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A b s t r a c t .  This short paper intends to provide an introduction to pos- 
sibilistic logic, a logic with weighted formulas, to its various capabilities 
and to its potential  applications. Possibilistic logic, initially proposed in 
[11], see also L~a Somb~ [26] for an introduction, can be viewed as an 
important  fragment of Zadeh[32]'s possibility distribution-based theory 
of approximate reasoning, put  in a logical form. Possibilistic logic also 
relies on an ordering relation reflecting the relative certainty of the for- 
mulas in the knowledge base. As it will be seen, its semantics is based on 
a possibility distribution which is nothing but a convenient encoding of a 
preference relation a la Shoham[29], between interpretations. This kind 
of semantics should not be confused with the similarity relation-based 
semantics recently proposed by Ruspini[28] for fuzzy logics which rather 
extends the idea of interchangeable interpretations in a coarsened uni- 
verse, e.g. Farifias del Cerro and Orlowska[17], and which corresponds to 
another issue. 

1 N e c e s s i t y - w e i g h t e d  f o r m u l a s  a n d  t h e i r  s e m a n t i c s  

Let us first recal l  t h a t  a necessi ty  measure ,  deno ted  by N ,  is a func t ion  f rom a 
logical  ( p ropos i t i ona l  or f i rs t -order)  l anguage  s to  [0, 1], such t h a t  N ( T )  -- 1 and  
N(_k) = 0, where  T (resp. J_) denotes  any t a u t o l o g y  (resp. any con t rad ic t ion) ,  
and  obey ing  the  fol lowing ax iom 

Vp, Vq, N(p A q) -= min(N(p), N(q)) (1) 

As a consequence we have min(N(p), N(-~p)) -- O. However we only  have 
N(pVq)  ~_ max(N(p),  N(q)), since e.g. for q --  -~p, N(pV~p)  -- N ( T )  --  1 while  
in case of  t o t a l  ignorance  we m a y  have N(p) = N(~p) = 0. i necessi ty  measu re  
N is the  dua l  of  a poss ib i l i ty  measure  H ,  such t ha t  Vp, N(p) ~- 1 - II(-~p), where  
/ / o b e y s  the  charac te r i s t i c  a x i o m  Vp, Vq, II(p V q) = max(II(p), II(q)) ([31]). 

A poss ib i l i s t ic  logic f o rmu la  is a pa i r  (p, ~)  where p is a classical  f i r s t -order  
or p r o p o s i t i o n a l  logic f o r m u l a  and c~ a n u m b e r  be longing  to  the  semi -open  real  
in te rva l  (0, 1], which e s t ima te s  to  wha t  ex ten t  i t  is cer ta in  t h a t  p is t rue  consid-  
er ing the  ava i lab le  i n fo rma t ion  we have a t  our  disposal .  More fo rma l ly  (p, o~) is 
a syn t ac t i c  way to code the  seman t i c  cons t r a in t  N(p) ~_ o~. 
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As suggested by the operator min in (1), and since necessity measures, as 
well as possibility measures, are the perfect numerical counterparts of qualitative 
relations aiming at modelling "at least as certain" and "at least as possible" 
([13]), the numbers used for weighting the formulas have an ordinal flavor. It 
departs from other uncertainty-handling approaches to automated reasoning, 
e.g. Baldwin[l], making use of probability bounds, and thus of sum and product 
operations. 

N.B. : In this paper, for the sake of simplicity, we only consider lower bounds 
of necessity measures for weighting the formulas. We can also deal with lower 
bounds of possibility measures, i.e. II(p) > ~, which corresponds to a very weak 
form of information; see [12, 23]. 

