 

they order conflicting operations of non-aborted transactions in the same 

way; that is for any conflicting operations pi and qj belonging to transactions 

Ti and T (respectively) where ai, aj 0 H, if pi <H qj, then pi  <H' qj. 

(Bernstein et at [10], page 30.) 

A complete history H is serial, if the operations of transactions in that history 

are not interleaved, i.e. if any operation of transaction Ti  precedes any operation 

of transaction Tj, then all operations of Ti precede all operations of T. In such a 

serial history each transaction is executed entirely before the next transaction is 

started. 

A partially executed transaction (an active transaction) may leave the database 

temporarily in an inconsistent state. For this reason, it would not be acceptable to 

compare interleaved executions with serial, but incomplete, histories. Therefore, 

an interleaved history H is correct - it is said to be serializable (SR) - if its 

committed projection, C(H), is equivalent to some serial history H. of the set of 

transactions that committed in C(H). 
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6.2,3 Serializability Theorem 

To test whether a history H is serializable, a serialization graph, denoted by 

SC(H), is used. Given history H, the nodes of SC(H) are all transactions which 

committed in H. There is an edge between two nodes T1  and 7 j , if El pi E 0P1, 

qj E OPj and P1  and qj are conflicting operations. If m <H qj, then there is an 

edge T1 -* Tj , otherwise Tj - Ti . The serialization graph for the history shown in 

Figure 6-2 is given in Figure 6-3. 

Figure 6-3: Serialization Graph 

Theorem 1 (The Serializability Theorem) A history H is serializable if SC(H) 

is acyclic. (Bernstein et at [10], page 88) 

Proof Outline: (if) Let {T 1 ,. . . , T,,} be the set of committed transactions in 

H. Since SG(H) is acyclic it may he topologically sorted into T 1 , .... T1 (a 

permutation of T1 , . . . , Tm ). One can show that the serial history H5  = -+ 

Ti m  is equivalent to C(H). In short, the order of any pair of conflicting 

operations in C(H) is maintained in 11s,  because of the corresponding edges in 

SG(H) and the fact that the topological sort maintains the order on transactions 

imposed by these conflicts. Since C(H) Hg, H is serializable. 

(only if) Assuming H is serializable, if there was a cycle in SG(H) it would also 

imply a cycle in any equivalent serial history H', which of course is not possible 

by the definition of a serial history, and hence, there can be no cycle in SG(H), if 

H is serializable. 

This is only the outline of the proof given in Bernstein et al. [10] (page 33). 

For more details, the reader is referred there. 0 

Because they are based on the concept of conflicting operations, the definitions 

of equivalence and serializability described above are usually referred to as conflict 
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equivalence and conflict serializability. There exist alternative definitions, view 

equivalence and view serializability, but we will not discuss them in this disserta-

tion. Although view serializability is less restrictive than conflict serializability, 

i.e. the set of histories allowed under conflict serializability is a proper subset of 

the set of histories allowed under view serializability, algorithms based on it are 

of little practical value since testing whether a history is view serializable is an 

NP-complete problem [71]. 

A similar argument applies to multi-version histories which are described in the 

following sections. Papadimitriou [71] differentiates between multi-version serial-

izability based on view serializability and conflict multi-version serializability. As 

before, the set of schedules accepted by the latter is a proper subset of the former, 

but there exist efficient algorithms to test for it; testing whether a history is multi-

version serializable (based on view serializability) is an NP-complete problem. 

Bernstein et al. [10]  only describe a conflict based version of multi-version 

concurrency control. Our work on branching transactions in based on their notion 

of multi-version histories. The following sections, therefore, are again based on 

Bernstein et al. [10]. 

6.2.4 Multi-version Histories 

As was discussed in previous chapters, in a multi-version concurrency control al-

gorithm, every Write operation of a transaction creates a new version of a data 

item. When a transaction wants to read a data item, the scheduler must decide 

which of the currently existing versions of the requested item should be read. To 

reason about the interleaved execution of transactions in a multi-version environ-

ment, a multi-version (MV) history is used. From now on we refer to histories 

described in previous sections as single version histories to distinguish them from 

MV histories. The mapping of single-version data item operations, which are sent 

by transactions to the scheduler (transactions are not aware of the existence of 

multiple versions), to the appropriate multi-version operations, which are executed 
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by the scheduler, is captured in a mapping function h. h maps each w[x] into 

w[x1], each r[x] into r[x]  for some j, each c1 into cj, and each a i  into a. 

Definition 10 A complete multi-version (MV) history H over a set of 

transactions T = {T 1 , T2 ,. . , T,} and a given translation function h is a partially 

ordered set (OPH, <H), where 

OPH = h(Ut1  0P1 ); 

for each Ti  and all operations pj,qj E OP, if pi <i qi  then h(p) <H h(q1 ); 

if h(r1 [x]) = r[x1], then w[x 4] <H r3 [x]; 

if w1[x] <i r1 [x}, then h(r[x]) = r[x]; and 

if h(r1 [x]) = r[x], i j and ci E OPH, then ci  <H c. 

Condition (1) says that every single-version operation submitted by a trans-

action is translated into the appropriate multi-version operation. Condition (2) 

states that any ordering described by a transaction is also observed in the MV his-

tory. Condition (3) requires that a version of an item has to be produced before it 

can be read. Condition (4) says that if a transaction has written a particular data 

item before it reads it, it must read the version of the item it has written. The 

last condition specifies that a transaction can only commit if all those transactions 

which have written versions of data items read by this transaction have committed 

first. A history which satisfies condition (4) is said to preserve reflexive reads-from 

relationships. A history is recoverable, if it satisfies condition (5). 

A MV history H is a prefix of a complete MV history. As for one-version 

(IV) histories, the committed projection C(H) of a MV history can be obtained 

by removing all operations from the history which do not belong to committed 

transactions in H. Two MV operations conflict if they access the same version 

of a data item, and one is a Write operation. The only possible kind of conflict 

is w[x] <H r[x]. There are no conflicts between Write operations (since they 
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always operate on different versions), and r[x1] <H w[x1] is not possible, because 

of condition (3) of Definition 10, 

Two MV histories over a set of transactions are equivalent, if the histories have 

the same MV operations . If there is a bijective function - such as the mapping 

function h described earlier - from the operations of a 1V history (H1) to the 

operations of a MV history (HMV), and if both histories have the same reads-from 

relationships, then the two histories are equivalent: Hiv HMV (MV history 

equivalence in Bernstein et al. [10}, Pp.  148-149). 

Serialization graphs of MV histories are similar to those of IV histories. The 

nodes consist of all transactions in the committed projection of the history (C(HMV)). 

There is an edge Ti  -~ T (i j4 j), if for some x, Tj reads from T, i.e. r[x1 ] is an 

operation of C(HMV). 

Proposition 2 Let H and H' be MV histories. If H 	H', then SG(H) = 

SG(H'). (Bernstein et al. [10], page 149) 

6.2.5 One Copy Serializability 

A complete MV history is serial if the operations of transactions in that history are 

not interleaved. That is, for any two transactions, T and 7, if any operation of T 

precedes any operation of T, then all operations of T precede all operations of T,. 

A serial MV history may not be equivalent to any serial 1V history. For example, 

assume that TI1 , T/'2  and I'3 are transactions in a serial MV history (HMV), that 

TI1  -* TI2  —+ TI3 , and that wi [x jJ, wi [y1], r2 [y1 ], w 2 [x 2], w2 [z2], ra [x i ] and r3 [z2 ] are 
operations in HMV. There can be no equivalent serial 1V history to HMV, since 

TI2  would have to be ordered after TI 1  (due to the reads-from relationship on item 

y), and TI3  would have to be ordered after TI 2  (due to the reads-from relationship 

on item z). In this case, however, TI3  could not have read the version of z written 

by TI , since TI2  has already overwritten it. 

The subset of serial MV histories for which there exists an equivalent serial 1V 

history are said to be one-copy serial or 1-serial (Definition 11). An MV history is 
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one-copy serializable (1SR), if its committed projection is equivalent to a 1-serial 

MV history. 

Definition 11 A serial MV history HMV is one-copy serial if for all i, j and 

x, if T reads x from Tj, then i = j, or Tj is the last transaction preceding Ti  that 

writes into any version of x. (Bernstein et al. [10], page 150) 

The relationship between MV histories and 1V histories described in Theorem 

2 is the basis for the 1-Serializability Theorem described next. 

Theorem 2 Let HMV be an MV history over a set of transactions T. C(HMV) 

is equivalent to a serial, IV history over T, if HMV is 1511 (Bernstein et at [10], 

page 150). 

6.2.6 1-Serializability Theorem 

Given Theorem 2, we know that a scheduler that applies a multi-version concur-

rency control algorithm is correct if it only allows MV histories which are 1SR. 

To test whether a MV history HMV is 1SR, a multi-version serialization graph is 

used. 

Given a multi-version history HMV and a data item x, the version order <<i, 

describes a total ordering of versions of x in HMV. A version order << for HMV is 

the union of the version orders of all data items. 

Definition 12 Given an MV history HMV and a version order <<, the multi-

version serialization graph for HMV, MVSG(HMV, <<) is SG(HMV) with 

the following version order edges added: for each rk[x] and w[x] in C(HMV), 

where i, j and lv are distinct, if xi << xj then include T -* I, otherwise include 

73,, -+ T. Note that there is no version order edge if j = It. (Bernstein et al. [10], 

page 152) 

Figure 6-4 shows a possible multi-version history for the three transactions 

of Example 8. The serialization graph for this history is T 3  -* 112 -+ T1 . Since 
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there are no version order edges to be added, its multi-version serialization graph 

is identical to the serialization graph. 

To demonstrate the use of version order edges, let us assume that T1  performs 

one more operation, w i [u i ], just before it commits; the last three operations ofT 1  

are now wi [n i} -+ w i [ui] -+ c1 . For a version order that contains uicC<u3 the edge 

T1  -* 773 would have to be added to the corresponding multi-version serialization 

graph, otherwise 7'2 -* T1  should be added. 

ri [zo] -'-r1  [x 2 } -.- ri [yo] -.-r j [to] -.-wi [t i ] -.-ri [mo] -.-ri [no] -.-wj [ni] --c1  

I 
W2[X2] -.-r2 [zo] -..-r2 [u3] -*- w 2 [u2 ] — c2  

W3[Y3] -.-r3 [1o] -.-r3 [ko] -c--w3 [/c3] -r-ra [uo] -.-w3 [u3] -r.-ra [po] —c3  

Figure 6-4: Multi-Version History 

A multi-version serialization graph describes dependencies between transac-

tions due to conflicting operations as well as dependencies due to orderings of 

versions in a multi-version system. It can be shown (Theorem 3) that there exists 

a version order for a particular multi-version history, such that the multi-version 

serialization graph for that history and order is acyclic, if and only if the history 

is 1SR. 

Theorem 3 An MV history HMV is ISR if there exists a version order << such 

that MVSC(HMV, <<) is acyclic. (Bernstein et al. [10], page 152) 

Theorem 3 is central to the proofs of correctness for branching transaction 

schedulers. Using this theorem, we will show that the committed projections of 

histories produced by branching transaction schedulers are always 1SR, and hence 

correct. 

Classical serializability, as described in this section, is extended for branching 

transactions next. 
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6.3 Serializability of Branching Transactions 

As explained above, transactions in classical serializability theory are modelled as 

flat structures, i.e. they are described as sets of operations with some ordering 

defined on them. To be able to reason about the correctness of branching transac-

tions, however, we need to add some notion of internal structure to a transaction; 

we must be able to model the relationships between a branching transaction and 

its components, and the interaction between different branching transactions and 

their components. 

In this section, therefore, we extend the concepts of transactions and histor-

ies, as defined in classical serializability theory, to incorporate the additional in-

ternal structure of branching transactions. First, a general framework of agents 

and basic agents is presented. This framework allows us to work out some gen-

eral concepts without the need to discuss details of branching transactions. Al-

though the intended association between agents/basic agents and branching trans-

actions/branching transaction components should be obvious (it will be discussed 

in detail later in this section), the framework is meant to be more general. In par-

ticular, it may also prove useful for an extension of classical serializability theory 

which can deal with nested transactions [27,63,64,76] 3 
 . After the introduction of 

the agent framework, we formally define branching transactions and their histories. 

6.3.1 Basic Agents, Agents and Agent Histories 

The concept of agents has primarily been introduced to provide a framework within 

which we can extend the work of Bernstein et al. [lO} for branching transactions. 

Introducing some general definitions now keeps subsequent definitions of branching 

transactions simpler. 

3 This extension is, however, beyond the scope of this dissertation, and is not discussed 

any further here. 
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As was the case with "classical" transactions, the model of agents and basic 

agents is merely used to facilitate a retrospective analysis of the correctness of 

a scheduler. It is not used in an operational sense to describe the execution of 

agents/basic agents. Furthermore, it is a theoretic framework and should not be 

confused with issues in implementing a system such as branching transactions. 

An agent A 1  is an entity which performs operations. For a given system, the 

kind of operations which can be executed by an agent must be defined. An agent 

A1 is associated with one or more basic agents A 1 , which execute operations on 

behalf of A 1 . An operation is a triple (p,i,j), where p denotes the operation type, 

such as Read or Write, and i and j identify the basic agent (A 1 ) which executed 

it. 

A basic agent must be created before it is allowed to execute any operation. 

One basic agent creates another by executing a branch-operation: b(k,1), where 

Ic and 1 refer to the newly created basic agent Ak,. Hence, the triple (b(k, 1), i,j) 

- from now on written as b1(k, 1) - indicates that A ij  created Ak,. We use 

the notation creator(k, 1) to denote the second subscript of the basic agent which 

created Aki, i.e. if b1 (k, 1) was executed to create Ak,, then creator(k, 1) = j. 

Of course, unless we have at least one basic component to start with, no opera-

tions will ever be executed. We use A 00  to denote this special basic agent. Its only 

task is to create new agents A 1  by creating their first basic agent A 11 ; we allow no 

other basic agent to do that. It follows that for every A1 1 , creator(i, 1) = 0. A 00  

exists by definition and does not have to be created. Basic agents, other than A 00 , 

are only allowed to create new basic agents which are associated with the same 

agent, i.e. have the same first index. 

Depending on the system we would like to model, some operations may have to 

precede others. For example, as mentioned above, a basic agent must be created 

before it can execute any operation (with the exception of A 00). Such precedence 

relationships are described in the form of partial orderings on the operations of an 

agent. Formally, we define basic agents and agents as follows: 
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Definition 13 Let F denote the type of operations which are allowed in our sys-

tem. A basic agent Aij is a partially ordered set (OF1 , 	where 

• OPij c {(p,i,j) I p e P} (These are the operations the basic agent may 

consist of) 

• <j is a partial ordering on OP11  

Definition 14 Let BA 1  = {A11 1 , A 112 , A11 3 ,..., A 11 } be a set of basic agents with 

first subscript i. We define an agent A1 over the set of basic agents BA 1  to be 

the partially ordered set (OF1 , <1), where 

• OF1=Lj l OPIlk : 

the set of operations of A1 is the union of the sets of operations of its basic 

agents, and 

• <1= Ui 

<Ilk 	U 

{(blaji,jk),(p,i,jk)) I (p,i,j) E OFlik  Ajk 54 1 Ax 0 kA 

bjjji,jk) € 0P112 } 

): 

any ordering on the execution of operations observed by its basic agents is 

also observed by the agent, and unless basic agent A11 has been created by 

A 00  - for any agent A 1  this initial basic agent is A11  - any of its operations 

must be preceded by its creation, 

and the following conditions must hold: 

every basic agent is uniquely identified by its indices: 

let A 11  and Alk be two different basic agents of A 1, then j k. 

every basic agent is only created once: 

let P1 = b11 1 1  (i 1 , k 1 ) and P2 = b1232  (i 2 , /t2). If i 1  = i2  and It1  = k2, then 

P1 = P 
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9. all basic agents, other than A®, can only create new basic agents which are 

associated with the same agent: 

ifb1(k,l)EOP1 and i74 0, then i=lc. 

To describe the hierarchy of basic agents within an agent, we use the notion of 

an agent tree. Such a tree reflects the substructure of an agent, i.e. which basic 

agents were created by which other basic agents. Formally we define an agent tree 

as follows: 

Definition 15 An agent tree AG 1  for agent A 1  is a rooted tree [V, E, r], where 

. V is the set of basic agents Aij which are associated with agent A 1 : 

V = {A 1 } U jAik  I bj(i, Ic) E OF1, for some j}, 

. E is the set of edges between basic agents. There is an edge from A ij  to Alk, 

if and only if A ij  created Alk: 

E = {(A1, Alk) I b1(i, Ic) E 0P1}, and 

• the root r is basic agent A11  

Example 9 Let A1 be an agent, such that 

• OP1 = {b 11 (i, 2), b11 (i, 3), b13 (i, 4)}, and 

• <1= {(b 11 (i, 3), b13 (i, 4))}. 

The agent graph AG1  is shown in Figure 6-5. 

A1 1  

i3 

Figure 6-5: An Agent Graph 

We draw the nodes of an agent graph as rectangles instead of circles to em- 

phasise the difference between Hasse diagrams describing the order of operations 
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in an agent and an agent graph, which describes the basic agent hierarchy within 

an agent. 

Definition 16 Basic agent Aij is a proper ancestor of basic agent A1 ,, if and 

only if there exists a path of length one or more from A ij  to A,, in agent graph 

AC. We use ane(i, lv) to denote the set of proper ancestors of basic agent Alk. 

We use anc(i,k) = ancP (i,k)U{AIk} to denote the set of ancestors of basic agent 

A 1 ,,. 

