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Manpower scheduling is a critical operation in service organizations which operate round-
the-clock. It is an active topic in operations research. In this paper, we consider a problem in
manpower scheduling, called the Change Shift Assignment Problem (CSAP), which is con-
cerned with the assignment of shifts to workers such that demands for manpower are satisfied
and constraints governing the change of shifts are not violated. We show that CSAP is
NP-hard in general, and propose efficient polynomial-time algorithms to solve three practical

sub-problems of CSAP.

1. Introduction

In service organizations which operate round-
the-clock, workers are often scheduled to work
on multiple shifts. Examples are nurses in hos-
pitals, ground crews in airports, and operators
in telephone companies. In these organizations,
the scheduling of manpower resources is a
critical management function. Manpower
scheduling problems (MSP) are concerned with
the construction of schedules for workers or
teams of workers in order to meet the time-
varying workloads and to satisfy a set of con-
straints imposed by the management, the
labour union and the government. Glover and
McMillan® gives a good survey of the common
manpower scheduling problems.

Manpower scheduling (also referred to as
rostering) is a main research topic in opera-
tions research. Recently, Tien and Kamiyama'?®
proposed an integer programming framework
for solving MSP in general. In their framework,
MSP is decomposed into three sub-problems—
allocation, offday assignment and shift assign-
ment. Allocation computes the demands, i.e. the
number of workers needed for each shift in
each day so that the time-varying workloads
can be met. Offday assignment assigns offdays
on the schedule in order that workers get
enough rest between work and that demands
can be met. Shift assignment completes the
schedule by assigning shifts to non-offday slots
subject to demands and the given shift assign-
ment constraints.

* The extended abstract of this paper appeared in
Proc 5th Int’l Symp on Algorvithms and Computa-
tion, Beijing, China, 1994.
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Common approaches for solving shift assign-
ment problems include heuristics?®, network
optimization” and integer programming®®.
One common type of shift assignment con-
straints is the shift change constraints which
govern the permissible patterns of shift changes
that a worker can be given from one day to the
next so that he can maintain a healthy biologi-
cal clock. For instance, it is permissible to
change from a morning shift to an afternoon
shift, but not from an evening shift to a morning
shift since there is not enough rest hours in
between work. In this paper, we consider the
shift assignment problem subject to shift
change constraints. We call it the Changing
Shift Assignment Problem or CSAP.

In our research®'V, we investigate the com-
plexity of CSAP with different kinds of
demands and shift change constraints. Motivat-
ed by the result that CSAP is NP-hard even in
very restricted domains, we seek to find sub-
problems that have real-world implications
which are polynomial-time solvable.

2. Preliminaries

We explain the terms of reference. The
scheduling period is the number of days for
which manpower scheduling is performed.
Shifts are numbered 1, 2, ... and 0 denotes an
offday. A schedule is a matrix where rows
represent workers and columns represent days
of the scheduling period. Each matrix element
is known as a slot, which will be assigned either
a shift or an offday. A slot precedes another slot
if it is on its adjacent left position. A schedule
in which offdays have been assigned is known
as a show-up schedule. In a show-up schedule,
the number of workers not having offdays on a
given day is the supply of workers on that day.



1272 Transactions of Information Processing Society of Japan

A demand malvix gives the number of workers
required in each shift on each day of the schedul-
ing period. A shift change matrix is a boolean
square matrix which defines the shift change
permission from one shift to another. We
assume that an offday may precede or follow’
any shift. A feasible schedule is a schedule with
all slots assigned which (1) satisifies the de-
mand matrix ; (2) for any2 adjacent slots in the
schedule, the shift change is satisfied. Figure
1 gives an example of terms explained.

As in most literature, we assume that sched-
ules are cyclic. In other words, for any worker,
if he follows row w of the schedule in the
current scheduling period, then he will follow
row w1 in the next scheduling period, and the
rows wraparound. This allows the schedule to
be used indefinitely and also guarantees fairness
of shift distribution among workers over time.
Hence, a cyclic schedule can be seen as a contig-
uous sequence of slots from the upper-left cor-
ner to the lower-right corner of the schedule.
We will represent a cyclic schedule by a list of
workstretches, as shown in Fig.1 (e). A work-
stretch is a sequence of slots delimited by
offdays, and the number of slots is its length.
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One may verify that transformation of schedule
from the matrix to the workstretch representa-
tion and vice versa may be done in polynomial
time.