Let M(p) be the set of models ofp. The semantics of (p, a) is represented by 
the fuzzy set of models M(p, a) defined by [5] where w denotes an interpretation 

I.tM(p,,~)(W) = 1 ifw E M(p); #M(p,,~)(w) = 1 -- c~ ifw r M(p) (2) 

In other words, the interpretations compatible with (p, a) are restricted by 
the above possibility distribution. The ones in M(p) are considered as fully 
possible while the ones outside are all the more possible as c~ is smaller, i.e. the 
piece of knowledge is less certain. Note also that  here we use the least specific 
possibility distribution 7r = ItM(p,,~), i.e. the one  with the greatest possibility 
degrees compatible with II(-,p) < 1 - a r N(p) > a, where the expression of a 
possibility m e a s u r e / / i n  terms of a possibility distribution ~r is given by, 

Vp, II(v) = sup{rr(w), ~ E M(p)}. (3) 

(as a consequence of the characteristic axiom of possibility measures). Indeed, 
any possibility distribution ~r satisfying the constraint N(p) > a is such that  
V,,.,, ~-(,,.,) < pM(,,,,:,)(,,.,). 

In case of several pieces of knowledge (Pi, c~i), i = 1 , . . . ,  n, forming a knowl- 
edge base/C, in agreement with the minimal specificity principle[14], we associate 
the following possibility distribution, built by performing the largest conjunction 
operation (which is also the only idempotent one) on the membership functions 
]~M(pi ,c~i), namely, 

= mind=l, (4) 

It can be checked that  the necessity measure NIc induced from ~r~c by Npc(q) = 
1 ,  sup{~r~c(w), w ~ -~q}, where w ~ q means w E M(q), is the smallest necessity 
measure satisfying the constraints N(pi) > ai. This is nothing but another 
formulation of the minimal specificity principle. 

Let us take an example: 

Ic = v q, 1), v r,  0.7), v r, 0.4), (p, 0.5), (q, o.s)}. 

This induces the constraints, 



47 

~(~,) < ,Mr w ~ p A ~q, ~(~)  = 0 ,up{=(~,), ~ > p A ~q} = 0 
-(~,) < ,Mr W, D p A - ~ ,  ~(~,) < 0.3 ~up{~(~,), ~ ~ p A - ~ }  < 0.3 
, @ )  _< ~M(-q,.~,o.,)(.,) ~ v. ,  ~ q ^ -.~, ,-(.,) _< 0.6 ~0 ~,,~,{,~(,,,), ~, ~ q ^ -~}  _< 0.6 
.'(~,) _< ~( , , ,o .~)( . , )  w ,  ~ -~p, ,@)  <_ o.~ ~p{~(~ , ) ,  ~, ~ -~p} < 0.5 
,~(.,) < t ,~(~,o.)( . , )  v. ,  ~ -.q, , @ )  _< o.2 ,~p{~-(. ,) , . ,  ~ -~q} _< 0.2 

and the corresponding possibility distribution ~Oc, defined by (3), is pictured 
on Fig 1 .  
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0.3 

0.2 

0 I 
p A q A r  

- - 0  - -  - 0  

- 0  m �9 

I ~ ? ' I ' I p A - - f l A  r - - p A q A r  --~A --flA r 
p Aq  A ~ p A ~ q A  --it -~p A q A--l" -~p A -'~IA--r 

Fig. 1 

The possibility distribution of Fig. 1 is normalized, i.e. 3w, rrtc(w) = 1; in 
the general case, there may exist several w such that rrtc(w) = 1. This means 
that /C is fully consistent since there is at least one interpretation in agreement 
with K; which is completely possible. More generally we define the degree of 
inconsistency of/C by, 

lnc(IC) = 1 - supwroc(w) (5) 

It can also be established that  Inc(lC) > 0 r is inconsistent, where /C* 
is the classical knowledge base obtained from/C by deleting the weights. 

A possibility distribution such as the one pictured in Fig. 1 is a way of 
encoding a preference ordering among interpretations, i.e. the kind of relation 
used by Shoham[29] for providing non-monotonic logics with a semantics. Indeed, 
it has been shown[15] that  the preferential entailment ~ ,  where rr is short for 
roc, defined by, 

P ~ r  q Cr> (3w,w ~ p and Vw,w ~ r  P => W ~ q), 

where 

~o ~ p r ~o ~ p, II(p) > 0 and /~w', ~ '  ~ p and r(w) < rr(w'), 

is in complete agreement with non-monotonic consequence relations obeying 
the axiomatics of system P proposed by Kraus et al.[21]. It can be also shown 
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that  it is closely related to the notion of conditional possibility since we have 
the equivalences, 

1 if H(p) = H(p A q) 
p ~ q r g(q[p) > g(-,q[p) with H(q[p) = H ( p A q )  if H(p) > H ( p A q )  

r g(q lp  ) > 0 with N(qlp ) = 1 - H(~qlp) 

p ~ q means that  preferred models of p (as induced by 7r) are all models of 
q. 