Definition 17 Basic agent A 1 ,, is a proper descendant of basic agent A1, if 

and only if there exists a path of length one or more from Ajj to A 1 ,, in agent graph 

AC1. We use desc(i,j) to denote the set of proper descendants of basic agent A1 . 

We use desc(i,j) = desc(i,j) U {A 1 } to denote the set of descendants of basic 

agent A 1 ,,. 

We now extend our model of agents to deal with the interleaved execution 

of multiple agents by a scheduler. As we have seen in the case of multi-version 

histories (Definition 10), an operation submitted to a scheduler may have to be 

mapped to some other appropriate operation by the scheduler. In this general 

framework we are not interested in specifying a particular mapping, as the actual 

mapping will be dependent on the details of the system that needs to be modelled. 

We are establishing the correctness of a family of schedulers for which some such 

mapping exists. 

Also system-dependent is the notion of conflicting operations. We say that two 

operations conflict, if the order in which they are executed has an effect on the 

results of the schedule. If two operations don't conflict, then the final state of the 

system and the results obtained by agents are independent of the order in which 

these two operations are executed. 

The agent history of a set of agents describes the interleaved execution of the 

associated basic agents in terms of operations involved and some partial ordering 

of these operations. Formally, we define an agent history as follows: 
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Definition 18 Let h be a mapping function for a scheduler and Let A = {A 0 } U 

{ Ai l , A 2
, 
... , A} be a set of agents. Given a mapping function h, the agent 

history H is a partially ordered set (OPH, <H), where 

• OPH = 

The operations in history H involve exactly the operations of agents in A. 

S <HP U 1  <i 

All operation orderings stipulated by agents in A are observed by the history. 

• for any two conflicting operations p, q E OPH , either p <H q or q <H p 

Any pair of conflicting operations must be ordered in H. 

Based on this framework of agents, a formal definition of branching transactions 

is given next. 

6.3.2 Formal Model of Branching Transactions 

As was the case for the definition of "classical" transactions (Definition 7), the 

formal definition of a branching transaction does not have to model every observ-

able aspect of the execution of a branching transaction. We are only interested in 

information which is used by a BT scheduler to guarantee serializable schedules. 

Classical serializability describes a particular execution of a transaction in terms 

of the Read and Write operations it performed on the database, and whether the 

transaction successfully committed or aborted. Similarly, we use the definition 

of a branching transaction to describe the Read and Write operations which were 

executed by its components and whether these components aborted or committed. 

In addition, we use Branch operations to capture the dynamic creation and ter-

mination of branching transaction components. Table 6-1 summarises the types 

of operations which can be executed by a branching transaction component, or 

which can be associated with a branching transaction component by the system. 

Read, Write and Branch operations have a data item as a parameter. We 

model a database as a finite set of data items; we let DB denote this set. In 
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Operation Type Explanation 

Read: r[x] read data item x 

Write: w[x] write data item x 

Commit: c commit branching transaction component 

Abort: a abort branching transaction component 

Branch: b(k, I, x) create new branching transaction component BTCkI, 

because of data conflict on data item x 

Table 6-1: Branching Transactions Operation Types 

general, we us the letter x when referring to a data item. If we have to distinguish 

between multiple data items, we use subscripts: x 1 , x 2 , etc-' 

A BT operation describes the execution of some type of BT operation by a 

branching transaction component, and is denoted by a triple (p,i,j), where p 

is one of the. BT operation types listed in Table 6-1, and i and j identify the 

BT component which executed it. For better readability we use the notation 

summarised in Table 6-2 instead of triples. 

Operation Notation 

(r[x],i,j) rij 

(w[xJ,i,j) wj[x} 

(c,i,j) cij 

(a,i,j) aij 

(b(k,l,x),i,j) bjj(Ic,l,x) 

Table 6-2: BT Operations Notation 

4This is different from the notation we used earlier, where x 1 , x 2 , etc. was used to 

describe different versions of item x. In our new notation, different versions of item Xd 

will be denoted as Xdj i j,, Xd,i3j, etc. This will be described in more detail later in this 

chapter. 
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Given the kind of operations which can be executed in a branching transaction 

system, we can now define branching transactions and their components in terms 

of basic agents and agents. A branching transaction component is a particular 

kind of basic agent, and a branching transaction is a particular kind of agent. 

Each branching transaction consists of as many branches as there are leaf nodes 

in its agent tree. Each path from the root of the tree to a leaf node describes a 

branch, i.e. a branch consists of the set of basic transaction components along one 

such path. Formally, we define branching transactions and their components as 

follows: 

Definition 19 A branching transaction component BTCij  is a basic agent 

(OP, 	where 

I. OPjj C rij wJx] I x E DB} U 

bij lv, x) I lv > 1 A x E DB} U 

{aij, c 1 } 

2. <j is a partial ordering on OPjj 

Definition 20 Let BC = {BTC 1 , BTC 2 , BTC 3 ,... , BTC,} be a set of branch-

ing transaction components. We define a branching transaction BT1 to be the 

agent (OP, <) over BC, with the following additional conditions: 

. At most one component of a branching transaction executes a Commit: 

if ca E OF and cp E OP, then j = lv. 

• Every component of a branching transaction executes a Branch, a Commit 

or an Abort operation (the execution of one type excludes the execution of 

the other two types): 

cjj  E OP, if for all lv, I and x: a,b(k,l,x) 0 OP; 

ajj  E OP, if for all lv, I and x: cjj , b1 (k,I, x) 0 OP; 

for some lv, I and x: bij 	E OP if c,a1j 0 OP. 

Note that more than one Branch operation may be executed by one branching 

transaction component. 
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• The Commit, Abort or Branch operations are the last operations in every 

branching transaction component: 

if t is aij or c1 , then for any other operation p E OF1, p <j t; 

if t is b 1 (i, k, x), then for any other operation p E 0P1, such that t <, p, 

p E {b 1 (i,l,y) 11 54 It and x = y}. 

The second condition implies that although there may be more than one 

Branch operation at the end of a branching transaction component, they 

must all be related to the same data item x. 

• If, along a single branch of a branching transaction, the same data item is 

read as well as written, then these two operations (Read and Write) must be 

ordered in some way: 

Let BTC jj  and BTCIk be two components in BC, such that BTCjj E anc(i, Ic) 

or BTC€k E anc(i,j). If r 1 [x] e OF and wlk[x] E OF1 , then either 

rij[XI <i wlk[x] or wi,. [x] <j rj [x]. 

In Chapter 3, we have seen that a BT scheduler maps the Read and Write 

operations submitted to it by branching transaction components to the appropriate 

version operations. We, therefore, need to specify a mapping function h for BT 

schedulers before we can give the definition of a BT history. We denote the version 

of data item x which was written by BTCij by x j , versions of xd by Xd,jj. 

r1[xkj],for some It and I if p = rjj[x] 

wij  [x1,] 	 if p = w1 [x] 

h(p) = 
	b1 (k,l,x) 	 ifp= b1 (k,l,x) 

cij 	 if p = cjj 

aij 	 if p = a1  

Our mapping function h does not exactly specify which version of an item is 

to be read by a Read operation; the It and 1 values in r1[zk1] are undefined, even 

so some constraints (for example w1[x1] <j rjk[xzm ], see Definition 22) do apply. 

Hence, h is strictly speaking not a function, but a family of functions. The details 

of the mapping of a Read differ from one BT scheduler to another. Since we want 
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our proofs to hold for all BT schedulers we are not making any assumptions about 

the details of the mapping of a Read, i.e. the proofs that follow do not depend on 

these details. 

The interleaved execution of a set of branching transactions is modelled as a 

BT history. A complete BT history is an agent history for the above mapping 

function h and the following definition of conflicting operations. 

Definition 21 Two branching transaction operations, p and q, conflict with each 

other if h(p) is a Read operation, say (r{xkjJ), reading the version of a data item 

(Xkl) which was written by h(q) (wkj[xke]), and p and q are operations of different 

transactions (i 7~ k). 

Definition 22 A complete BT history H over a set of branching transactions 

lilT = {BT 0} U {BT1 1 ,BT 2 ,...,BT} is an agent history (OPH,<H), with the 

following additional conditions: 

1. A branching transaction component can only read a data item version after 

it has been created: 

if rjj[xkl] E OPH,  then W kj[X kJ] E OPH and wkl[xk,] <H r[xk:]. 

. If a branching transaction component reads a data item which was updated 

by one of its ancestors (including itself), then the version of the item that it 

reads must be the one which the ancestor created: 

ifw 1 [x] <i rjjJxj ], and BTCjj E anc(i,k), then i = 1 and  = m. 

3. If a branching transaction commits, then all the versions of data items 

which were read by components of the committing branch must be commit-

ted versions, i.e. the transaction components which created them must have 

committed 5 : 

5We say that a branching transaction component has committed if it is part of a 

branch that has committed; a branch has committed, if its leaf node component has 

committed. 
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if r1[xkI] E OPH and i 	Ic and ETCId E desc(i,j) and Cid E OPH, then 

there must be a BTCk m  E desc(k,l) such that Ck m  E °FH and Ckm  <H Cid. 

A BT history of the execution of our three example transactions is shown in 

Figure 6-6. This history corresponds to the execution of these transactions as 

shown in Table 3-2 of Chapter 3. 

612(1,4,y) -'- r14[voo] -'-r14[tooj --w14[i14] -'-a14 

b11(1,2,x) —'-r 12 [xoo ] 

	

4001

\b12(1sy) 	r 15 [y31 ] 	ris [too] 	w15[115] 

 

	

/b13 (1,6, v) 	r16  [voo] —r16 (t oo ] 	w16 [t15] 	r1 6 [moo ] 	r16 [n0o ] 	w16 [n 1 5] 	a16 

bi,(1,3,x 	r13[w21] 

	

b13(1,7,y) 	r 1 7[y31 ] 	r17[too] 	w17[ti7] 	r 17 (moo ] 	r17 [n00 ] 	w17[n17] 	c17 

Jsi[yaiJ 	r31 [100 ] 	r3i [koo J 	w31[k3 i ] 	r3j[u21] 	w31[u31) 	r310 	c31 

w21[a21] -'-r2 1 [zoo ] -'-r,i[noo] -'- w21[n21] -'c21 

Figure 6-6: Branching Transaction History 

A BT history may be incomplete due to some failure situation, i.e. a system 

crash may leave some branching transaction components incomplete; they neither 

aborted nor branched nor committed. Condition (3) of Definition 22 ensures that 

no committed transaction can see the effects of such failed transactions. Since 

all updates of failed transactions are removed from the database by the recovery 

manager, the final state of the database is also independent of these failed trans-

actions. Hence, as was the case previously, in order to prove that a BT history is 

serializable, it is sufficient to show that its committed projection is serializable. 

Definition 23 The committed projection of BT history H = (OPH, <H) is 

obtained through the following three steps, and is çlcnoted by C(H). 

1. Delete all operations Pi,j E BTCi,j from H for which for all BTC,d E 

desc(i,j), Ci,d OPH and 

2. Delete all 	Ic) operations from H. 
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3. Map each rj,j[xkj] into r[xk], each wjj[xj,] into w[x1], and each cjj into c. 

Step (1) eliminates all operations which were not executed by those compon-

ents that are part of the committing branch of committed BT transactions. To 

determine whether a history is serializable, we do not need the information about 

which operation wasexecuted by what transaction component, but only by which 

transaction. Hence, we can delete all BT Branch operations and map all remaining 

operations oj to o (steps (2) and (3)). The latter implicitly leads to a mapping 

of data versions x.j  to x. Figure 6-7 shows the committed projection of the BT 

history given in Figure 6-6. 

ri [zo] -.-ri [x 2 ] -.-ri [y3] -.-ri [ta] -.-wi [t i ] -.-ri [mo] -'-r i [no] -.-w i [n i ] —c 1  

w 2 [x 2]-.-r2 [zo] -.-r2 [ua] -.-w2 [u2 ] —c 2  

w[y3J ra [lo] —rs [ko] w3 [k3] —r3 [uo] w3 [u3 ] rso] c3  

Figure 6-7: Committed Projection of Branching Transaction History 

To be able to reason about the correctness of a BT history we now define 

the equivalence between the committed projection of a BT history and a multi-

version history. We say that the committed projection of a BT history, C(HBT), 

is equivalent to a multi-version history, HMV, if both contain the same set of 

transactions, all reads-from relationships are the same, and all final writes to the 

database are the same. Since both create multiple versions of data items, the latter 

is trivially true if they both contain the same Write operations. To maintain the 

same reads-from relationships, it must further hold that if r[x] E °FC(HBT)  then 

r[x] E OPHMV,  and vice versa. That is, if in C(HBT) transaction Ti  reads a data 

item version created by Tj, then the same is true in HMV; and vice versa. Hence, 

we can use the following definition. 

Definition 24 Let HilT be a BT multi-version history. The committed projection 

Of HilT, denoted C(HBT), is equivalent to a multi-version history, say HMV, if 
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they have the same operations. We write C(Hwr) HMV to denote this equival-

ence. 

6.3.3 Serializability Theorem for Branching Transactions 

Theorem 2 tells us that a multi-version history is correct if it is 1SR (one-copy 

serializable). This is the case if there exists a version order for it such that the 

corresponding multi-version serialization graph is acyclic (Theorem 3). Hence, as 

long as a branching transaction scheduler only allows histories whose committed 

projections are equivalent to such correct (non-branching) MV histories, serializ-

ability is guaranteed. This gives rise to the following theorem. 

Theorem 4 (The Branching Transaction Serializability Theorem) A branching 

transaction history, say 11DT  is serializable if its committed projection is equivalent 

to a multi-version history, say HMV, for which there exists a version order, <<, 

such that MVSC(HMV, <<) is acyclic. 

Proof: Follows directly from Theorems 2 and 3. 0 

6.4 Correctness of Two-Phase Locking for Branch-

ing Transactions 

The previous chapter introduced various forms of locking algorithms for branching 

transactions. The most general of these was HBT-MV2PL, a hybrid 2-phase lock-

ing algorithm which dynamically switches between strict 2PL (single version, non-

branching), multi-version 2PL (non-branching) and BT-MV-2PL. As was pointed 

out before, we can consider these algorithms as special cases of HBT-MV2PL. 

Hence, it is sufficient to show that all schedules allowed under HBT-MV2PL are 

serializable. 
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To capture the semantics of locking, we introduce 4 more BT operations': 

• CRL 1 [x]: transaction BT acquires a certified read lock on x 1 . 

• CWL[x]: transaction BT acquires a certified write lock on x. 

• VRL[x]: transaction BT acquires a version read lock on x1. 

• VWL[x1]: transaction BT acquires a version write lock on x. 

The syntax of these operations does not follow the previously introduced "triple"-

notation of BT operations, i.e. we do not distinguish which operation was executed 

by which branching transaction component, but only by which branching trans-

action. There is no need to make a more detailed distinction at this stage; we are 

only trying to say something about the committed projection of a BT history (no 

aborted components are involved). Furthermore; to increase readability, we write 

H instead of C(H), and (OP, <) instead of (OPC(H), <c(H)). 

We are not using explicit "unlock"-operations since all algorithms apply strict 

locking, i.e. all locks are released at commit time, but not before. A Commit (ci) 

in a history, therefore, implies the release of all locks held by that transaction. 

2-Phase Locking Rules, Lock Compatibility Rules and the Overwrite 

Rule In Section 4.4.2 we introduced HBT-MV2PL properties in the form of 5 

rules. These rules are now formally described. 

Overwrite Rule 

• if w[x],rk[x] E OP (j $ k) then for any i (i,j,k distinct) such that 

w[x} E OP it follows that c1  < cj or ck < cj. 

6 x 1  here refers to the version of data item x created by B?'1. 
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If a transaction commits, it must have acquired a CRL on every item it 

read. It follows that it must have read the most recently committed versions 

of these data items. Another transaction cannot overwrite the (committed) 

versions read by the committing transaction, since it would have to acquire 

corresponding CWL, which are incompatible with the existing CRLs of the 

committing transaction, and the CRLs are not released until the transaction 

has committed. 

Write Lock Rule If w[x 1] E OP, then either 

• CWL 1 [x] < w4xJ < q (overwriting of the committed version), or 

• VWL[x] <. w4x] < CWL[x1] < c 1  (creating a new version first). 

When a transaction writes a data item, it can either overwrite the existing 

committed version, in which case it needs to acquire a certified write lock 

first, or it can create a new version of the item first and then overwrite the 

existing committed version at commit time. In the latter case it is sufficient 

to acquire a version write lock first, which is then later (during certification) 

upgraded to a certified write lock. In both cases it holds that CWL[x 1 ] < c1 . 

Read Lock Rule If r1 [x] E OP, then either 

• CRL[x] < r1[xjJ < cj (reading of a committed version, i.e. ej <, 

CRL1[x}), or 

• VRL[x] <, r1 [x] and cj <, CRL1[x] < c (reading of an uncommit-

ted version). 

If a transaction reads the committed version of a data item, it must acquire 

• certified read lock for it first. If it reads an uncommitted version it acquires 

• version read lock on that version, but the transaction which created the 

version must commit before the reading transaction can. In both cases it 

holds that CRL[x] <, cj. 
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Write/Write Lock Conflict Rule If CWL 1 [x1], CWL[x} E OP (i $ 
then either ; < CWL[x] or cj < CWL1[x 1]. 

A transaction can only acquire a certified write lock on a data item version 

if no other transaction holds a certified write lock on any version of the same 

item. In other words; no two certified write locks can exist for the same data 

item at any time. 

Read/Write Lock Conflict Rule : If CRLk[x], CWL1[x] E OP (k 54 i and 

i 7~ i), then either Ck < CWL1[x1] or Cj < CRLk[x}. 

A transaction can only obtain a certified write lock, if no other transaction 

holds a certified read lock on the same time, and vice versa, i.e. certified 

read locks and certified write locks are not compatible. 