The following notations will be used through-
out the paper. Let W=number of workers, /=
number of days of the scheduling period, /=
number of shifts and K=derived number of
workstretches. We assume that K is of the
same order of magnitude as W. Let D=J X[
demand matrix, where D, is the number of
workers required to work shift j on day 7. Let
S=W X I show-up schedule matrix. Let §=] X
J shift change matrix, where &;,,,=1 if shift j;
may change to shift j, and 0 otherwise. Let o=
feasible schedule. Then, CSAP is an NP search
problem whose input is the tuple (W, {, J, D, S,
8) and output is ¢ or fail.

Definition 2.1. A shift change matrix is
monotonic if it is upper-triangular consisting of
all ones.

The above definition has the following real-
world motivation. In industry, a worker usually
works shifts which start no earlier than the day
before so that he gets enough rest in between.
Thus, if shifts are ordered by their start times,

Shift\Day Worker\Day Shift\Shift
MTWHPSU MTWH S U 12345678
11001000 1 |- =-- = 00 1l10101010
212322123 2 [~ - - - - - 0 2l01010101
3|]0110110 310 -~~~ - - = 3{00101010
41011221 4 100 -~ ~ -~ - 4100010101
511101111 5i-00 - - 51000021010
6§{1232001 6|~ - - - - 6/00000101
710010000 7T{- - - 0 - 72100000010
812111310 8 |- - - = 00 glooo0oo0o000 1
9 |- === == [}
10|~ - - - -
@ ® ©
Worker\Day Workstretch\Day
MTWHFSU

1146 68800 1] (P) 22246688

21335550 21 (M) 133855855

310222444 31(T) 222444

410022446 41 (W) 224468

5}(800133°5 5{(H) 1335557

615570022 6[(S) 226666

716 6 66 00 2 7((u)y 222668

812266800 8| (M) 224488

912244880 9| (M) 8838

10/8 8802 22

(d) O]
Fig.1 (a) Demand matrix ; (b) show-up schedule; (c) shift change matrix ; (d)

feasible schedule of (b) which satisfies demand matrix (a) and shift change
matrix (¢) ; and (e) workstretch representation of (d), where the letters in
brackets represent the start days of the respective workstretches.
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a feasible schedule must contain workstretches
which are monotonically non-decreasing
sequences. Such schedule can be constructed
using a monotonic shift change matrix.

Definition 2. 2. A demand matrix D is slack
with respect to a show-up schedule S if there
exists a day 7 such that the sum of demanded
workers 2Y.1D;; is less than the supply of
workers on day 7 in S. The difference indicates
the number of spare workers on day ¢. If there
are zero spares on all days, then D is said to be
exact.

In industry, if demands are slack, the spare
workers are assigned either extra offdays or
some meaningful shifts so that shift change
constraints are preserved. To give the user such
flexibility, we introduce a special shift type
called the * -shift (wildcard shift) and add the
appropriate number of them into the demand
matrix so that the demand becomes exact. A
* -shift may be assigned to any slot, provided
that shift change between its left and right
adjacent slots is satisfied.

This paper proceeds as follows. First, we
prove that the decision problem associated with
CSAP is NP-complete in general. Next, we
show that CSAP with a monotonic shift change
matrix and exact demand matrix (or ME-
CSAP) can be solved by a greedy method which
is nearly optimal. Finally, we consider CSAP
with monotonic shift change and slack demand
matrices (or MS-CSAP) under two realistic
offday distribution patterns: (1) where
workers work fixed-length stretches between
offdays, which is a common phenomenon ; and
(2) where at least one of the days in the
scheduling period have zero demands, typifying
a day where the organization closes its opera-
tions. We show that both problems are
polynomial-time solvable.

3. NP-Completeness of CSAP

In this section, we consider the decision prob-
lem of CSAP, CSAP (D), which asks whether a
feasible schedule exists given the input (W, I,
J, D, S, 8). Clearly, CSAP (D) is in NP. We
will show the hardness of CSAP (D) by a
polynomial many-one reduction from 3SAT.

Let U={Uh, U, -+, U} be a set of Boolean
variables. A truth assignment for U is a function
t: U—{True, False}. A clause C over U is a
disjunction of literals over U, and we say that
C is satisfied by a truth assignment if at least
one of its literals is True under that assignment.
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A 3CNF over U is represented by a set of
clauses F={C, C;, -+, Cn} over U with three
literals per clause. We say that F is satisfiable if
there exists a truth assignment for U that
simultaneously satisfies all clauses in . 3 SAT
is defined as follows":

INSTANCE: A set U of boolean vari-
ables {Uy, Us, -, Uy} and a
3CNF represented by
F={C, Cy, -, Cn} over U.