2 Resolution Principle and Combination/Projection 
Principle 

In this section we suppose that  that weighted formulas are weighted clauses; this 
can be done without loss of expressivity; this is mainly due to the conjunctive 
compositionality of necessity measure[7]. The following deduction rules[ll, 12] 
have been proved sound and complete for refutation with respect to the above 
semantics; see [5] for the case of consistent knowledge bases 

resolution rule: (-'p V q, a) (p V r,/3) 
(q V r, min(~,/3)) 

particularization: (Vz p(x), a) (as well as more general substitutions) 
(p(a), ~) 

If we want to compute the maximal certainty degree which can be attached 
to a formula according to the constraints expressed by a knowledge base /(5, 
for instance r in the above example, we add to /~ the clause(s) obtained by 
refuting the proposition to evaluate with a necessity degree equal to 1, here we 
add (-~r, 1). Then it can be shown that  any lower bound obtained on _k, by 
resolution, is a lower bound of the necessity of the proposition to evaluate. See 
[4] for an ordered search method which guarantees the obtaining of the greatest 
derivable lower bound on _k. It can be shown[5, 23], that  this greatest derivable 
lower bound on I is nothing but Inc(K. O {(-~r, 1)}) where r is the proposition 
to establish. In the example, we have the following derivation, 

(-~pv r, 0.7) (-~r, 1) 
j 

(--,p, 0.7) (19, 0.5) 

(-4 0.5) 

i.e. N(r )  > 0.5 and indeed it can be checked that using the possibility dis- 
tribution pictured in Fig. 1, we have II(-~r) = sup{Tr(w), W ~ -~r} = 0.5, in fact 
II(-~r) < 0.5 since 7r is the greatest possibility distribution compatible with/C, 
and then N(r)  = 1 - II(-~r) > 0.5. 



49 

It is has been pointed out in [7] that  this procedure is in agreement with 
Zadeh's approach to approximate reasoning based on combinat ion/project ion 
of possibility distributions. This can be also checked on our example. Let us 
suppose tha t  p means "X > a", q means "X > b" with b < a and r means 
"Y E [c, at] '' where X and Y are two real-vMued variables under consideration. 
Then it can be seen that  the 8 interpretations correspond to, 

S(p A q A r) = S(p) n S(q) n S(r) = [a, +oo) • [c, 4 ;  
s(p A q ^ ~ )  = [a, + ~ )  • [c, 4; 
S(p A - ~ q A r ) = O ;  S(pA~qA- , r )=O;  
S(-~p A q A r) = [b, a) x [c, 4; S(~p A q A -~r) = [b, a) x [c, 4; 
S(~p A -~q ̂  ~) = [0, b) x [c, 4 

S(~p A -~q A -~r) = [0, b) • [c, d]. 

where S(w) denotes the set of values of the pair (X, Y) corresponding to the 
interpretat ion oz. Then K is equivalent to a set of possibility distributions, each 
one corresponding to a piece of knowledge, namely, 

7r 1 (~pVq,  1) : { x,y(U,V) = 1, V(u,v) because S(pA-~q) = 0 ,  i.e. -,pVq is a 
tautology 

(-~pV q,O.7): ~xy(U,V) ~< 0.3, V(u,v) C [ b + ~ )  x Iv, 4 
' L = 1 otherwise; 

(-~q V r, 0.4) : 7r3x,y(U, v) { __<- 0.6,1 otherwise;V(u' v) E [a, + ~ )  • [c,d] 

= 1 if u E [a,+co) 
(p,0.5) :  7r4,y(u,v) < 0.5 otherwise; 

{~<1 if u E [ b , + ~ )  
(q, 0 .s ) :  ~,~(~ ,  v) 0.2 otherwise. 