The following proposition (Proposition 3) states that if a transaction reads a 

data item version written by another transaction, then the "writer"-transaction 

must commit before the "reader"-transaction. 

Proposition 3 If r1 [x] E OP, then cj <, C1. 

Proof: By the Read Lock Rule it holds (for both cases: committed read and 

uncommitted read) that cj <,, CRL1[x] and that CRL1[x] <, cj By transitivity, 

cj < C  C1. 0 

Proposition 4 requires that the commit of any two transactions writing the 

same data item must be ordered in some way. 

Proposition 4 If w 1 [x 1 ], w[x} E O-&, then either; < cj  or cj  < C1. 

Proof: By the Write Lock Rule we know that CWL1[x1] <, cj  and CWL[x] < 
c5. By the Write/Write Lock Conflict Rule, we know c1  <, CWL[x] or Cj <, 
CWL 1 [x 1 ] By transitivity, therefore, c1  <, ej  or cj  <, ;. 0 

Theorem 5 Every committed projection of a BT history, H, produced by a 

HBT_MV2PL scheduler is equivalent to a (non-branching) MV history HMV for 

which there exists a version order <<, such that MVSG'(HMV, <<) is acyclic. 
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Proof: Let << be a version order such that for every w[x 1], wJx] (i $ j) 
xcc<x j  if ci <, c (because of Proposition 4, <<is indeed a version order). We will 

show that all edges in MVSG(HC , <<) are in commit order, i.e. if BT - BT1  in 

MVSG(H,<<), then ci  <, c,. 

Let BIT1 —+ BT3 be in SG(HC ), then B]', must read a data item version created 

by BIT1 : r[x 1 } e OP. By Proposition 3, c1 < cj follows directly. 

Let w1[x1], wa[x], rk[x] € OP, where i,j,k are distinct. Then either x i<xj  or 

xj<<x. If xcc<xj, then the version order edge is BT —* BIT1. By the choice of our 

version order <<, ci  <, ej  follows immediately. If x1<<x1, then the added version 

order edge is BIT,, —4 BT1. In this case we must show that ck < q. Let us assume 

that this is not the case, i.e. let ci <, ck. By the Overwrite Rule, c1 < c  c follows. 

This, however, contradicts c1  <, cj as required by xj'C<x1. Hence, cj < ck cannot 

be true. By the Read/Write Lock Conflict Rule we know that either c1 <, ck or 

ck <, ci must hold. Since we have just eliminated the first case, ck <, c 1  follows, 

as desired. 

We have shown that all edges in MVSG(HC , <<) are in certification order; 

and since the certification is embedded in a history which is acyclic by definition, 

MVSG(HC ), <<) is acyclic, too. U 

setcouriterchapter6 



Chapter 7 

Performance Evaluation of 

Branching Transactions 

The concept of branching transactions has been introduced to address the issue 

of data contention in a parallel database system. A simulation study which illus-

trates this problem for the conventional, flat transaction model (using two-phase 

locking concurrency control) and which investigates various performance aspects 

of branching transactions under a number of system and workload assumptions is 

described in this chapter. 

If we were to introduce the concept of branching transactions into transaction 

management, it would influence system design in many ways, including concur-

rency control, recovery, deadlock handling, dynamic workload control and cache 

management. Indeed there are far too many aspects to include them all in a 

single performance study. The simulation study presented as part of this disser-

tation, therefore, focusses on branching transactions in a shared-memory parallel 

computer environment. Extending this work towards shared-disk and shared-

something parallel computers - this would include an analysis of branching trans-

actions using different cache coherence protocols and distributed lock management 

- is left as future work. 

We begin our discussion with a description of the simulation model and some 

comments on the implementation of the simulation program, followed by an ana- 

164 
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lysis of the data contention problem for traditional, fiat transactions. Thereafter, 

the performance of branching transactions is discussed. 

7.1 Simulation Model 

A good simulation model should be general enough to be able to capture a variety 

of system scenarios, but must also be detailed enough to be a meaningful repres-

entation of a real system; we will say more about verification and validation of 

the model and its implementation later. The simulation model used for this study 

is similar to the one described by Agrawal et al. [5]. Unlike them, however, we 

draw the model in one single diagram, rather than describing it with the help of 

two separate diagrams for the logical and physical aspects (of the same queueing 

model), respectively. Not separating the two makes it easier to understand the 

life-cycle of a transaction. Figure 7-1 shows our simulation model. The flow of 

a transaction through this model is discussed next and the parameters which de-

termine the transaction workload, the database system (including its hardware 

resources) and the workload control in operation are discussed. 

The system is modelled as a closed queueing network where transactions are 

submitted by Num Term terminals. After the completion of a transaction is re-

ported to a terminal, there is a random delay - drawn from an exponential 

distribution with mean ThinkTime - before the next transaction is started. Each 

transaction accesses between 0.5 * TrartsSize and 1.5 * TrarisSize (uniform distribu-

tion) pages'. The probability that an access to the database is a Write operation 

is WriteProb. It takes PL9eCPU CPU time to process one page. The transaction 

workload parameters are summarised in Table 7-1. 

'We assume that a page contains exactly one data item, and each item requires one 

page. 
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Figure 7-1: Basic Simulation Model 

The workload in the system can be controlled via the multi-programming level, 

i.e. only MPL transactions are allowed to be active at any time 2.  If too many 

transactions are submitted by terminals, some are queued in the MPL Queue. The 

queue is serviced in first-come-first-served order. In case a branching mechanism is 

used, static and dynamic branching control is applied. Each transaction is limited 

to a maximum of MaxBTC BTCs (static control). Branching is dynamically 

turned off if the CPU utilisation exceeds MaxCPU and is only turned on again once 

CPU utilisation drops below MirtCPU. Load control parameters are summarised 

in Table 7-2. 

2  T reduce the number of variable parameters in our simulation experiments, we keep 

the number of terminals small enough to avoid an overload of the system. Further load 

control via the MPL is, therefore, not applied; the MPL is set equal to the number of 

terminals in the system 
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Parameter Meaning 

Num Term number of terminals 

Think Time avg. think time between transactions 

TransSize avg. transaction size 

WriteProb write operation probability 

Page CPU CPU time for processing one page (item) 

Table 7-1: Transaction Workload Parameters 

Parameter 
} 

Meaning 

MPL multi-programming level 

MaxBTC maximum number of BTC per transaction 

CPUHigh upper CPU utilisation limit for 

dynamic branching control 

CPULow lower CPU utilisation limit for 

dynamic branching control 

Table 7-2: Load Control Parameters 

The size of the database is DBSize pages. Before every Read and Write access 

to the database, a BTC sends a lock request to the concurrency control manager. 

If the request is blocked, the BTC joins the Blocked Queue. It remains there until 

the lock can eventually be granted, or must be aborted. A BTC may also be 

directly aborted by the CCM (roll-back path in the diagram). If the system is in 

branching mode, a read lock request may lead to branching and new BTCs are 

created. These new BTCs have implicit read lock permission for the versions of 

items for which they were created (as described in Section 4.3). The original BTC, 

which has now been branched into several new ones, joins the Certification Queue. 

After a BTC has acquired access permission to a data item and it wants to 

read a particular page, it is determined whether the required page is already in 

main memory. There is a CacheHit probability that this is the case. If the page 

must be fetched from disk, one of NumDisks disks is randomly selected; each disk 
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is equally likely to be chosen (uniform access distribution). The BTC joins the 

I/O Queue for that disk and, once the disk is available, loads the page into main 

memory. The time it takes to transfer one page between main memory and disk 

is specified by parameter PagelO. 

Before a BTC can process a page, it must be dispatched to a CPU. There is 

one queue for all CPUs and as soon as one of NumCPU CPUs is available, the 

first BTC in CPU Queue is removed from the queue and executed by this CPU. 

It takes Pa9eCPU time units to process a page. Once there are no more items to 

be processed, a BTC joins the Certification Queue 3. 

If a BTC joins the Certification Queue because it has indeed completed all 

operations, certification is initiated immediately. A BTC which has joined the 

Certification Queue because it has branched does not start certification until one 

of its children has been certified (for more detail on the certification process see 

Chapter 4). Before it can commit (after it has been certified), a BTC must flush all 

of its updates to disk (deferred update policy). For each page that was updated the 

BTC follows the same steps as for fetching a page from disk, except that Page JO 

now represents a main memory to disk transfer, rather than the other way round. 

Once all BTCs of the committing branch of a transaction have been certified 

and their updates flushed to disk, the transaction commits and the end of this 

transaction is reported to the corresponding terminal. In other words, the com-

pletion of a transaction is only reported after all BTCs of the committing branch 

have "joined" again. In case of a non-branching transaction, there is, of course, 

only one BTC and once it has been certified and its updates have been flushed to 

disk, the transaction commits immediately (without having to wait for any other 

BTCs). 

3This "Certification Queue", as well as the "Blocking Queue", is not strictly speaking 

a single queue. The time a BTC has to wait in this "queue" depends on when other 

BTCs complete their execution and when locks become available. The queue symbol is 

used, since some form of queueing for locks is involved. 
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When a BTC has to be rolled-back, either because the concurrency control 

manager has to resolve a deadlock or some branch of a transaction becomes ob-

solete or invalid, all updates performed in main memory by this BTC need to be 

undone. Rollback activities take priority over normal transaction processing in 

order to release locks as early as possible. Hence, an aborting BTC enters the 

CPU Queue in front of all BTCs scheduled for regular processing, but is queued 

after other aborting BTCs which are already in the queue. Once the BTC has 

acquired a CPU, it performs an undo operation. It takes Undo CPU CPU time per 

one undo operation. If the aborted BTC was the last of a transaction - the entire 

transaction has now effectively been aborted - the BTC joins the RestartDelay 

Queue, where it is delayed for a random period (based on a uniform distribution 

between 0 and RestartDelay * Current Average Response Time time units). If 

there are still other active BTCs for the same transaction, the aborted BTC is 

simply discarded. Once a delayed BTC is restarted, it does not actually restart 

as the same BTC, but starts as a new initial BTC for this transaction; we do not 

really restart a BTC, but only a completely failed transaction. System parameters 

are shown in Table 7-3. 

Parameter J Meaning 

DBSize size of database in pages 

JVumCPU number of CPUs 

NurnDisks number of disks 

PagelO I/O time for one page 

Undo CPU CPU time per undo operation 

CacheHit probability of cache hit 

RestariDelay multiplier for delay period before transaction restart 

Table 7-3: System Parameters 

As in Agrawal et al. [5], we do not explicitly account for CPU overhead caused 

by concurrency control operations. In fact, we do not explicitly simulate overhead 

caused by any DBMS background processes /threads. These costs are approxim- 

ated by associating part of the CPU cost for processing a page with these over- 



Chapter 7. Performance Evaluation of Branching Transactions 	 170 

heads. Using this approach, we do take into consideration the fact that branching 

transactions may cause more system overhead than flat transactions; since the 

same page may be processed by more than one branch of a transaction, more sys-

tem overhead is simulated for a branching transaction. For more detailed discus-

sions of database operating system issues, such as system performance degradation 

due to increased multiprogramming levels (which lead to problems such as page 

thrashing due to memory shortage, and increased context switching) the interested 

readers are referred to [43]. 

The deadlock handling algorithm used in this study is Cautious Waiting [47]. 

As described in Section 4.5.3, under this policy, a BTC is aborted if it gets blocked 

by another BTC which ielongs to a transaction which has all of its own BTCs 

either blocked, aborted or branched. 

The actual input parameter values used are summarised in Table 7-4. In the 

descriptions of experiments that follow, it is assumed that the default values of 

these parameters are used, unless explicitly stated otherwise. For (non-branching) 

two-phase locking, MaxBTC, CPUHi9h and CPULow do not apply. 

For the model described above, a simulation program has been developed in 

Simula [72] using the simulation package DEMOS [14]. Implementation, validation 

and verification aspects are discussed in the following section. 
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Parameter _] Value H 
Num Term 50 [terminals] 

Think Time variable (default: 2.5) [sec] 

TrartsSize variable (default: 10) [pages] 

Writ eP rob variable (default: 0.5) 

Page CPU 10 [ms] 

MPL 50 [transactions] 

MaxBTC variable (default: 5) [BTCs] 

CPUHi9h variable (default: 100) [%] 

CPULow variable (default: 0) [%] 

DBSize 1000 [pages] 

Num CF U variable (default: 5) [CPUs] 

NumDisks 4 [disks] 

PagelO 35 [ms] 

Undo CPU 1 [ms] 

CacheHit 0.7 

RestartDelay 1 

Table 7-4: Simulation Input Parameter Values 

7.2 Simulator Implementation 

7.2.1 Extensions to DEMOS 

During the implementation of a prototype simulator, various shortcomings of the 

simulation package DEMOS were identified. For the purpose of the full simulator 
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these problems were resolved by adding extensions to DEMOS 4 . Each of these 

extensions and the reason why they were necessary are discussed next. 

Hashtables 

The programming language Simula provides explicit support for the implementa-

tion of linked lists. Linked lists are, however, rather inefficient when access to par-

ticular elements of a list - based on some key value of these elements - is needed; 

the list is searched sequentially. To avoid this problem in the simulator, two hash 

table classes were added to DEMOS: class HashEntry and class HashTable. A 

HashTable object can store any objects of classes which inherit from HashEntry; 

it supports the operations: Store, Retrieve and Delete for a given element key. 

Furthermore, it uses procedure Cardinality to return the number of elements in 

the table, and procedure Print to print all elements in the table. For the latter, 

each class stored in the table must contain its own print procedure, or else only 

the key value of each element is printed. Hashtables were used extensively in the 

implementation of the simulator, e.g. for lock tables. 

7.2.2 Asynchronous Message Passing 

Simula, as an object-oriented programming language, supports message passing 

between objects. On arrival of a message, an object invokes the appropriate 

method, and if there is a return value, it is passed back to the message sending ob-

ject immediately. In this simulator, an immediate reply is not always possible. For 

example, an access request message from a transaction object to the concurrency 

control manager object may not have an immediate reply; an access granted mes-

sage may be returned at some later time, e.g. when another transaction releases 

4 These DEMOS extensions were incorporated into the existing version of DEMOS 

by creating a new class, class ExtDemos, which inherits from class Demos and adds 

all new functionality locally. To use ExtDemos, simulation programs are now pre-fixed 

with ExtDemos instead of Demos. 
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certain locks. This kind of asynchronous message passing has no direct support 

in DEMOS. To alleviate this problem, a new class, class ExtEntity, has been 

implemented. ExtEntity inherits all features of Entity and adds asynchronous 

message passing functionality to it. 

A message sent to an extended entity (an object of class ExtEnt ity) must 

be an object of a sub-class of class Message. To send a message to an extended 

entity the PutMsg method of this entity must be invoked; the message to be sent is 

an argument of PutMsg 5 . If this extended entity is currently waiting for a message, 

it is activated after the message has been delivered. If the receiver is not waiting 

for a message, the message is queued for later retrieval. To receive a message, an 

extended entity invokes the WaitForMsg procedure. If no message is currently in 

the queue the entity suspends execution until a message arrives. If a message is in 

the queue, it is immediately retrieved and the entity continues execution without 

delay. 

A number of database management modules, e.g. the transaction manager 

and the concurrency control manager, are implemented as extended entities in the 

simulator and share the same basic structure, as shown in Figure 7-2. 

Access to Individual Statistics 

In DEMOS, classes which produce statistics, e.g. Res, Accumulate, etc., output 

these statistics in the form of a report. These reports contain various important 

values, such as mean values, maximum and minimum values and average length 

of a queue. DEMOS does not support individual access to these parameters, and 

as a consequence, it is extremely difficult to alter the form of output generated 

by simulation experiments. This in turn makes automation of further processing 

of simulation results virtually impossible. To overcome this problem, sub-classes 

of these DEMOS classes were implemented which support individual access to 

5 This implies that the sender of a message must know the reference to the receiving 

extended entity object. 
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while true do 

begin 

WaitForMsg(Msg); 

inspect Msg 

when <message type 1> 	do 	ProcessTypel(Msg) 

when <message type 2> 	do 	ProcessType2(Msg) 

when <message type n> 	do 	ProcessTypen(Msg) 

otherwise 	 ErrorHandler; 

end; 

Figure 7-2: Basic ExtEnt ity Simulation Loop 

statistics data. This is particularly helpful when simulation results need to be 

prepared for storage and further analysis in a database system (more on this 

later). 

7.2.3 Validation and Verification 

Validation of a simulation model and verification of its implementation are essen-

tial to ensure the usefulness of any simulation study. Ideally, one would like to 

validate a model against the real system of which it is an abstract representation. 

Unfortunately, there are no branching transaction systems available yet. 

Although not as effective as the comparison with a real system, other methods 

of validation and verification can be applied. The following were used in this 

study: 

Comparison with related research results: Data obtained for experiments with 

traditional transactions and strict two-phase locking were compared with 

extisting results in this area, and found to be consistent with findings by 

other researchers. 
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Input-Output Analysis: Varying the values of input parameters, relevant out-

put parameters were checked for plausibility. For example, reducing the 

number of CPUs was expected to yield a higher CPU utilisation. Such 

plausibility checks were carried out for all input/output parameters. 

Trace Analysis: Traces of message communication between major system com-

ponents were analysed for correctness. For example, by looking at the com-

munication between the concurrency control manager and the transaction 

manager one can determine if locking protocols and commit procedures were 

implemented as intended. 

7.2.4 Database Support for Simulation Study 

As mentioned earlier, it is desirable to store simulation results in a way which 

supports further analysis through other tools. All results of this study are stored 

in the object-oriented database system ObjectStore (from Object Design, Inc). 