Then it can be checked that, 
~y(v) = sup~mi,~(~'ky (~, , v), ~},~.(u, v), ~.,~. (u, v), ~ , y ( U ,  v), ~ , v ( u ,  v)) =dof 

sup~r~,y(U, v) 
with 

. ( 1  i f(u,v) E[a,+oo)• 
~x ,Y( , ,  v) 0.5 if ~ e [b, a) 

* f < 0.3 if (u, v) E [a, + ~ )  • [c, d] 
Irx,y(U, v ) .  _~ 0.2 if u e [b, + ~ )  

Then Try(v) = 1 ifv E [c, d]; Try(v) < 0.5 ifv ~ [c, d] and finally II(S(-,r)) = 
H([c, el]) = supv~F--~Try(v ) <_ 0.5 and thus N(S(r)) >_ 0.5, i.e. we recover the 
:result already obtained by refutation. 

N.B.: Semantic evaluation methods,  extending a procedure by Davis and 
Pu tnam,  are also available in possibilistic logic[22]. 
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3 Labelled Formulas and the Handling of Vague 
Predicates 

As pointed out in [5], the weighted clause (-~p V q, a) is semantically equivalent 
to the weighted clause (q, min(a,  v(p))) where v(p) is the truth value of p, i.e. 
v(p) = 1 ifp is true and v(p) = 0 ifp is false. Indeed, for any uncertain proposition 
(p, c~) we can write #M(p,a)(W) under the form rnax(v~(p), 1 - a), where v~(p) 
is the truth-value assigned to p by interpretation w. Then obviously: 

Vw, PM(,vVq,~)(w) = max(v~(-~p V q), 1 - a) 
= max(1 - v~(p),vw(q), 1 - a) 
= max(v (q), 1 - min(v (p), 4)) 
~- #M(q,rnin(vco(p),c~))(Vd)- 

This remark is very useful for hypothetical reasoning, since by "transferring" 
an atom from a clause to the weight part of the formula we are introducing 
explicit assumptions. Indeed changing (-,p V q, 4 ) i n t o  (q, min(v(p), 4)) leads 
to state the piece of knowledge under the form "q is certain at the degree 4, 
provided that p is true". Then the weight is no more just a degree but in fact 
a label which expresses the context in which the piece of knowledge is more or 
less certain. 

More generally, the weight or label can be a function of logicM (univer- 
sally quantified) variables involved in the clause. Thus a possibilistic formula 
of the form (e(X),#p(Z)) expresses that for any x, one is certain that the 
clause c(x) is true with a necessity degree greater or equal to pp(x) where 
#p is the membership function of a predicate. This predicate can be an or- 
dinary predicate or a fuzzy predicate. In this latter case the possibilistic for- 
mula means "the larger gp(x) ,  the more certain c(x)". Note that  in any ease 
the clause remains a classical clause, while the fuzzy predicate appears in the 
weight. For instance the rule "the younger the person, the more certain he/she 
is single" will be represented by (single(x), #yo~ng(age(x)) where young has a 

member sh ip  function which has the value 1 until the legal age for marriage 
and then decreases. With such a clause, once instantiated, with, say x = John, 
we need to know the age of John for computing the certainty degree. If we 
only have a fuzzy knowledge about John's age, modelled by a possibility dis- 
tribution ~r, we have to chang e gyo~g(age(John)) which is not known, by 
N~(young) = inf= max(#yo~g(u),  1 - ~-(u)), i.e. the certainty that  John is 
indeed definitely young given the available information about his age. 

~ z z y  pieces of knowledge like "John is young" can be also modelled in 
possibilistic logic. Let us assume for "young" a membership function as the 
one described above. Then the piece of knowledge is equivalent to the family 
of weighted formulas making use of the non-fuzzy predicates "< (age(x), a)" 
expressing that  age(x) < a, where the logical constant "a!' ranges on the domain 
of attribute 'age'. The degree of necessity of "<< (age(John), a)" given that  "John 
is young" is given by, 

Nyo=,~g(< (age(John), a)) = infa<~ 1 - #young(u) 
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which leads to the family of possibilistic formulas, 

(< (age(John), a), Nyou,~g(<_ (age(John), a))). 