Instead of writing simulation results directly into the database, however, the sim-

ulator stores all data in normal Unix text files first. A separate tool is then used to 

move these data into the database. The motivation behind this two-step process 

is to keep the simulator independent of the availability of the database, i.e. even 

if the database system is unavailable, the simulator can still be executed. A sep-

arate small filter program is used to export data from the database into a format 

suitable for direct use with some graphics package. 

7.3 Simulation Results 

In the remainder of this chapter various simulation experiments and their results 

are discussed. The first part deals with the traditional, flat transaction model 

only. Data from this part are used for validation and verification of the model and 

the simulator and for comparison with branching transaction experiments. The 

second part discusses experiments and results for branching transactions. 
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Each experiment was replicated (using different random number streams) until 

a confidence level of 90% for a confidence interval of ±10% of the output variable 

was reached. Each run was executed until 2000 transactions committed, where 

statistics were reset after the first 200 transactions to reduce the initialisation 

(warmup) problem. 

7.3.1 The Data Contention Problem 

The first set of experiments was carried out to illustrate the data contention prob-

lem using the "normal", flat transaction model and strict two-phase locking con-

currency control. Data contention can be increased in several ways. In this ex-

periment contention was varied by 1) changing the percentage of Write operations 

and 2) changing the transaction workload. The latter is increased by reducing the 

time between the end of a transaction and the submission of a new transaction 

from the same terminal. 

As long as all transactions only read the database and no updates take place, 

no lock conflicts exist. In the absence of such conflicts one would expect the 

throughput of the system to increase with higher workloads, unless one of the 

hardware resources becomes a bottleneck. For this experiment the number of 

CPUs and disks, however, is large enough not to create this problem. As one 

would expect, in Figure 7-3 the highest throughput is, therefore, achieved for 0% 

Writes and the highest transaction workload. 

One can also see how the increase of Write operations negatively impacts on 

transaction throughput. Clearly, more exclusive locks lead to more lack conflicts. 

The drop of throughput is more significant for higher workloads (shorter think 

times). One would expect such behaviour since the probability of lock conflicts is 

lower if fewer transactions are in the system. 

Figure 7-4 shows average transaction response times for the same set of exper-

iments. The most obvious observation to be made here is a significant increase in 

response time with a growing number of Write operations. Although not easily 

visible in this diagram, there is also a slight increase in response time for higher 
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workloads. The dominating factor in this experiment, however, is the effect of 

lock conflicts due to the increasing number of exclusive locks needed for Write 

operations. 

The effect of such data contention on the utilisation of CPUs - 5 CPUs were 

used for these experiments - is shown in Figure 7-5. Only for high transaction 

workloads with few Write operations was the CPU utilisation high. Since disk 

I/O is also assumed not to be a bottleneck, system performance must be largely 

determined by data rather than resource contention. If this is the case, one must 

assume that adding extra CPU resources to a system which is bound by data 

contention does not significantly improve performance. 
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Figure 7-5: CPU Utilisation: 2PL 

To confirm this hypothesis, a second set of experiments was carried out. This 

time the transaction workload was kept constant (ThinicTime = 2.5 sec) and per-

formance measurements were taken for 1 to 10 CPUs in the system. Figure 7-6 

shows the average transaction throughput for these experiments. For low Write 

probabilities, a considerable throughput improvement was achieved by adding one 

or two CPUs to a system with a single CPU. In all other cases, adding more CPU 

power did not significantly improve the performance. 

A similar observation can be made for transaction response time (Figure 7-7). 

Adding one or two CPUs in a single CPU system shortens response time in case 
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Figure 7-6: Transaction Throughput: 2PL (ThinkTime=2.5sec) 

of low Write probabilities. In all other cases, adding more CPUs does not prove 

useful. 
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Figure 7-7: Transaction Response Time: 2PL (ThinkTime=2.5sec) 

The average CPU utilisation for these experiments is shown in Figure 7-8. 

Changing from a single CPU to three CPUs leads to a significant drop in CPU 

utilisation for all Write probabilities. CPU utilisation drops below 50% when 

more than 5 CPUs are used, and below 25% for 10 CPUs. Considering these 
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numbers and the fact that no significant performance improvement was achieved by 

increasing the number of CPUs beyond 5, we conclude that there is no significant 

resource contention for CPUs in systems with 5 or more CPUs. 
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Figure 7-8: CPU Utilisation: 2PL (ThinkTime=2.5sec) 

Comparison of Results with Related Work The basic conclusions drawn 

from these experiments are: 

• if data contention is high, it may become the system bottleneck; 

• in systems with high data contention, hardware resource utilisation is com-

paratively low; 

• in systems where data contention has become the system bottleneck, adding 

more hardware does not improve performance; 

These results are not new and similar conclusions have been reported by other 

researchers [5,6,21,37,48,86,90,88,89]. 
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7.3.2 Experiments and Results for Branching Transactions 

In the remainder of this chapter, we discuss the performance of branching transac-

tions. The flat transaction model using strict two-phase locking is compared with 

branching transactions using HBT-MV2PL, the concurrency control algorithm in-

troduced in Chapter 4. In particular, experiments were carried out to investigate 

the effects of increasing workloads, various Read/Write ratios of transactions, dif-

ferent numbers of CPUs and transaction size. For the branching transactions case, 

different branching control options are discussed as well. 

Transaction Workload This first experiment measured throughput and re-

sponse times for an increasing workload, where the workload was increased by 

reducing the Thinktime from 4.5 seconds to 0.5 seconds. Results are shown for 

10% and 50% Write operations. The rest of the input parameters are set to their 

default values. 

Figure 7-9 shows a clear performance advantage for HBT-MV2PL over 2PL in 

case of 50% Write operations. When only 10% of a transaction's operations were 

updates, no performance difference could be observed, except for high workloads, 

where HBT-MV2PL was again better than 2PL. The corresponding transaction 

response times are shown in Figure 7-10. 

It is not surprising that virtually no difference in performance between 2PL 

and HBT-MV2PL was found in lower workloads with 10% Write operations. Since 

90% of operations are Reads, which do not conflict with each other, there is only 

little data contention, and performance is mostly determined by the availability 

of hardware resources. The Read/Write ratio of transaction operations is obvi-

ously an important factor for the relative performance of HBT-MV2PL. The next 

experiment looks at this aspect in more detail. 

Read/Write Ratio In this experiment the workload was fixed (Think Time = 

2.5sec) and the percentage of Write operations varied from 0% to 100%, i.e. the 
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Write probability was varied from 0.0 to 1.0. Results are shown in Figures 7-11 

and 7-12. 
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Figure 7-12: Transaction Response Time: 2PL vs HBT-MV2PL 

As expected, there is no difference in performance between 2PL and HBT-

MV2PL for a Read-only environment since no data access conflicts occur. Under 
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both algorithms each Read-lock request is granted immediately; since no Write 

operations are executed, no exclusive Write-locks ever exist on any data item. 

Furthermore, no branching takes place, since no temporary, uncommitted versions 

of data items are ever created. 

As the Write probability increases, HBT-MV2PL gains a performance advant-

age over 2PL. The improvement, however, is getting less once the probability of a 

Write operation exceeds 0.5, and is entirely lost in a Write-only environment. 

To understand this behaviour it is important to point out that Write operations 

are modelled as so-called "blind writes", i.e. the item which is updated is not read 

before-hand. This means that in the Write-only case, no Reads are executed at 

all. Since branching transactions only branch on Read operations, no branching 

takes place at all for 100% Write, and hence, no improvement of performance can 

be achieved. - 

Since the biggest performance improvements are achieved for the 50/50 Read/Write 

ratio, one would also expect to find most branching activity in this area. This is 

indeed the case as can be seen from Figure 7-13. Furthermore, as one would ex-

pect, more branching takes place for higher workloads, since Read/Write conflicts 

are more likely with more transactions in the system. 
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Figure 7-13: Average Number of BTCs per Transaction 
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Number of CPUs Since branching transactions compute several alternatives 

of transactions in parallel and all but one are eventually discarded, we expected a 

significantly higher utilisation of CPUs when branching transactions are used. As 

a consequence, it was also expected that non-branching two-phase locking would 

outperform HBT-MV2PL in experiments with only one or two CPUs available in 

the system. 

To test this hypothesis, an experiment was carried out under which the num-

ber of available CPUs was varied from 1 to 10. All other parameters were fixed 

(Think Time is 2.5 seconds, WriteProb is 0.5). The results for response time and 

transaction throughput are shown in Figures 7-14 and 7-15. 

Average Transaction Throughput 

Throughput [trans/sec] 

Number of CPUs 

Figure 7-14: Transaction Throughput: 2PL vs HBT-MV2PL (Think-

Time=2.5sec, WriteProb=0.5) 

Contrary to our expectations, even when CPU resources were sparse', branch-

ing transactions achieved a performance advantage over the non-branching ap- 

6 During this set of experiments, the only branching control mechanism applied was a 

maximum of 5 BTCs per transaction, i.e. we allowed transactions to branch in spite of 

high CPU utilisation. The effect of branching control is discussed later in this chapter. 
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Average Transaction Response Time 
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Figure 7-15: Transaction Response Time: 2PL vs HBT-MV2PL (Think-

Time=2.5sec, WriteProb=0.5) 

proach. The explanation for this result lies in a wrong assumption that was made 

for the original hypothesis: under the same level of data contention, the branch-

ing transaction model leads to a significantly higher CPU utilisation due to its 

branching activities, and hence, CPU shortage is a much more severe problem 

for branching transactions. As shown in Figure 7-16, this turns out not to be the 

case, i.e. even though the CPU utilisation is somewhat lower for the non-branching 

case, the difference is not significant enough to offset the performance advantage 

of branching transactions. 

The unexpected, relatively high CPU utilisation of (non-branching) two-phase 

locking under high data contention can be explained by the choice of deadlock 

handling strategy (Cautious Waiting) used in all experiments, which is known to 

produce more transaction restarts than a wait-for-graph based approach would do. 

Transaction Size In this experiment, the effect of transaction size was con-

sidered. While keeping all other parameters fixed (Think Time is 2.5 seconds, 

Writ eP rob is 0.5) and NumCPU is 10), the average transaction size was varied 

from 6 to 16 average page accesses per transaction. As shown in Figures 7-17 and 
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Figure 7-16: Average CPU Utilisation: 2PL vs HBT-MV2PL (Think-

Time=2.5sec, WriteProb=0.5) 

7-18, branching transactions performed better than its non-branching alternative 

for all transaction sizes tested. 

It was originally expected that the performance advantage of branching trans-

actions becomes more significant when the average transaction size is increased. 

To abort and restart a short transaction is less wasteful than to abort and re-

start a larger transaction. Hence, to be able to avoid unnecessary restarts through 

branching transactions should be more beneficial for larger transactions. This 

could not be confirmed by our simulation results. Yet again it appears to be the 

case that an increase of transaction restarts limits the improvements that can be 

achieved through branching transactions. 

To see how Cautious Waiting deadlock prevention might be a problem for 

branching transactions, consider the following simple example. After transaction 

T1  has created a new version of item x, transaction T2  wants to read x, and 

therefore, BTC 2 , 1  branches into BTC 22  and BTC 2 ,3  reading the original value of 

x and the newly created one, respectively. Now assume that BTC 23  has finished 

execution and tries to become certified. If BTC 1 , 1  is blocked and has not been 
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Figure 7-17: Transaction Throughput: 2PL vs HBT-MV2PL (Think-

Time=2.5sec, WriteProb=0.5, NumCPU=1 0) 

Average Transaction Response Time 

Response Time [sec] 

Transaction Size [pages accessed] 

Figure 7-18: Transaction Response Time: 2PL vs HBT-MV2PL (Think-

Time=2.5sec, WriteProb=0.5, NumCPU=10) 
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branched, then BTC 2 , 3  is aborted under Cautious Waiting. If, however, BTC 1 , 1  

eventually commits, BTC 2 , 2  has to be aborted as well. In this case, all branches 

of T2  are aborted.and it needs to be restarted. The key problem here lies in the 

fact that what would have been the correct path of execution (BTC 2 , 3 ) has been 

aborted by Cautious Waiting deadlock prevention. 

Branching Control Policies For all experiments carried out the maximum 

number of BTCs allowed per transaction was 5. Increasing this number did not 

lead to any performance advantages. Lifting all branching restrictions did not 

lead to an explosion of the number of average BTCs, but stayed about the same 

as reported earlier. This may not be that surprising, considering the fact that a 

(non-branching) system may suffer from data contention, even though the average 

queue length for a page lock is no more than 1. A further consideration is the 

effect of an increasing number of transaction aborts (see below) which is likely 

to limit the amount of branching that takes place. Increasing data contention 

between transactions, e.g. through a decrease in database size or an increase of 

transaction size, did not change this observation, i.e. a relatively low number of 

BTCs is not due to low data contention, but suspected to be related to issues of 

deadlock handling, as discussed next. 

Deadlock Handling From the discussion so far it seems that the level of trans-

action aborts in the system is an important factor in the relative performance of 

branching and non-branching transactions. Furthermore, we believe that transac-

tion aborts have a limiting effect on how much branching takes place in the system. 

Since we are not simulating user induced transaction aborts or system crashes, all 

transaction abort decisions are due to the deadlock handling policy applied. 

As described earlier, the deadlock handling mechanism used in this study is 

Cautious Waiting, a mechanism which is more likely to cause transaction aborts 

than a wait-for-graph based approach. It would be of interest to carry out a 

comprehensive study of the effects of various deadlock handling algorithms on the 

performance of branching transactions. Such a detailed study of deadlock handling 
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algorithms is, however, beyond the scope of this dissertation, and left for future 

work. 

Note on Performance of Multi-Version Two-Phase Locking In our study, 

we concentrated on a comparison between (single-version) two-phase locking and 

HBT-MV2PL; non-branching multi-version two-phase locking (MV-2PL) was not 

included. Although performance improvements have been shown for MV-2PL over 

2PL, most of these studies were particularly interested in a workload environment 

where short update transactions are mixed with longer read-only transactions, 

and it is there where multi-version algorithms (MVTO and MV-2PL) achieved 

significant performance improvements [82,23]. It is, therefore, no surprise that 

current DBMS systems which provide some form of multi-version concurrency 

control do so only for read-only transactions, i.e. only read-only transactions are 

allowed to see older versions of data items. 

Carey and Muhanna [23] observed that MV-2PL did not lead to significant 

performance improvements over 2PL when the workload only consisted of trans-

actions which read as well as updated the database; this is the type of workload 

which was of particular interest in our own study. Our own simulation data of 

MV-2PL vs 2PL confirmed Carey and Muhanna's result. In our simulation study, 

we found that although a transaction reaches the end of execution faster under 

MV-2PL, the delay imposed on transactions during certification compensates this 

advantage, so that in the end the response time (and throughput) of transactions 

under MV-2PL was approximately the same as under 2PL. 

In summary, while MV-2PL is of interest for certain types of workloads - 

where large read-only transactions are mixed with short update transactions - 

branching transactions are aimed at OUP applications where such read-only 

transactions do not play a significant role. It is for this reason that we do not 

include MV-2PL in above discussions of the performance of HBT-MV2PL. 
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7.4 Performance Study Conclusion 

A number of important conclusions can be drawn from the experiments carried 

out: 

• branching transaction can achieve performance advantages over non-branching 

systems over a variety of parameters, although there is no significant differ-

ence in performance between a branching and non-branching system if data 

access conflicts are rare; 

• even relatively small levels of branching can achieve performance improve-

ments; 

• best performance improvements are achieved for a 50/50 mix of Read and 

Write operations; 

• contrary to our expectations, the problem of exponential growth of BTCs 

was not observed in any of the experiments; 

• future work should include a comprehensive study of the effects of deadlock 

handling strategies on the behaviour of branching transactions; 



Chapter 8 

Real-time Scheduling with 

Branching Transactions 

In real-time database systems, transactions must be executed within certain timing 

constraints. It is more important that most, or preferably all, transactions are 

executed before their given deadlines than to achieve high transaction throughput 

and fast average response times. Traditional scheduling strategies are not well 

suited to cope with these timing constraints, and hence, new algorithms for real-

time scheduling have been developed; two good overview papers in this area are 

Abbott and Garcia-Molina [1] and Yu et al. [100]. A comprehensive annotated 

bibliography on real-time databases can be found in [92]. 

In this chapter, we will show how branching transactions can be used in the 

context of real-time scheduling; we propose a new real-time concurrency control 

algorithm based on branching transactions, and illustrate it with the analysis of 

an extensive example. In order to provide the reader with some background in 

this field, we begin this chapter with a summary of various aspects of real-time 

scheduling. 

192 
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8.1 Introduction to Real-time Transaction Schedul-

ing 

Real-time transactions have deadlines by which their execution must be complete, 

or else they are of no or little help to the user who initiated them. Abbott and 

Garcia-Molina [1] use a stock market information system as an example for real-

time transactions: at any point of time the databases used for such a system 

must contain a sufficiently accurate representation of the current stock market 

situation. Hence, any updates to the database must be performed within rigid 

time constraints. Furthermore, a user query asking for the prices of a particular 

stock needs to be answered within a few seconds to be of any use. Another example 

is an arbitrage trading program which tries to find price discrepancies for objects, 

often on different markets. Since such price discrepancies are usually short-lived, 

the detection and exploitation of arbitrage opportunities must be done within 

very strict timing constraints. Other application areas include computer aided 

manufacturing, process control and radar tracking systems. 

Depending on the type of application, late completion of a transaction may 

result in a number of problems: from loss of money (stock market) to possibly 

life threatening situations (late radar detection of an incoming enemy missile). In 

general, we distinguish between soft and hard deadlines. If a transaction has a soft 

deadline, then there is still some benefit, though a diminished one, in completing 

this transaction after its deadline has passed. A hard deadline means that there 

is no benefit in completing a transaction which is too late; once a transaction has 

passed a hard deadline, it is aborted. 

The primary performance metric applied to real-time scheduling with hard 

deadlines is the percentage of transactions missing their deadlines; the smaller 

this percentage, the better. In systems where transactions have soft deadlines, the 

mean tardy time - the amount of time a transaction is late, i.e. completed after 

its deadline - of transactions is also an important performance indicator; again, 

the smaller this metric, the better the performance. 
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The problem of scheduling real-time transactions can be subdivided into four 

sub-problems: 

• managing overloads 

• assigning priorities to tasks 

• I/O scheduling 

• concurrency control 

The first three of these problems are discussed in the following paragraphs. A 

separate section is dedicated to the issue of concurrency control; we discuss con-

currency control in more detail, since it is there where we propose a new algorithm 

(based on branching transactions). 

Managing Overloads: A system where transactions are missing their deadlines 

is said to be overloaded. Such an overload may cause many transactions to be tardy 

and it is better to abort some of the transactions in the system for the benefit of 

others being able to finish on time. Hence, a real-time scheduler must apply some 

policies for detecting and managing such overloads. 

An overload can be detected by checking - either periodically or whenever 

the scheduler is called - whether all active transactions are still within their 

deadlines. Transactions which are too late are aborted. This method is called 

observant, since it checks (observes) if any real deadline misses occurred, unlike in 

so-called predictive methods, where the scheduler estimates for each transaction 

how much time it still needs to complete, and if that estimate indicates that a 

transaction will miss its deadline, it is aborted. 

Assigning Priorities to Transactions: Unless transactions are given prior-

ities, they are assigned CPUs on a first come first serve basis. This is not very 

suitable in a real-time scheduling environment, since it does not take into consid-

eration the deadlines of transactions. 
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An alternative is to give the highest priority to the transaction with the earli-

est deadline. If no preventive steps are taken, however, this approach may give 

resources to transactions which have already passed their deadlines or which have 

no chance of meeting their deadlines. Some form of overload management should 

be applied to avoid this problem. 

Even though a transaction may have an earlier deadline than another, there 

may be only little work left for the transaction with the earlier deadline, and it may 

be better to give priority to a transaction which has a later deadline, but needs 

a lot more processing before it can complete. The least slack approach addresses 

this issue. The slack time of a transaction is the estimated acceptable delay time 

in spite of which the transaction can still meet its deadline. The transaction with 

the least slack time is given highest priority, unless the slack time is negative, in 

which case the transaction has either already missed its deadline or is unable to 

meet its deadline, and should be aborted. 

I/O scheduling: Traditionally, the I/O system uses a disk scheduling algorithm 

which minimises the disk seek time by ordering I/O requests according to the 

position of the requested data items on disk. While this helps to improve the 

average throughput of the I/O device, it may cause requests from high priority 

transactions to be ordered after those from lower priority transactions. The disk 

scheduling algorithm in a real-time environment may have to order I/O requests 

according to their priorities, even so this may not lead to the best possible overall 

throughput. 

8.2 Concurrency Control for Real-time Schedul-

ing 

Database consistency is also an issue for real-time database systems, and hence, 

if transactions are to be executed concurrently, some form of concurrency control 

is required. Although the usual techniques (e.g. two-phase locking) can be used, 



Chapter 8. Real-time Scheduling with Branching Transactions 	 196 

they do not consider the particular real-time constraints of transactions and the 

problem of priority inversion may occur. (For the remainder of this chapter we 

will use HPT instead of high priority transaction and LPT instead of low priority 

transaction.) 

Priority inversion exists if an LPT delays the execution of an HPT . For ex-

ample, under two-phase locking, if an LPT holds a Write lock on item x and an 

HPT requests a Read lock on x, the HPT is blocked by the LPT. The following 

paragraphs describe various algorithms which were proposed to address the issue 

of priority inversion. 

Wait Promote: Under this policy, whenever an HPT is blocked by an LPT, the 

LPT's priority is promoted to the priority of the HPT. Since most systems apply 

strict 2PL (locks are not released until a transaction terminates), the [APT keeps 

the higher priority until either it or the HPT terminates. In the latter case, the 

priority of the LPT is set back to its own value. 

Since the LPT is given a higher priority it is able to complete faster, and hence, 

release its locks earlier. HPT's waiting time is thereby reduced; only transactions 

with a higher priority than HPT can preempt the CPU from LPT, or have their 

I/O scheduled before that of the LPT. 

The problem with Wait Promote is that the 1-IPT still needs to wait for the 

LPT. Furthermore, if there are many data conflicts, too many transactions' prior-

ities are promoted and most of the transactions are executed under high priority; 

the meaning of priorities becomes highly distorted. 

High Priority: The basic idea of this scheme is always to grant a lock to the 

transaction with the higher priority. If the lock holder has a lower priority than the 

requester, the holder transaction is rolled-back. If there are multiple holders and 

the requestor's priority is higher than the priority of each holder, the requestor will 

be granted the lock and all holders are aborted, otherwise the requestor transaction 

is blocked. 
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Abbott and Garcia-Molina [1] describe an interesting problem if High Priority 

is used together with the Least Slack priority scheme: since the aborted transaction 

will need to start execution from the beginning, its slack time will be smaller, and 

consequently, its priority higher. This may lead to an abort of the transaction 

with which it had a conflict when it was aborted. In turn, if that transaction is 

now aborted, it too will be restarted with a higher priority. To avoid this problem, 

a slightly modified version of the algorithm requires the requestor transaction to 

have a higher priority than the holder transaction would have if it were to be 

aborted, or else the holder is not aborted. 

High Priority can be too strict in preventing priority inversion: it may abort 

an LPT - thereby losing all the work the LPT has done so far - in favour of an 

HPT, even though both transactions would have been able to complete within their 

given deadlines in spite of the HTP being blocked for some time. The following 

policy is designed to take account of such situations. 

Conditional Restart: Under this scheme, the scheduler tries to prevent the 

abortion of an LPT if there is a chance for both the LPT and the conflicting HPT 

to complete their execution in time. Whenever an HPT request conflicts with 

an LPT holder, an estimate is made as to how much longer the LPT needs to 

complete its execution. If it is shorter than the slack time of the HPT, the HPT 

is blocked. The reasoning here is that there might still be enough time left for the 

HPT to meet its deadline in spite of being blocked by the LPT. While "holding 

up" an HPT, the LPT is running under the priority of HPT (as was the case in 

Wait Promote). 

Multi-version Data Algorithms: Kim and Srivastava [50] have suggested 

real-time concurrency control algorithms based on two-version and multi-version 

two-phase locking. Since our own algorithm is based on multiple rather than only 

two versions, we will only discuss their multi-version algorithms. (For a reminder 

of multi-version two-phase locking (MV-2PL) see Section 4.2.) 
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In Kim and Srivastava's paper, a distinction is made between direct and indir-

ect priority inversion. Direct priority inversion occurs if an HPT requests a lock 

on an item which is already locked (in an incompatible mode) by an LPT. For 

example, an LPT with a Certify lock blocks a Read lock from an HPT. Indirect 

priority inversion takes place if an LPT holds a Read lock and an HPT requests a 

Write lock (on the same item), or an HPT holds a Write lock and an LPT requests 

a Read lock (on the same item). In both cases, although the Read and Write locks 

are not conflicting, the HPT won't be able to upgrade its Write lock to a Certify 

lock during certification, unless the LPT has terminated before. Two algorithms 

were suggested to deal with this problem: 1) Unconditional multi-version 2PL, 

and 2) Conditional multi-version 2PL. 

Unconditional Multi-Version 2PL (UMV2PL): In case of direct priority inver-

sion, an LPT is aborted in favour of an HPT, unless the conflict can be resolved 

by demoting an LPT's Certify lock to the Write lock it initially was. The indirect 

priority inversion problem is handled by aborting an LPT with a Read lock on a 

data item if an HPT requests a Write lock on the same item. Also, if an HPT 

holds a Write lock on an item, any Read lock requests for this item from LPTs 

must wait. Since no HPT will ever wait for an LPT, deadlocks cannot occur 1 . 

Conditional Multi-Version 2PL (CMV2PL): For similar reasons that lead to 

the introduction of Conditional Restart - aborting a nearly finished LPT is waste-

ful and should be prevented, if possible - UMV2PL has been modified to include 

a conditional restart policy. The basic mechanism of CMV2PL is the same as 

for UMV2PL, except that if an LPT has already entered its Certify phase, it is 

in general not aborted when in conflict with an 1-IPT. Since the LPT is expected 

to complete execution in the near future, a short delay of an HPT is considered 

acceptable, unless the HPT itself has already entered the Certify phase or there 

'A deadlock can only happen if there exists a cyclic wait-for dependency, in which 

case at least one HPT must be waiting for an LPT. 
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exists a deadlock involving both, the LPT and the HPT. In these cases, it is still 

the LPT which is aborted; an HPT is never aborted 2. 

This list of real-time concurrency control algorithms is by no means complete. 

For an overview of such algorithms and references to other relevant publications, 

we refer the interested reader to Yu et al. [100] and 0. Ulusoy [92]. 

8.3 Real-time Concurrency Control with Branch-

ing Transactions 

Having discussed some of the issues and algorithms for real-time scheduling of non-

branching transactions, in this section we will describe the situation of branching 

transactions in a real-time environment. We begin by showing under what circum-

stances priority inversion occurs and how our existing algorithms must be modified 

to avoid priority inversion when using branching transactions. 

8.3.1 Priority Inversion under HBT-MV2PL 

Under HBT-MV2PL, the concurrency control algorithm presented in Section 4.4, 

a transaction, say TI',., is blocked by another transaction, say Th, if 

T, has read an item which was written by Th and Th has not yet committed, 

or 

T, requests a lock on an item which is not compatible with an already existing 

lock on this item held by Th. This is true, if 

(a) Th holds a CRL and TF requests a CWL (unless we have the case where 

an alternative sibling BTC for T, exists; for details see Section 4.4), or 

2 0f course, if an HPT is involved as an LPT in another conflict, it may be aborted. 
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(b) Th holds a CWL and T, requests a CRL or a CWL; 

If T, is an LPT and Tr is an HPT, we have a priority inversion situation 

It should be pointed out that we do not distinguish between direct and indir-

ect priority inversion. We disregard indirect priority inversion until an upgrade 

attempt for a VWL (to CWL) is made, in which case it becomes direct priority 

inversion. Kim and Srivastava [50] take a more conservative view of the problem: 

they take action based on the assumption that an indirect priority inversion situ-

ation will eventually lead to the blocking of an HPT by an LPT. This, however, 

is only true if the HPT enters certification before the LPT terminates. 

8.3.2 Real-Time Concurrency Control Algorithms for Branch-

ing Transactions 

Any of the previously discussed solutions for priority inversion can also be used 

for branching transactions: 

Wait Promote: a low priority BTC blocking a high priority BTC has its priority 

raised; 

High Priority: a low priority BTC blocking a high priority BTC is aborted; 

Conditional Restart: the restart of a low priority BTC is avoided if the branch 

of the transaction to which it belongs is estimated to finish execution within 

the slack time of the high priority transaction whose BTC is blocked; 

Multi-version Algorithms: the rules layed out for transactions can be applied 

to BTCs instead; 

None of above techniques, however, take advantage of the particular charac-

teristics of branching transactions. 

Unless a system operates mostly in 2PL mode, the majority of lock conflicts 

occur when a transaction is trying to become certified; before certification mostly 
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version locks (VRLs, TCRLs and VWLs) are acquired, and version locks do not 

conflict with each other. To keep transactions with later deadlines from block-

ing transactions with earlier deadlines we delay certification until shortly before 

a transaction's deadline. Since transactions with earlier deadlines have already 

committed or aborted, their locks are already released 3 , and hence, they should 

not conflict with the certification of transactions with later deadlines. 

Although many conflicts between transactions should be avoidable this way, 

some situations cannot be resolved that easily. Assume that two transactions, 

Tearty  and Tiate, are accessing the same data item x. Tearjy 's deadline is before 

Ti a t e 's, and Teart y  wants to update x, while Tat e  wants to read it. During the 

actual execution of these transactions the Read operation precedes the Write. 

Since, however, we are trying to produce a schedule which is equivalent to a serial 

execution in which Tea,. iv precedes Tiate, Tfe a t e  should read the version of x created 

by Teart y . To achieve this we spawn a new branch of T1a1 c  which reads the copy 

of x produced by Tearjy . To improve the chances that this new branch of Tiat e  

completes within the given timing constraints, it should be created at the time 

Tearjy  created the new version of x, rather than at Tear iy 's certification time. The 

example that follows later in this chapter will illustrate such a scenario. 

Description of BT Real-time Concurrency Control Algorithm: When a 

BTC wants to read a data item, it branches if there exist versions of the reques-

ted item which were created by BTCs which have an earlier deadline than the 

requesting BTC. There is no need to branch for versions with a later deadline, 

since we only allow schedules which are equivalent to a serial execution based on 

transaction deadlines. TCRLs and VRLs are set as in the original BT-MV-2PL 

algorithm. If no branching is required, the requesting BTC simply reads the last 

'This is only true, if there is enough time between the deadlines of two conflicting 

transactions to release locks of the earlier and certify the later transaction. If this is not 

the case, the second transaction will be slightly tardy. 
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committed version of the item, and an appropriate TCRL is set. This handling of 

Read requests in summarised in Figure 8-1. 

Read Request(x): 

if uncommitted versions of x exist: 
• branch requesting BIG (one new branch 

for the committed version of x and one 
for each uncommitted version which was 
created by a transaction with an earlier 
deadline than the requestor) 

• set TCRL and VRLs 
else 

• read committed version of x 
• set TClRL 

Figure 8-1: Read Request Algorithm 

Every Write request creates a new version of the corresponding item, and 

a 'VWL is set accordingly. At this point we may face the situation described 

above: a BTC with a later deadline has already read the same item, and for 

both transactions - the current writer and the previous reader - to commit, 

the reader must have read the version just created by the writer BTC. To achieve 

this, we create a new branch for the reader BTC, just as if the new version had 

already existed at the time of the original Read request. We. do not abort any of 

the previously created branches for that reader, since we may need them in case 

of an abort of the BTC which just created a new version of the item. (Figure 8-2 

shows this processing of a Write request. 

Write Request (x): 

• create new version of x 
• set VWL on new version 

for all transactions which hold TCRLs and 
have later deadline than requestor: 

• create new BTC 
• set VRL on new version (for new BTC) 

Figure 8-2: Write Request Algorithm 

When a transaction nears its deadline, it tries to certify those branches which 

have completed execution. To certify a branch, all its BTCs must be certified. 

Since a transaction only reads data written by transactions with earlier deadlines, 
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and certification is delayed until shortly before a transaction's deadline, any data 

read by the transaction to be certified should by now be committed or aborted 

(except for when two deadlines are too close, as noted earlier). In the latter case, 

an abort of the ETC which we are trying to certify has already been initiated. 

Since only one transaction at a time can be in its certification phase, there 

can be no conflicting CWLs or CRLs on any data item at any time, and hence, 

certification of a BTC merely consists of upgrading all its TCRLs to CRLs and all 

its VWLs to CWLs (as shown if Figure 8-3). 

Certify Request: 

• upgrade all TCRLs to CElLs (no blocking) 
• upgrade all VWLs to OWLs (no blocking) 

Figure 8-3: Certify Request Algorithm 

Although there are no conflicting CRLs and CWLs at certification, TCRLs 

from other transactions may exist. Following the rules of BT-MV-2PL, any BTC 

holding such a TCRL must be aborted once the holder of a conflicting CWL com-

mits. Hence, at commit time, our algorithm aborts all BTCs with such conflicting 

TCRLs before it releases the locks for the committing transaction (Figure 8-4). 

Commit Request: 

11 

• abort BTCs which hold TCRLs 

release locks of committing BTC 

Figure 8-4: Commit Request Algorithm 

Except for a small delay of the certification of a transaction because a previous 

transaction with an earlier deadline has not yet released its locks, no transaction 

is ever blocked due to lock conflicts. Hence, there is no issue of priority inversion 

and there can be no deadlocks. 

CRLs and CWLs are held for very short periods only, i.e. during certification. 

Although we neither block nor abort a BTC when a read/write conflict occurs, 

our approach is not optimistic since at the time of conflict we take some action: 
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branching of the reading BTC. This differs from optimistic algorithms in the sense 

that we assume that there will be a problem with certification and we choose to 

explore multiple possible outcomes in parallel. 

To avoid running BTCs which have no chance Of completing in time, one can 

estimate the minimum time needed for a new branch to finish execution, and only 

if there is enough time left before its deadline is a new BTC created. 

Considering all possible types of access conflicts between transactions: 1) 

Write/Write, 2) Write/Read and 3) Read/Write, most of them can be resolved 

by our algorithm such that no transaction misses its deadline (due to concurrency 

control reasons). Write operations do not interfere with other Write operations 

in any way: before certification a Write simply creates a new version of an item, 

and since only one transaction can be in its certification phase at a time, no two 

conflicting CWL can ever exist simultaneously. An access conflict between a Write 

operation and a subsequent Read operation is resolved through branching. A Read 

operation followed by a Write operation from a transaction with an earlier dead-

line requires subsequent branching of the reader transaction. If there is enough 

time to complete the new branch before its deadline, this too does not cause any 

problems. The only case where a transaction will miss its deadline due to con-

currency control is if there is not enough time for the restart of a new branch. A 

Read operation which is followed by a conflicting Write operation by a transaction 

with a later deadline than the writer does not cause a problem due to the commit 

ordering of transactions based on their deadlines. An overview of which conflicts 

can and which cannot be resolved by our algorithm is shown in Figure 8-5. 