Similarly "John is not young" will be represented by, 

(> (age(John), a), N,~ot_young(> (age(John), a))). 

Note that  the resolution of these two weighted formulas leads to 
(• sup#min( Nyo=,a( < - (age(John), a) ), N~ot_yo~na(> (age(John), a) ) ) which is 
equal to 1/2 if #yo=,~a is a continuous membership function and would be equM 
to 1 if 'young' were modelled in a crisp way by an interval. This is natural since 
the two pieces of knowledge we start with are fully contradictory only if we have 
a crisp understanding of the idea of "young". 

Using a similar (but slightly different) interpretation of fuzzy predicates, 
the resolution rule has been extended in [12], to the case of weighted fuzzy 
propositions (which thus no longer belong to a Boolean algebra). In that  case it 
is possible to explicitly deal with clauses like (-~young V single, ~). 

,i C o p i n g  w i t h  I n c o n s i s t e n c y  

A nice feature of possibilistic logic is its capacity to cope with a partially inconsis- 
tent knowledge base/~ such that  Inc(~) > 0. Roughly speaking, the conclusions 
which can be obtained with a degree of uncertainty strictly higher than Inc(t:) 
are still meaningful since for sure only a consistent subpart of /~  (containing 
the most certain pieces of knowledge) is used for deducing them. Indeed in any 
inconsistent sub-base of/~ there is (at least) a clause with a weight less or equal 
to Inc(g). 

For instance, let us consider the knowledge base/C previously introduced to 
which we add the clause (-~pV-~q, 0.2); let K:' = / ( ;O {(--p V -~q, 0.2)}. Clearly we 
have ~rm(pAqAr) = 0.8 now (instead of~rlc(pAqAr) = 1 in Fig. 1), and Inc(KJ) = 
0.2. A minimal inconsistent sub-base of K:' is {(--p V --q, 0.2), (p, 0.5), (q, 0.8)). 
From ~ '  we can still deduce (r, 0.5) or (p, 0.5) using only consistent parts of 
~ '  since 0.5 > Inc(IC'). Suppose now that  we add (--p V--q, 0.6) instead of 
(-~p V -,q, 0.2). Let K;" = /(; t.) {(-~p V -~q, 0.6)}. Then Inc(IC") = 0.5, and now 
we can deduce (--p, 0.6) by refutation from K; ~ using the consistent part of/C ~ t2 
{(-~pV-~q, 0.6), (q, 0.S)}, since 0.6 > Inc(1C') while (p, 0.5)is no longer considered 
as an allowed deduction since 0.5 = Inc(IC'). Thus a non-monotonic reasoning 
process is at work in possibilistic logic when partial inconsistency is introduced 
in the knowledge base. In Lang e* all23] an inconsistency-tolerant semantics is 
:proposed, adding an "absurd interpretation" on which the possibility distribution 
attached to the knowledge base is normalized. Using this semantics the soundness 
and completeness results for refutation that  we have in the consistent case can 
still be shown to hold. Moreover it has been established in [15] t h a t  we have 
N~c(qlp) > 0 if and only if it is possible to deduce (q, jb) from/(: t9 {(p, 1)} with 
fl > Inc(lC U {(p, 1)}), where N1c is the necessity measure defined from ~'tc. If we 
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define p ~  q by N~c (qlP) > O, then ~ is a non-monotonic consequence relation [15]; 
this illustrates the close relation that  exists between non-monotonic reasoning 
and belief revision [27], in the possibilistic framework. The reader is referred to 
[16] for a detailed analysis of belief revision in possibility theory. Besides, the 
problem of recovering consistency in a partially inconsistent knowledge base/C 
by building maximal consistent sub-bases (obtained by deleting suitable pieces 
of knowledge in/(;) is discussed in [9]. Note that  such a syntactic approach is not 
necessarily equivalent to a treatment based on a semantic representation such 
as ~'Jc, since syntactically distinct knowledge bases/~ and/C'  may be such that  