Usually algorithms .try to complete the execution of a transaction as early as 

possible in order to hasten the release of locks held by that transaction and to 

achieve a better response time for it. It may, therefore, appear counter-productive 

to delay certification of a transaction until close to its deadline. This, however, is 

not the case. A delayed transaction neither consumes CPU or I/O resources nor 

holds any locks which would prevent the progress of other transactions. Further-

more, in real-time scheduling the primary object is not to minimise transaction 
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I Access Conflicts I 

Write/Write I 	I Read/Write 	I Write/Read 

Reader's Deadline 	i1 Reader's Deadline 
after 	 before 

Writer's Deadline 	l Writer's Deadline 

Enough !: 	 Not Enough 
Restart Time 	Restart Time 

vmrm conflicts cannot be resolved 
waat conflicts can be resolved 

Figure 8-5: Conflict Resolution Overview 

response times, but to maximise the proportion of transactions that successfully 

complete execution before their deadlines. 

The algorithms introduced earlier Wait Promote, Highest Priority and Con-

ditional Restart - are all aiming at preventing higher priority transactions from 

being tardy in favour of lower priority transactions, where the priority is either 

based on which transaction has an earlier deadline or which has least slack time 

before its deadline. These basic ideas are still maintained in our new algorithm. 

When a transaction causes the abort of another one's BTC, it must have an earlier 

deadline - otherwise it wouldn't be its turn for certification and, since certi-

fication is delayed until just before a transaction's deadline, it has less slack, i.e. 

none, than the other transaction (unless the later one is already doomed to be 

late). Our new algorithm also follows the idea that a transaction with an earlier 

deadline should not be aborted in favour of a transaction with a later deadline if 

there is a chance for both to commit. In fact, our algorithm never aborts a trans-

action with an earlier deadline in favour of a transaction with a later deadline. 

The advantage of this algorithm is based on the capability of branching trans- 

actions to compute multiple possible outcomes: if one branch of a transaction 
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needs to be aborted because some of the dirty data it read has been aborted, 

then there exists an alternative branch which was run with the assumption of that 

abort, and hence, the chance of that transaction completing on time is higher than 

if it had to restart from the beginning. 

There is an important difference between the branching in BT-MV-2PL and 

this new algorithm: we now allow "subsequent branching". By this, we mean 

that a new branch can be created some time after the actual read request by the 

corresponding (now branched) reader BTC. Immediate branching, as opposed to 

subsequent branching, is easier, since the state of a BTC is known at the time of 

the branching decision. In order to facilitate subsequent branching, we must save 

the context of a BTC at the time of its Read operation, i.e. the starting point for 

any subsequently-created BTC. Saving the context for every Read for every BTC 

may cause an unacceptable overhead, and one may have to be more selective: only 

some of these possible contexts are saved. Effectively, these saved contexts provide 

some form of checkpoint from where a transaction can restart, without losing all 

previous work. In the most extreme case, a transaction restarts from the very 

beginning. 

As in BT-MV-2PL, too much branching, immediate or subsequent, can cause 

the system to thrash, and some branch-control function may have to be applied. If 

branching is not allowed, a BTC reads the uncommitted version of an item with the 

most recent deadline  prior to its own or, if none exists, the committed version. 

Clearly though, only if sufficient resources are available to allow a reasonable 

amount of branching to take place can we expect performance advantages from 

our new algorithm. 

Example In this example we assume five transactions: T1  . . . TI5 . Their deadlines 

are in the relative order of TI2  -+ T -* T3  -* TIj  -+ T. Database access by these 

transactions is as follows: 

4 With the deadline of a version of an item we mean the deadline of the transaction 

which created that version. 
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TI : r[u] w[y] 

1T'2: r[x} w[y] 

7'3 : w[u] r[zJ 

r[u] w[v] 

r[v] r[z] 

Figure 8-6 shows a possible schedule of execution of these transactions under. 

our new algorithm. We discuss the details of this schedule next and show the 

corresponding lock tables at various stages. 

T2 Ta T4  

Step 1 

Step W, 	[u, 	] I 
Step  r1 ,[u,,] r[x0 ] 

Step  w,,[y 1, I r 	Eu 0, I 

Step S Delay 	w 1 y 1 ,, ] 
W 	[V-.1 

 

Step S j 	Delay W, [y 	I r,a  [z0,  I Delay r 	[vs, I 	I 	r 	[v 	I 
Step 7 Ce+Co Delay r5 	[z 0  ] 	r 5, [z 

Step  I Deadline Ce+Co Delay 	p 	Delay 

Step 9 I Ce+Co Deadline Abort 

Step 10 Abort 	Ce+Co 

Step 11 

 Deadline 

Deadline— F Deadline Ce i-Co 

Step 12 t Deadline 	Deadline 

Figure 8-6: Real-time Schedule 

Transaction T1  begins execution and requests Read access to item it. T1  starts 

execution as BTC 1 , 1 , but since a Read operation is a potential source of subsequent 

branching it continues its operation as BTC 1 ,2 . We effectively create a parent 

transaction BTC 11  which can be the starting point for any subsequent branch on 

this read, even though in this case no actual work has been done by BTC 1 ,. 

At step 2, BTC3 , 1  performs a Write on item it. Since T3 's deadline is before 

T1 's, we must create a new branch for T1  which reads the newly written version 

of U; we assume it is estimated that there is enough time for this new branch to 

complete before T1 's deadline. As a result we find that BTC 1 , 3  has been created 

and read U3,1  at step 3. At the same time BTC 2 , 1  wanted to read x and did so 

after being continued as BTC2,2. 
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At step 4, ETC1 , 2  writes a new version of y ( y1,2) and ETC4 , 1  becomes ETC4 , 2  

to read u0 , 0 . This latter read operation did not result in new branches for T4 , in 

spite of the currently existing uncommitted version of u (u31 ), since T4 's deadline 

is before T3 's. 

Although ETC1 , 2  has completed, no certify request for this branch of T1  is 

issued, since the deadline ofT1  is not imminent; the branch enters a "delay period" 

at step 5. At the same time, BTC 1 , 3  and ETC4 , 2  create new versions of y and v, 

respectively. 

At step 6, the branches of ETC1 ,3  and BTC42 , too, enter a delay period. 

ETC22  creates a new version of item y and ETC3 , 1  wants to read z, and therefore 

becomes ETC3 , 2  before reading the committed version: z0,0 . Since T5 's deadline 

is after T4 's, ETC5 , 1  branches into ETC5 , 2  and BTC 5 ,3 , reading v0 , 0  and v 4 , 2 , 

respectively. 

The lock table at this stage is shown in Figure 8-7. Since no transaction has 

entered certification yet, there are no CRLs and no CWLs on any data item. 

At step 7, T2  must begin its certification since its deadline is close. BTC 2 , 2 's 

TCRL on x and VWL on y can immediately be upgraded to the corresponding 

CRL and CWL, since there exist no conflicting other locks. Hence, a complete 

branch of T2  is certified and it can commit. At the same time, ETC3 , 2  has com-

pleted and entered a delay period, while both, ETC5 , 2  and ETC5 ,3 , read the only 

existing version of z; they have become ETC5 , 4  and ETC5 , 5 , respectively. 

With T4 's deadline imminent, ETC4 , 2  is certified - ETC41  is automatically 

certified since it didn't perform any operations - and T4  commits; Figure 8-8 

shows the lock table for u and v after ETC4 , 2 's certification, but before all of T4 's 

locks were released. Also at step 8, T5 's branches completed execution and are 

delayed. 

As can been seen in Figure 8-8, the CWL of ETC4 , 2  on v conflicts with a 

TCRL by ETC5 , 2 , and hence, once T4  committed, an Abort was issued to the cor-

responding branch of I' (at step 9). Similarly to T4 , 723 is certified and committed 

at step 9, and as a consequence the branch of BTC 1 , 2  is aborted at step 10. On 
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Locktable for item; U 

z,te4 Version: 	I I RTC 1,2 RTC 4,2 

U(0 ,0) 	
k - TYPE: TCRL TYPE: TCRL 

_______ STATUS: Holder STATUS: Holder 

n,nitted Version: 	I I BTQ 3,1 BTC: 1,3 
U(3 1) k-.I TYPE VWL TYPE: VRL 

I I STATUS: Holder STATUS: Holder 

Loektable for item: V 

Commited Version: 	 BTC: 	5,2 
V 	 TYPE: TCRL 

(0,0) 	 STATUS: Holder 

	

version: i 	j BTC: 	4,2 	-H BTC: 	5,3 
V(42) 	 -H TYPTh VWL 	TYPE: VRL 

	

I 	I STATUS: Holder 	I 	STATUS: Holder 

Locktable for item: X 

	

Conunited Version: 1.  I  BTQ 	2,2 	I 

	

TYPE: TCRL 	I 
 STATUS: Holder 

Locktable for item: Y 

Commited Version: 

Uncommitted Version: 
Y(12) 

Uncommitted Version: 

Uncommitted Version: 

	

I BTC: 	1,2 

	

TYPE: 	VWL - 

[STATUS: Holder 

I BTQ 	1,3 
H TYPE: 	VWL 

STATUS: Holder 

BTQ2,2 
TYPE: 	VWL - 

• STATUS: Holder 

Locktable for item: 	Z 

Commited Version: I I BTC 	3,2 
Z(oo) F-1 TYPE: 	TCRL 	I 

I I STATUS: Holder 

Figure 8-7: Lock Table for Real-time Schedule after Step 6 

the other side, the alternative branch of T1  can be certified and committed at step 

10. Tb 's remaining branch is successfully certified and committed at step 11. 

Note on Correctness: Although this algorithm is different in many ways from 

H.BT-MV2PL, it applies the same basic locking rules as HBT-MV2PL (for details 

of these rules see Section 4.4.2): 

• Overwrite Rule 

• Write Lock Rule 

• Read Lock Rule 
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Locktable for item: U 

ited Version: BTC: 	1,2 I I BTC: 	4,2 
-1 TYPE: TCRL —.1 TYPE: CR!. 

_______ STATUS: Holder I STATUS: Holder 

rnmitied Version: 	1 BTC: 3,1 BTC: 1,3 
U(3 1) TYPE: VWL TYPE: VRL 

I I STATUS: Holder 	I STATUS: Holder 

Locktable for item: V 

oiled Version: 	3TC 	5,2 	 ETC: 	4,2 
V 	 TYPE: TCRL 	TYPE: CWL 

(0,0) 	 STATUS: Holder 	STATUS: Holder 

,nrniited Version: 	NrC: 	4,2 	 I BTC: 	5,3 
V/A , 	 TYPE VWL 	—H TYPE: VRL 

STATUS: Holder 	I STATUS: Holder 

Figure 8-8: Lock Table for Real-time Schedule after BTC4 , 2 's Certification 

• Write/Write Lock Conflict Rule 

• Read/Write Lock Conflict Rule 

Since we have shown (in Chapter 4) that an algorithm applying these rules 

guarantees to only allow serializable schedules of transactions, it is also guaran-

teed that our new real-time concurrency control algorithm only allows serializable 

schedules. 

Other Deferred-Commit Protocols The algorithm described above incorpor-

ates the idea of deferred-commit: a transaction delays its commit in order to allow 

other transactions to complete as well. This is a useful technique for real-time 

scheduling since the primary goal here is to meet transaction deadlines rather 

than optimising average response times. While there is no harm in delaying a 

transaction's commit until shortly before its deadline, it may allow other transac-

tions - which would have been aborted in case the now delayed transaction had 

committed immediately - to complete as well. 

Haritsa [44] reports that performance gains can be achieved, in the context of 

optimistic concurrency control for real-time scheduling, by making lower priority 

transactions wait after their validation and delay their commit. Son et al. [81] and 
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Agrawal et al. [3] describe real-time locking algorithms which incorporate the idea 

of deferred-commit. 

Deferred-commit has also been considered by Bestavros and Broudakis [12,13] 

in their work on speculative concurrency control (8CC) 5  for real-time database 

systems. Since SCC is the approach most similar to branching transactions, a more 

detailed description of their (deferred-commit based) real-time concurrency control 

algorithms is given next, followed by a comparison with real-time scheduling with 

branching transactions. 

Rather than simply considering the deadline of a transaction, 8CC algorithms 

also take into account the value of a transaction; a transaction with an earlier 

deadline may have a lower value than a transaction with a later deadline  The 

relative "worth" (based on the transaction value and its deadline) of a transaction 

can be used to determine how much speculation it should be allowed, i.e. how 

many shadows are allowed to execute on its behalf. 3CC with deferred commit 

(8CC-DC) does not immediately commit a transaction shadow once it has finished 

its execution, but evaluates whether it might be better for the overall perform-

ance of the system to delay the commit. Since it is computationally expensive 

to determine the optimal time of commit of a transaction - all possible serializ-

ation orders of active transactions in the system must be evaluated - SCC-DC 

uses an approximation by considering commit at certain discrete points in time 

only. 8CC with Voted Waiting (SCC-VW) is an approximation heuristic, pro-

posed to reduce the computing overhead caused by SOC-DC. Under this policy, 

all uncommitted transactions are allowed to vote for and against the commitment 

of a finished transaction shadow; we omit the details of the voting protocol, the 

interested reader is referred to Bestavros and Braoudakis [13]. 

5A brief introduction to 3CC has been given in Section 3.4.5. 

6 Most other real-time concurrency control algorithms, including the one based on 

branching transactions, assume that all transactions in the system are assigned the 

same value. 
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In addition to the similarities and differences between SCC and branching 

transactions described in Section 3.4.5, SCC-DC and SCC-VW differ from our real-

time BT algorithms and in a number of other ways. The BT algorithm is designed 

for transactions with hard deadlines and, as mentioned earlier, each transaction 

is assumed to be of equal value. The delay of a transaction commit under 5CC 

is based on the value of a transaction - a transaction may still be of value after 

its deadline has passed - and the order in which transactions commit may be 

different from their respective deadlines. The delay of commit under BT is solely 

based on a transaction's deadline and transactions commit (or abort) in the order 

of their deadlines. 



Chapter 9 

Concluding Remarks 

This chapter gives an overview of the results of this thesis and discusses possible 

future work based on branching transactions. 

9.1 Summary of Results 

9.1.1 Branching Transaction Model 

The key contribution of this dissertation is a new transaction model: branching 

transactions which has been designed to address the issue of data contention in 

parallel database systems. Although data contention has been looked at in the 

past, no work has yet been reported (as far as is known to us) which addresses 

this issue in the particular context of parallel database systems. The key property 

of the branching transaction model is its ability to avoid unnecessary transaction 

blockings and restarts by following up more than one possible path of execution 

of a transaction in parallel in case of data conflicts. 

The principles of this new transaction model were introduced in Chapter 3 

Through a comparison with related work in this area, it was shown that our 

approach is indeed a unique and novel concept. 

213 
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9.1.2 Concurrency Control and Recovery Algorithms 

A substantial amount of work had been dedicated to the development of new con-

currency control algorithms for branching transactions. Section 4.3 presented a 

new multi-version two-phase locking algorithm. Since it was recognised that un-

limited branching may lead to system overloads in even the most powerful parallel 

computers, branching control policies were proposed in Section 3.3.3. This led 

to the development of a hybrid concurrency control algorithm, which is able to 

dynamically switch at run-time between (non-branching) two-phase locking, (non-

branching) multi-version two-phase locking and our new branching transaction 

multi-version two-phase locking algorithm; this hybrid algorithm was discussed in 

Section 4.4. The ability to switch dynamically at run-time is an important result, 

since it allows a system to adapt from a more CPU expensive approach (branching 

transactions) to a resource conservative approach ("normal" two-phase locking). 

Due to the blocking nature of locking protocols, deadlocks can occur under these 

new concurrency control algorithms. The notion of a deadlock in the context of 

branching transactions has been defined and deadlock handling strategies were 

discussed in Sections 4.5. 

A possible difficulty with Lranching was the potentially prohibitively high over-

head due to additional logging activities. This has been resolved by a simple 

modification of the incremental log with deferred update recovery strategy (Sec-

tion 4.6). 

A further result in the context of concurrency control, is the development of a 

two-layer approach for the development of a concurrency control manager which 

applies to our new hybrid locking algorithm. Section 4.4.4 described how the 

full functionality of our new concurrency control algorithm could be implemen-

ted by taking advantage of an existing "normal" two-phase locking layer. This 

should prove useful for anyone wanting to migrate from an existing system to-

wards branching transactions. 
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9.1.3 Architecture of BT Systems 

In Chapter 5, it was shown how a branching transaction system may map onto 

various parallel hardware platforms. Posible system architectures for shared-

memory and shared-something environments were introduced and the issue of load 

balancing and load control discussed. Section 5.7 discussed the concrete example 

of branching transactions on a Convex Exemplar computer. - 

Working in the context of a shared-something DBMS raised the problem of 

cache coherence. Since uncommitted as well committed data may be cached at 

different nodes, a new cache coherence protocol had to be developed. This new 

protocol was discussed in Section 5.5. 

9.1.4 Correctness Proofs 

To prove the correctness of our newly developed concurrency control algorithms 

under branching transactions, traditional serializability theory had to be extended 

to be able to cope with the concept of branching. The notion of basic agents, 

agents and agent histories (Definitions 13, 14 and 18) were introduced. Based on 

these, formal definitions of branching transactions (Definition 20) and branching 

transaction histories (Definition 22) were developed. 

In the Branching Transaction Serializability Theorem (Theorem 4) we showed 

that as long as a branching transaction scheduler only allows histories whose com-

mitted projections are equivalent to a correct (non-branching) multi-version his-

tory, serializability is guaranteed. Having formalised the locking rules of the new 

hybrid BT concurrency control algorithm, we were then able to prove that these 

new algorithms indeed only allow correct schedules (Theorem 5). 