Lastly, another way of dealing with inconsistency might be to allow for path- 
consistent pieces of knowledge. Roughly speaking, the idea of paraconsistency, 
first introduced by da Costal3], is to say that  we have a paraconsistent knowl- 
edge about p if we both want to state p and to state --p. It corresponds to the 
situation where we have conflicting information about p. In a paraconsistent 
logic we do no want to have every formula q deducible as soon as the knowledge 
base contains p and ~p (as it is the case in classical logic). The idea of para- 
consistency is "local" by contrast with the usual view of inconsistency which 
considers the knowledge base in a global way. In possibilistic logic it would cor- 
respond to have p in E with both N(p) > a > 0 and N(-~p) > /3 > 0. The 
situation may be perhaps better understood if we consider Zadeh's combina- 
tion/projection point of view first. Indeed let us suppose that,  for some variable 
X (representing the value of some attribute), our knowledge is represented by 
a non-normalized possibility distribution ~'x- Then VA C domain(X), we have 
min(Nx(A), Nx(-A)) > 0 where the necessity measure Nx is based on ~-x. When 
combining this piece of knowledge ~rz with other possibility distributions ~r i, it 
can be easily seen that  the resulting possibility distribution ~r will be such that  
its height h(~') =de] sup~ ~r(u) = h(~rx) iff h(Tq) > h(Tcx), Vi. In other words, if 
used in a reasoning process with other non-paraconsistent pieces of knowledge, 
r x  will affect the result by "denormalizing" the resulting possibility distribu- 
tion, thus leading to a paraconsistent conclusion. This could be handled in a 
syntactic way in possibilistic logic as suggested by the following simple example 
of the modus ponens, 

N(-~p V q) > a > 0 
N(p) > /3 > O; N(-~p) > 7 > O 
N(q) >_ min(/3, max(a, 7)) ; N(-~q) > rain(~3,7). 

Indeed, we have (-~p V q) Ap ~ q, so N(q) > N((~pVq) Ap) = min(N(-~pV 
q), g(p)) > rain(a,/3), and also p A ~p ~ q, so N(q) > m~n(N(p), N(~p)) > 
min(fl, 7). Then N(q) > max(min(a, fl), min(fl, 7)). The situation is pictured 
in Fig. 2 
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It can be checked that min(N(p), N(-,p)) = min(N(q), N(~q)) >_ min(fl, 7) > 
0, which expresses that the degree of paraconsistency is propagated to the con- 
dusion. If 7 = 0, a particular case of the resolution principle is recovered. This 
suggests the following way of dealing with paraconsistent knowledge: i) keep 
the paraconsistent pairs N(p) >_ c~, N(~p) >__ fl (with degree of paraconsistency 
min(o~, ~)) separate from the remaining part of the knowledge base which is 
supposed to be consistent; ii) use the paraconsistent knowledge only, when it 
is impossible to produce a strictly positive lower bound on the necessity de- 
gree of a proposition of interest by using the consistent part of the knowledge 
base only. Then any conclusion which will be produced will have a degree of 
paraconsistency equal to the maximum of the degrees of paraconsistency of the 
paraconsistent pairs involved in the production of this conclusion. The idea to 
add paraconsistent knowledge only when necessary, to the consistent part of the 
knowledge base is a bit similar to the building of maximal consistent sub-bases[9]. 
The development of these ideas is left for further research. 

5 C o n c l u d i n g  R e m a r k s :  P o t e n t i a l  A p p l i c a t i o n s  

First steps towards possibilistic logic programming can be found in [8]. The use 
of possibilistic logic as a programming language is all the more of interest that 
n~dn-max discrete optimization problems (and more generally systems of possibly 
incompatible, prioritized constraints) can be expressed (and then solved) in pos- 
sibilistic logic[23]. Applications to hypothetical reasoning for diagnosis purposes 
or for finding "optimal" maximal consistent sub-bases of an inconsistent possi- 
bilistic knowledge base are discussed in [6, 10] where possibilistic Assumption- 
based Truth Maintenance Systems are developed. Other developments of ideas 
very close to possibilistic logic can be found in Froidevaux and Grosset~te[18] 
and in Chatalic and Froidevaux[2]. See also Jackson[20] for the computation of 
possibilistic prime implicants and their use in abduction. Besides these, Larsen 
and Nonfjall[25], Yager and Larsen[30] have used possibilistic logic in validation 
of knowledge bases. 
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