9.1.5 Performance Study 

The simulation study presented in Chapter 7 showed that branching transactions 

can achieve performance advantages over non-branching systems over a variety of 
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parameters, assuming that a sufficient level of data contention exists. These per-

formance improvements were achieved with even relatively small levels of branch-

ing. Best results were obtained for a 50/50 mix of Read and Write operations. The 

problem of exponential growth of the number of branches could not be observed 

in the experiments carried out. 

The results also indicated that the choice of deadlock handling may have a 

relatively significant influence on the branching behaviour of the system, and that 

a high number of transaction aborts may have a detrimental effect on the branching 

that is carried out. Further studies are required to obtain a better understanding 

of these issues. 

9.1.6 Real-time Scheduling 

One area in which we felt branching transactions might be particularly suitable 

is real-time concurrency control. Chapter 8 describes the result of our work in 

this area, i.e. a new real-time concurrency control algorithm based on branching 

transactions has been developed. The new algorithm incorporates the idea of 

"deferred commit" which prevents, as far as possible, the abort of transactions 

with earlier deadlines by transactions with later deadlines. 
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9.2 Future Work 

The basic research contribution of our new transaction model has led to a number 

of additional results in various areas, e.g. concurrency control, logging, deadlock 

handling, cache coherence, etc. Nevertheless, there still is more work to be done 

with branching transactions. The following three topics are of particular interest 

to the author and are intended to be the subject of future investigations. 

9.2.1 Unifying Nested and Branching Transactions 

In Section 3.4.1 we discussed the similarities and differences between nested trans-

actions and branching transactions. Although both models are based on a hier-

archical structure of subtransactions, nested transactions are aiming at a higher 

level of parallelism within a transaction, while branching transactions are designed 

to achieve better inter-transaction parallelism. Combining nesting and branching 

is expected to result in a new model which takes advantage of both approaches. 

If the underlying sub-transaction management can be unified, for any DBMS 

with support for nested transactions it may be relatively easy to add support 

for branching transactions as well. This would provide a promising approach for 

introducing branching transaction systems into commercial DBMS. 

9.2.2 Extension of Serializability Theory 

The work on basic agents, agents and agent histories in the context of serializ-

ability theory provides a formal basis for dealing with sub-transaction structures. 

This work should be extended to be able to capture the semantics of nested trans-

actions. A single theoretical framework for reasoning about branching and nested 

transactions would be ideally suited to carry out correctness proofs for the above-

mentioned unified transaction model. 
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9.2.3 Performance Studies 

The performance study of Chapter 7 was necessarily restricted in scope to keep it 

within what was feasible within this dissertation. Clearly, there a large number of 

additional experiments which one might want to carry out. We have already men-

tioned that a comprehensive study of the effects of deadlock handling strategies on 

a branching transaction system is desirable. Other studies of interest are branch-

ing transactions in the context of shared-something systems - this would intro-

duce issues of cache coherence - and the performance of real-time scheduling 

with branching transactions, as discussed in Chapter 8. Furthermore, additional 

research is required to get a better understanding of the types of workloads and 

DBMS configurations for which hybrid branching/non-branching systems are most 

beneficial. To be able to compare branching transactions not only with the flat 

transaction model and "normal" two-phase locking, the current simulation soft-

ware should be developed further to include modules for ordered shared locks and 

speculative concurrency control. 
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Abstract 

In order to exploit massively parallel computers, database management systems must 
achieve a high level of concurrency when executing transactions. In a high contention 
environment, however, parallelism is severely limited due to transaction blocking, and the 
utilisation of hardware resources, e.g. CPUs, can be low. 

We propose a transaction model, Branching Transactions, together with an appropriate 
concurrency control algorithm, which, in case of data conflicts, avoids unnecessary transac-
tion blockings and restarts by executing alternative paths of transactions in parallel. Our 
approach uses additional hardware resources, mainly CPU - which would otherwise sit idle 
due to data contention - to improve transaction response time and throughput. 

1 Introduction 
In recent years, multi-processor systems based on fast and inexpensive micro-processors have 
become widely available. The total performance/price ratio of such systems is usually higher than 
that of traditional mainframe computers. We, therefore, see a trend towards the replacement of 
mainframes by parallel systems in high performance transaction processing environments. 

In general, high transaction throughput and short transaction response time are the primary 
performance design goals for a database management system. In parallel transaction processing 
systems, interference [2] - the slowdown each new process imposes on all others when accessing 
shared resources —limits speedup and scaleup. In fact, data contention can be the limitingfactor 
for performance in a shared-nothing parallel database machine [3] [5]; under such conditions the 
utilisation of CPUs and disks is relatively low. 

The component of a database management system dealing with synchronisation of access to 
shared data, and therefore responsible for issues of data contention, is the concurrency control 
manager. All existing algorithms resolve conflicts either by blocking or restarting transactions at 
the time of conflict (pessimistic algorithms) or when a transaction tries to commit (optimistic 
algorithms). Common to both groups, the decision made at the time of conflict may not be the 
right one. In a pessimistic algorithm, for example, the roll-back of a transaction is frequently 
caused by a situation that might have led to a deadlock; or a transaction is blocked because 

it might have violated serializability. In an optimistic algorithm, a conflict that was ignored 
during the execution may require the restart of a transaction. The key problem is that at the 
time of conflict we usually don't know which is the right decision to make. Contrary to all 
CC algorithms known to us, we propose an approach where a transaction, instead of making 
a particular decision, follows up alternative paths of execution concurrently. Once it is known 
which was the right path to pursue, all others can be aborted. This approach allows us to avoid 
many unnecessary blockings and restarts of transactions which lead to performance problems in 
all existing CC algorithms. 



Executing alternative paths of a transaction concurrently increases demand on hardware 
resources, in particular, CPUs. However, as we pointed out earlier, in a parallel database system 
data contention can lead to low CPU utilisation, and it seems appropriate to use this idle CPU 
time to reduce the problem caused by sharing data. The idea of "sacrificing" hardware resources 
to improve concurrency in a database system is not entirely new: multi-version algorithms [6] 
use additional memory and disk space - to store multiple versions of the same data item - to 
improve the level of concurrency. 

The remainder of the paper is organised as follows: in Section 2 we present the branching 
transaction model; Section 3 contains a two-phase locking algorithm for branching transactions; 
Section 4 presents a formal proof of correctness for the two-phase locking algorithm presented 
before; Section 5 discusses aspects of logging and recovery; Section 6 briefly introduces the idea 
of branching restrictions; and Section 7 gives a conclusion and summary of future work. 

2 The Branching Transaction Model 

Existing concurrency control algorithms resolve a conflict by either blocking or restarting one 
of the transactions involved. We will use the following three transactions, T1, T2 and T3, to 
illustrate this point, and to describe the principles of branching transactions. ("[a']  denotes a 
read operation on data item a'; w[x] denotes a write operation on data item a'.) 

: r[z], 7-[x], r[y], r[i], w[t], r[ni], r[n], w[n] 

T2: w[x], r[z], V[U], w[u] 
7'3: w[y], r[1], r[k], w[k], r[u], w[u], r[p] 

If these transactions were executed under a two-phase locking algorithm, the schedule in Table 
1 would be a possible interleaving of their execution. (r [x•j] denotes Ti reading the value of data 
item a' written by 7; w[x] denotes T updating a';  ci denotes the Commit operation of Ti. The 
values of data items prior to the execution of this schedule are indicated by subscript 0.) At 
step (2), when T1 tries to read data item a', it is blocked by T2's lock on x; 2' has written to a' 

at step (1), and must therefore hold an exclusive lock on it. T1 remains blocked until T2 releases 
its lock on a'. Similarly, T1 gets blocked again at step (7), because of T3's lock on y. 

The scheduler blocks T1 at step (2), since it cannot decide whether T1 should read the value 
written to a' by T2, or the value a' had prior to step (1). In case "2  aborts, or commits after 

T, T should read a'0, otherwise it should read a,2. Since '2  's fate is not know at the time of 
conflict, the scheduler delays its decision - blocks T - until it has sufficient information to 
decide. 

In case T2 commits before T1, blocking of T1 , and the delay of its response time that follows 
from it, is unnecessary. Other concurrency control algorithms have similar problems: optim-
istic algorithms, for example, need to abort a transaction and restart it, if the certification 
of it fails; tirnestamp ordering algorithms maintain serializability by enforcing the timestamp 
order on conflicting operations, even though not all aborted transactions would have violated 
serializability. 

To overcome the problems of these "wrong decisions" by the scheduler, we propose to pursue 
alternative paths of execution of a transaction until it is known which was the correct path to 
follow. In other words, at the time of conflict a transaction branches into two or more alternative 
copies of itself which then continue to execute concurrently. 

Table 2 shows a schedule in which Tj is executed as a branching transaction. This time when 
T tries to read data item a', it branches into two components: T1 , 1  and T12, the first proceeds 
using the original value of a', the second reads a,2. At step (3), further branching is necessary 
since y has been updated by T at step (2). At step (6), it has become clear - since T'2  just 
committed - that the correct decision at step (2) was to read a'2. Therefore, it is not necessary 
to pursue further those components that were started under the assumption that a'0 should be 
read, and Tl , ,g  and T1,4 abort. 



Step T1 T2 
I ri[zo] W2[z2] 
2 blocked r2[zo] tv3  [ye] 
3 blocked r2[uoj r3 [101 
4 blocked w2[u2] rs[ko] 
5 blocked c2 w3[k3] 
6 ri[x2] r3[u2] 
7 blocked W3 [Us] 

8 blocked r3[po] 
9 blocked 
10 r1[ya] 
11 r1 [to] 
12 wj[ti] 
13 ri [nlo] 
14 rj[no] 
15 wj[nj] 
16 e 1  

Table 1: Schedule under Two-phase Locking (No Branching) 

Sup Branching Transaction T1 T2  
- 

1 ri,o[zo] W2[X2]  
- T1,1: 

2 rJ[o1 ri,2[x2] r2[zo] w3[y3] 
- 2'1 ,: T1 , 4 : T1,5: 

3 ri,3[yo} ri , 4 [y3 ] ri,5[yo] r1,6[y3] r2 [uo
] r3 [101 

4 ri,a[to] ri , 4 [i o ] ri,s[to] ri , 6 [to ] W2 [U21 ra[ko] 
5 w1,3[t1,] w 1 , 4 [4, 4 ] wi,s[ti,s] w1,6[i1,6] c2 w3[k3] 
6 aj,3 a1 , 4  ri,s[mo] ri,6[mo] r3[u2] 
7 ri ,s[no] ri , 6 [no] w3[u3] 
8 w j , 5 [ni , 5] wi,6[ni,6] r3[pa] 

9 blocked blocked c3 
10 a15 

Table 2: Schedule for Branching Transaction 

When a particular path of a branching transaction has executed all operations, it is not 
allowed to commit until it is known whether all assumptions made by it are fulfilled: T1,5 and 

are blocked at step (9) since they cannot commit until after 7'3 committed (or aborted). 
Since 7'3 indeed commits, T1, 5  aborts and T1,6 commits at step (10). 

Running T1 as a branching transaction allowed the scheduler to commit the transaction 
action within 10 steps, as opposed to 16 in the previous case. 

Transaction Graphs and Components: We represent the branching hierarchy of a branch- 
ing transaction Ti by a transaction graph (a rooted, directed tree), with Ti's transaction com- 
ponents as nodes (,o  as root), and an edge 7 - Ti,k, if Tij created Ti,k.  The transaction 
graph for T, in our example is shown in Figure 1. A transaction component T14 is a descendant 
of transaction component Tj,k,  if there exists a path from Tjj to Ti,k in 7's transaction graph. 

Figure 2 shows the state transition diagram of transaction components. After a component 
has been created it is ACTIVE, i.e. it is executing the operations of the corresponding trans- 
action. (We include the temporary blocking of a component in this state.) If the component is 
involved in a conflict, and branching is necessary, it creates two or more descendant components 



Figure 1: Transaction Graph 

and enters the BRANCHED state. In this state no more operations are executed by the com-
ponent. If all descendants of a component eventually abort, then it must be aborted as well. An 
active transaction component can be aborted either by the system (such as T13  and T14  in our 
example), or by an explicit abort command issued by the component itself. If a component is 
active and has executed the last operation of its transaction, and if no unresolved dependencies 
exist, it can commit. If a component commits, so do all its ancestors. We show the state changes 
for transaction components in our example in Figure 3. 

Commit 	
ft( MITThD ACTIVE 	)~ 

BRANCHED )~ 	 ABORTED 
all descenoUnts  

aborted 

Figure 2: Transaction Component State Transition Diagram 

It is a key property of branching transactions that only one path in every transaction graph 
can commit, and all components not part of this path are aborted. Any updates on the database 
performed by aborted transaction components are rolled-back. 

Any two transaction components of the same transaction tree can be executed in parallel, 
unless there exists a path in the tree between them. Components from different paths execute 
in isolation: they do not read any updates made by the other and are allowed to update the 
same data items independently. To be able to maintain the ACID properties 1  of transactions, 
multiple versions of data items must be maintained. 

Implementation of Branching Transactions: We use the abstract model of a database 
system depicted in Figure 4 to describe some aspects of implementing branching transactions 2 

A user submits a transaction for execution to the transaction manager (TM), which creates a 

'A=Atomicity, C=Consistency, I=Isolation, and DDurability [4] 
2 The model ignores the distributed nature of a parallel database system. A detailed discussion of this, however, 

would be beyond the scope of this paper. 
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Figure 3: Transaction Component State Changes within a Branching Transaction 

new transaction component for it. The TM maintains the transaction graph for each transaction 
and submits database operations (Read and Write) to the scheduler. The scheduler implements 
a concurrency control policy, and therefore decides when branching should occur. Although we 
only describe a locking policy in this paper, other mechanisms are possible. The scheduler is 
also responsible for preventing a transaction component from committing, if there exist some 
unresolved dependencies for it. Once a branching transaction has committed (or aborted), the 
TM reports back to the user. Branching of transactions is transparent to the user. 

3 Two-Phase Locking for Branching Transactions 

In this section we describe a multi-version two-phase locking algorithm for branching transactions 
(hereafter referred to as BT_M V2PL). Our algorithm is based on Bernstein, etal.'s [1] description 
of multi-version two-phase locking. 

As mentioned earlier, branching transactions require a multi-version (MV) environment to 
enable the concurrent execution of alternative paths. Under BT..MV2PL the data manager has 
to store one or more versions of a data item, of which only one was created by a committed 
transaction. When a transaction component that created a new version of an item commits, its 
version overrides the previously committed one. 

When the scheduler receives a Write from transaction component Tjj (wjj[x]), it translates it 
into w1,1 [x,1], immediately schedules it for execution - the data manager creates a new version: 

- and sets a write lock (w1,1[x,j]) on this new version. 
A transaction component T1,5 cannot access versions of x created by another component, 

Tik, of the same transaction, unless 2,j  is a descendant of Tik. In this case, or when Ti,j itself 
has previously written to x, the scheduler translates a Read operation from T11 (r5[x]) into a 
version Read on XI,k or ZjJ, respectively (irrespective of any other existing versions of x). 

TI only one version (the most recently committed one) of x exists, the scheduler translates a 
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Figure 4: DBMS Model for Branching Transactions 

Read operation from transaction component n j , (r1, [x]), into a version Read on the committed 
version oft, i.e. rI,j[xk,,], where xk,l is the committed version oft. As with Write operations, 
the operation (Read) is scheduled immediately, and an appropriate lock is set (r1I,[xk1]). 

When a Read operation from transaction component Tjj (r,j [x]) arrives at the scheduler, 
and multiple versions of z exist (none of them created by T14 or one of its ancestors), the 
scheduler informs the transaction manager that branching is required. The transaction manager 
then creates new transaction components - one for each version of x - and the scheduler 
immediately executes a version Read for each new component: rj;k,[xm ,, n ,], for 1 = 1..number 
of versions (Tik, are the new transaction components, & versions of x). Each new 
component sets a read lock on the version it read. 

If at the time of branching one of the versions oft had a certify lock on it, and the transaction 
that set this lock commits, then the transaction component that read the previously committed 
version of x must abort. 

Before a transaction component can commit, it must be certified. Certification involves two 
phases: (1) a transaction component must wait until all data it or one of its ancestors read are 
committed, and (2) it must upgrade all its and its ancestors' write locks to certify locks. A 
transaction component trying to acquire a certify lock on z is blocked, if there exists a certify 
lock on any version oft already, or if there exists a read lock on the committed version oft. 

As with other locking protocols, deadlocks may occur. Traditional deadlock detection and 
resolution techniques can be applied. Some (or possibly all - this is subject of further investig-
ation) deadlocks can be resolved by aborting only some transaction components without having 
to roll-back any transaction completely. 

Note that theFe are no conflicts between read locks and write locks, and between write locks 
and write locks. Transactions only conflict through read locks and certify locks, as described 
above. Write locks are simply markers to remember on which items a transaction needs to obtain 
a certify lock. 



4 Correctness Proof 

To prove the correctness of our new concurrency control algorithm, we will now formalise the 
concept of branching transactions, and show that a 
BT_MV2PL scheduler only allows serializable schedules of concurrent transactions. Our proof 
is based on the serializability theorem of Bernstein, etal. ([1]). We will present some of their 
theorems here to keep our paper as self contained as possible; proofs of their theorems are, 
however, omitted. The interested reader is referred to their book. 

4.1 Branching Transaction Multi-Version Histories 

As described earlier, the branching of transactions is solely the responsibility of the scheduler 
and is transparent to the user. Hence, at the user level, we consider a transaction as a sequence 
of operations on the database. 

Definition 1 (from [1], page 27) A user-level transaction UT1 is a partial order with ordering 
relation <', where 

UT1 C {r1[z], wl[z] I x is a data itern} U {aI,cl}. 

a1 E UT1 iffc 	UT1. 

if t is c1 or a (whichever is in UT1), for any other operation p E UT1, p 

ifrj[x], w1[x] E UT1, then r1[x] <q w[z} orw1[x] <' rj[z]. 

Condition (1) states that the only operations on the database are either Reads (r1(z)) or 
Writes (w1(x)) and that a transaction either Commits 3  (c1) or Aborts (a1). Condition (2) says 
that a transaction can either Commit or Abort, but not both. Condition (3) states that a 
Commit or Abort is the last operation of a transaction. Condition (4) requires the partial order 

to specify an order of execution on a Read and Write if they access the same data. 
Since user-level transactions are described in terms of these 4 operations: r1 [x], wj[x], ci and 

a1, we need some mapping function h that captures the fact that one user-level operation may 
be translated into a set of BT operations. The following BT operations are defined: 

rI,j[xk,d: transaction component TjJ reads the version of data item z written by transaction 
component Tk,,. 

w1, [x1,1]: transaction component T1,1 creates a new version of data item x. 

b1,1(i, k): transaction component T1,1 spawns a new transaction component Tl,k. 

a1,1: transaction component T1,1 aborts. 

c,1: transaction component Tj commits. 

The mapping from user-level to BT operations depends on the concurrency control policy 
used by the scheduler. The following mapping rules, however, hold independently of what policy 
is used. 

1. Mapping of Read operations: 
h(r1[aj) = {rj,j[x,,m ] I Tj is a transaction component 

executing in behalf of T1 and reading some version of x} U 
{b1,1(i, k) I Tij  created transaction component Ti,k } 

A user-level Read operation may require multiple BT Read operations and the creation of 
new transaction components. 

3 The Commit here means that a transaction actually conunits, not merely that it requests to commit, since 
in the latter case a transaction may still be aborted. 
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Mapping of Write operations: 
h(w1[z]) = { w1,[x1,1] I Ti,j is a transaction component updating } 

A user-level Write operation on z may be executed by more than one transaction compon-
ent, although only one of these versions will ultimately be committed. 

Mapping of Abort operations: 
h(a1) = (aij I Tij is a leaf node in 7;'s transaction graph } 

A user-level transaction aborts, if all leaf nodes in the corresponding BT's transaction 
graph abort. 

Mapping of Commit operations: 
h(ci) = {cj} U 

{alk I Ti,k is an active transaction component of Ti, and i i4 k} 

If a user-level transaction Ti commits, then one of the active components commits, but all 
others abort. 

A branching transaction Ti is the result of mapping the operations of a user-level transaction 
UT1 onto BT operations. Before we give a formal definition of branching transactions, we must 
present formal definitions for some of the terminology introduced earlier. 

Definition 2 Two BT operations, p and q, conflict with each other if p is a Read operation 

(rj,j[xm , n]), reading the version of a data item (xm,n)  which was written by q (wk,:[xk,], where 
in = k, ii = I), and p and q are operations of different transactions (i $ k). 

Definition 3 A transaction component T1,1 of branching transaction Ti  is obtained by de-

leting all operations P1,1  of Ti for which hr i4 j. 

Definition 4 A transaction component Ti,d is a descendant of transaction component Tk, a  in 
history H, ilk = i and either (J) operation b1,0 (k, d) E H, or (2) 3 b1, ai (k, a2), b1, 2 (k, a3), 

bk,ai(k, a) E H, such that a1  = a, an  = d and it > 2 The set of all descendants of 
transaction component Tk,a  is denoted by desc(k, a). 

Definition 5 A transaction component Ti a  is an ancestor of transaction component Tk,d in 
history H, if hr = i and either (1) operation 61 5 (k, d) E H, or (2)3 bk a,(k, &2), b1, a (k, a3), 

b1, 1 (k, a) E H, such that a1 =a, an  = d and n > 2 The set of all ancestors of transaction 
component Tk,d is denoted by anc(k, a). 

Definition 6 A transaction graph (TG) for branching transaction Ti in history H, denoted 
TG(H, i), is a rooted directed tree whose nodes are the transaction components of Ti  in H, and 
whose edges are all T1, —. T1,1, such that b11(i, k) C H. The root node is labelled T1,0. 

Definition 7 A transaction path in branching transaction 7; is a path in TG(H, i) between 
the root node (T1,o) and one of its leaf nodes. 

Definition 8 A branching transaction Ti is obtained by translating the operations of a user-
level transaction UT1 into BT operations according to some mapping function h. Ti is a partial 
order with ordering relation <, where 

let q E UT1; if ci,j € H, then there exists some P1,1 € H, such that P1,1 € h(q), and j = hr 
orTj,1 C anc(i,j). 

let p q € h(o), where o is a user-level operation of UT1. If  C 7J and q CT1,1, and there 
exists a transaction path which contains both, 7,j  and 7'I,k,  then j = hr and p = q, unless 
p = b1,j(i, k) and q = rik[xmn] (for some Xm4. 



if m and qj are operations in UT1 and pi <IV q, then for any Si,j,ti,k E Ti, where sjj E 
h(pj), tik E h(q1): if there exists a transaction path P in TG(H, i) that contains transaction 
components Tj,j and TIk, then sij <i tik. 

if cjJ e T1, then for any transaction component TIk where k i4 5, alk C Ti , or bik(i,  1) e 
T1,,, (for some 1). 

cj € T1j iffa 1 ,b1j(i,k) V Tj, ajj € 27jj iffc1,j,bj,(i,k) V T11, 611(i,k) € T11  iff 

cj, aj V T1j (for some k). 

let p, q C H be two Branch operations; p = bj(i, Ic) and q = bj,m (l, n). If i = I and Ic = 

then p = q. 

if t is cij or aij (whichever is in T1j), then for any other operation Pij C T1j, Pi,j <i 2. If 
is bI,j (i,.k) (for some Ic), then all operations Fiji  such that t <i P11, are Branch operations 

bj1(i, 1), where 1 0 Ic. 

Condition (1) states that all operations requested by the user-level transaction are translated 
into the appropriate BT operations, i.e. all user-level operations are executed at least once along 
the successful transaction path of the corresponding BT transaction. Condition (2) states that 
each user-level operation is executed at most once along each transaction path. Condition (3) says 
that all orderings given in user-level transactions are preserved within branching transactions. 
Condition (4) states that only one branch (path) of a BT transaction is allowed to commit. 
Each transaction component either branches, commits or aborts (condition (5)). Condition (6) 
guarantees that all newly created transaction components are uniquely identified by their two 
indices. Condition (7) says that a transaction component either terminates with a Commit, an 
Abort, or a number of Branch operations. 

Similar to histories and multi-version histories described in [1], we use the notion of a BT 
history to describe the interleaved execution of branching transactions. 

Definition 9 A complete BT history H over a set of top-level transactions UT = {UT,,.. ., UT,,) 
is a partial order on the corresponding set of branching transactions T = {To, .. . ,T,} with or-
dering relation <H, where 

H = h(U.1 UT1), for some translation function h. 

cn2U?_i<i. 

for any two conflicting operations p q C H, either p <if q or q <H P- 

zfrji[x,,] € H, then wkj[xkj] <H rIi[xk,,}. 

if wj[x1] <1 rik[xl,m}, and Ic = j or T1,k C desc(i,j), then i = 1 and 5 = in. 

ifrjJ[xk ,] € H and i 0 Ic, then if Cjj  e H or Ci,d € H and Tid C desc(Tjj), then it also 
holds that either ct., € H or ck m  € H and Tk,m C desc(Tk4, and that ck <H Ci,y, for 

some X, Y. 

Condition (1) states that all operations submitted by user-level transactions are translated 
into appropriate BT operations. Condition (2) states that the execution of branching transac-
tions maintains all orderings defined on BT operations. Condition (3) states that the scheduler 
must determine an order on all pairs of conflicting BT operations. Condition (4) states that 
a BT transaction cannot read a version before it was created. Condition (5) states that if a 
transaction component wants to read a data item which it or any of its ancestors has previously 
created a version of that data item, then it must read that version. Condition (6) states that if a 
transaction component wants to commit, then all versions read by it or one of its ancestors must 
be committed, i.e. the transaction component that created the version, or one of its descendants, 
must have committed. 



To prove serializability for BTMV histories we need only be concerned with those operations 
that were executed by transaction components which committed, or which have a descendant 
that committed. We use the notion of a committed projection to represent the committed part 
of a BT history. 

Definition 10 The committed projection of a BT history is obtained through the following 
three steps, and is denoted by C(H). 

Delete all operations Pi,j E 7 j from H for which it is not the case that c1,j e H or cl,d E H 
and Tj,d € desc(Ti,j). 

Delete all bi j  k) operations from H. 

Map each rjj[xk,]  into rl[xk], each wjj[xjj] into w4zt], and each cij into c1. 

Step (1) eliminates all operations which were not executed by those components that are part 
of the committed BT transactions. We have now effectively pruned all transaction graphs to 
one particular transaction path. To determine whether our history is serializable, we don't need 
the information about which operation was executed by what transaction component, but only 
by which transaction. Hence, we can delete all BT Branch operations and map all remaining 
operations oj  to 0j (steps (2) and (3)). The latter implicitly leads to a mapping of data versions 
x i j to x. 

Proposition 1 The committed projection of a BT history is a multi-version history (as defined 
in [1]). 

Proof: omitted for space reasons; 0 

4.2 Correctness of BT_MV2PL 

To prove that all committed projections of histories produced by a BT_MV2PL scheduler are 
serializable, we first need to describe certain properties of these projections, i.e. an algorithm 
implementing BT..MV2PL policy guarantees the following properties of the committed projec-
tions of histories allowed by this algorithm. The certification of a transaction Ti is denoted by 

f. 

BT_MV2PL 1 : For every Ti, fi  follows all ofTi's Reads and Writes and precedes Ti 's commit-
ment. (rj[zj], wt[x1] <c(H) 11 <C(H) c1, for all j) 

The certification of a transaction, i.e. a transaction component and all of its ancestors 
in H, takes place after all of its Reads and Writes are executed; and only after successful 
certification can a transaction commit. 

BT_MV2PL 2 : For every r5[xi] in C(H), if j 54 i, then ci <C(H) fj. 

A Read of a transaction cannot be certified until the transaction that created the read 
version has committed. 

BT_MV2PL3: If n[x1] and wt[xi] are in C(H), then either c1 <C(H) rk[xj] or rk[xj] <c(H) A. 

A transaction's Read on a, is either ordered after the Commit or before the certifica-
tion of another transaction that creates a new version of r. This is because of the conflicts 
between Read Locks and Certify Locks. 

BT_MV2PL 4 : For every rk [x5] and w1[x] (i, j, k distinct), if f1 <c(j) rk[xJ], then fi  <c(H) fj. 

A Read operation is only certified if it read the most recently certified version of a,. This is 
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because a Read cannot be certified until the version it read has been committed; and since 
the transaction does not release its Read Lock until commit time, it prevents any other 
transaction from overwriting x - to overwrite the last certified version of at, a transaction 
needs to obtain a Certify Lock, which is not possible before the Read Lock on the last 
certified version has been released. 

BT_MV2PL5: For every rk[xj]  and w1[x], where i 0 j and i 54 k, if rk[x] <C(s) f' and 

ii <C(S) f, then  fk <C(s) Ii 

A transaction can only certify an update of at after all transactions that have read a 
previously certified version have certified their Read. This is because of the same reason as 
in BT_MV2PL 4 : a transaction does not release its Read Locks until after it was certified. 

BT_MV2PL6: For every w[xj], w[at] (i 0 j), either fi  <c(H) fj or fj  <c(s) f 

The certification of every two transactions that write the same data item are ordered 
with respect to each other. This is because Certify Locks conflict with each other. 

The proof of serializability of BT_MV2PL histories is based on two theorems by Bernstein, 
etal. [1]; we will present these theorems here, but omit their proofs. Furthermore, we shall 
use their notion of serialization graphs, denoted SG(H) and multi-version serialization graphs, 
denoted M VSG(H, <<). In brief, a serialization graph describes transaction dependencies due to 
conflicting operations. In addition, a multi-version serialization graph, also describes transaction 
dependencies due to the ordering of versions in a multi-version system. For more details on these 
graphs and the omitted proofs, we refer the reader to [1]. 

Theorem 1 (Theorem 5.3 in [1]) Let H be a MV history over a set of transactions T. C(H) is 
equivalent to a serial, IV history over  if H is JSR. 

Theorem 2 (Theorem 5.4 in [1]) An MV history H is ISA'? 1ff there erists a version order cC 

such that MVSG(H, <) is acyclic. 

Theorem 3 Every committed projection C(H) of a BT history produced by a BT_MV2PL 
scheduler is serializable, i.e. is equivalent to a serial, IV history. 

Proof: 	4 	To prove above theorem, we will show that all edges in 
MVSG(G(H), <cz) are in certification order, 	i.e. 	if T1 	— 	T1 in 
MVSG(C(H),cC), then fi  <C(s) J5. Because of BTMV2PL6, <<is indeed a version order. 

Let T1 —i Tj  be in SG(C(H)), then 7j  must read a version created by Ti: rj[xj] E C(H). By 
BT_MV2PL2, we know that c1 <C(s) f, and since fi  <C(s) c (by BT_MV2PL 1 ), it follows 
that fj  <C(s) f. 

Let w1[x1], wj [xj ], rk[x] E C(H), where i,j,k are distinct. Then either xi Cat, or atj C atI. 
If at1 C x, then the version order edge is Ti — 7). .f Cc(s) f j  follows directly from the 
definition of C. If xj cc x, then the version order edge is 7j —+ Ti. By BT_MV2PL3, 
either c1 <C(s) rk[xJ] or rk[xj] <c(s) f. In the first case, by BflMV2PL1, if follows that 
fi  <C(s) rk[x], and then by BT_MV2PL4 f i  <C(s) fj. But this contradicts fj <C(5) rk[xl] 
(given by the definition of the version order), and therefore it follows that rk[x] <c(H) f; and 
since fi  <c(s) f1, it follows by BT_MV2PL5 that fk <C(s) f, as desired. 

We have shown that all edges in M VSG(G(H), <<) are in certification order; and since the 
certification is embedded in a history which is acyclic by definition, M VSG(C(H), <<) is acyclic, 
too. By theorems 1 and 2 it follows that C(H) is equivalent to a serial lv history. 0 

4 This proof is based on Bernstein, I-Jadzilacos and Goodman's proof of correctness for 2-Version 2-Phase-
Locking; Theorem 5.6 in their book. 
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5 Logging and Recovery 

The component of a DBMS responsible for maintaining transaction atomicity is called the re-
covery manager (JiM) . A RM has to write log records to disk to allow transaction roll-backs 
in case of transaction or system failures. To avoid excessive I/O overhead under BT, we suggest 
the following logging and recovery strategy. During execution of a transaction component, all 
updates to the database are kept as new versions of an item in main memory only; the database 
on disk is not updated and no log records are written. If a transaction component aborts, all 
data versions created by it are simply discarded; no I/O is necessary for aborting transaction 
components. To commit a component, for each item to be written, first a log record is written 
and then the database is updated on disk. Assuming that log records and the database are 
stored on different disks, I/O to log disks and database disks can proceed in parallel (as long as 
for each item the log record is written before updating the database). Recovery from a system 
crash works as with traditional recovery techniques (see [1]). Since no log records are written 
until commit time - the time at which it is known which path of execution of a branching 
transaction is correct - logging is only required for one path of a branching transaction, and 
hence, the BT model does not impose any extra I/O overhead for logging on the system; in both 
cases, branching and non-branching, two I/O accesses (one for logging and one to update the 
database) are required per database update. 

6 Branching Restriction Policies 

If unlimited branching of transactions is allowed, the number of transaction components may 
grow exponentially and the system suffer from thrashing. We, therefore, need a policy to regulate 
the branching of transactions, a policy which will only allow transactions to branch if sufficient 
system resources are available. A function branch-control must be defined which determines 
whether branching should be permitted. Since BT requires primarily additional CPU time, 
branch-control may allow branching only, if the average CPU utilization is below a certain 
threshold x. The value to which at should be set and what other branch-control functions may 
be applied, are open questions. Simulation studies will help to clarify this issue. 

In case branching of a transaction component is denied by branch-control, the corresponding 
read operation follows the (non-branching) MV2PL policy as described in [1], i.e. the component 
tries to set a read-lock on the last committed version of the item to be read. Serializability is 
still maintained the same way as before (read-locks conflict with certify-locks). 

Using such a policy, branching of transactions is controlled dynamically. It is adapted to the 
current system workload in the sense that branching is only allowed as long as enough resources 
are available. 

7 Conclusion and Future Work 

In this paper we have presented a transaction model which aims to reduce the problem of data 
contention in a parallel database system. Our approach takes advantage of low resource utilisa-
tion, which is frequently the result of data contention. Using a simple example we have shown 
the potential performance advantage of branching transactions. We also presented a two-phase 
locking algorithm for our new transaction model, and proved that it guarantees serializability. 
Although we used 2PL as a concrete example, branching transactions is a more general concept, 
and other algorithms, e.g. timestamp ordering, can be adapted to work with it. 

More information is needed about the performance of branching transactions. In particular, 
we must investigate how various transaction workloads and hardware environments influence the 
performance of BTs. We also need a performance comparison with already existing transaction 

5  A overview of existing recovery techniques can be found in [1]. 
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models/concurrency control algorithms. For this work, we are currently preparing a comprehens-
ive simulation study. This study will also be used to investigate various branching restriction 
policies. 
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