QUESTION : Is there a truth assignment
for U such that F is
satisfiable?

Lemma 3. 1. For any 3CNF F of » variables
m clauses, there exists a 3CNF F” of » vari-
ables and m’ (m'<4m) clauses such that,

1. F’ is satisfiable iff I is satisfiable,

2. for all =1, n, p:= p:, where p; (resp.
p:) is the number of occurrences of U; (resp.
U;) in F’, and

3. m'< P, where P=21p.

We call such 3CNF a normalized 3CNF.

Proof. Let g; (resp. ¢;) denote the number of
occurrences of U; (resp. U;) in F. If ¢:>gq:, we
add @2}7 number of clauses of the form (U;V
UiV Ub), otherwise we add clauses ¢; —g; num-
ber of clauses of the form (U;V U4V Uy). The
desired F” is F plus at most 3w clauses since
there are exactly 3m literals in F. Clearly,
these additional clauses do not affect the
satisfiability of F, thus F” is satisfiable iff I is
satisfiable. Furthermore, since each clause has
three literals and each variable U; occurs 2,
times (p. times for each of U; and U;) in F,
3m'=2P ; hence m'<P. ]

Theorem 3.1. CSAP (D) is NP-complete,
even for fixed /=5, non-cyclic schedule with
fixed workstretch lengths, exact demand
matrix and upper-triangular shift change
matrix.

Proof. Let F be an instance of 3SAT which
has been normalized. Suppose F has # vari-
ables and m clauses. Then the corresponding
instance of CSAP (D) is constructed as follows
(see Fig. 2 (a)). To simplify writing, the ranges
of 7, 7 and k are respectively {1, -+, n}, {1, -+, p:}
and {1, -+, m}.

1. Let W=2P, I=5 and J=4P+ m-+4.

2. Define the following shifts:

® shifts xi, Ty, vy, wy, for all pairs of ¢

and ; ;

® shifts ¢, for all £; and

® shifts #«, ¥, z, and 4.

Shift x; (resp. x;) corresponds to the jth
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Worker \ Day
1 2 3 4 5
1 © v T o 0
2| u vy w2 6 0
3| v vz Tm 8 0
4 U vy Tz & 0
5 u vis Tz 0 0
6 U Vg Zaz Ca 0
7 0 w2 Ty z
81 0 wy 7 y 2
91 0wy =y oy z
10 0 we =z vy 3
11 0 wap Tar Y z
12 0 Wy Taz Y z
(a)
Shift \ Day Shift \ Shift
1 2 3 4 5 U v Wi Ty T e 0y z
u [P 0 0 0 O« |0 1 0 0 0 0 0 00
v; [0 1 0 0 Ofv; {0 0 0 1 1 0 00 0
w; [0 1 0 0 Ofw; {0 0 0 ?2 7 0 00 0
z; |0 O 1 0 Oz 10 0 0 0 0 7 110
;[0 0 1 0 Oflzz (P 0 0 0O O ? 1 1 0
g |0 0 O 1 Ofle (O 0 0 0 0 0 00 0
610 0 0 P-m 0)6{0 0 0 0 0 0 00 O
y |0 0 0 P Oly (0 0 0 0 0 0 00 1
z 10 0 0 0 Plzi0 0 0 0 0 0 00 0
(b)

Fig.2 (a) An instance of CSAP (D) schedule corre-
sponding to the 3CNF, o
F=(UhV UV Us)AN(ULV UaV Us) A
(Vv Up Vv U)NAN (O UV Us)
and the truth assignment,
t(Uh)=True, {U,)=False and
tH(Us)= True.
Rows 1-6 form the True Region while rows 7-12
form the False Region. Observe from the sched-
ule that U, makes clauses 1 and 2 true; Uk
makes clause 4 true; and Us; makes clause 3
true.
(b) Structures of demand and shift change
matrices used in reduction. The symbol?
denotes either 0 or 1 depending on the shift
change constraint as defined in the proof.

occurrence of the literal U; (resp. U;) in F.
Shift ¢ corresponds to the kth clause in F. The
rest are filler shifts.

3. Define a 2P X5 show-up schedule matrix
S. Let the top and bottom half number of
rows be called the True Region (TR) and
False Region (FR) respectively. The
regions are named so because column 3 of
them will contain shifts corresponding to
the true and false literals respectively. Let
column 1 of FR and column 5 of TR be
assigned offdays.

4. Define the exact demand matrix D as
shown in Fig. 2 (b) so that all the shift «’s
will be assigned to column 1, ¢’s and w’s to
column 2, x’s and Z’s to column 3, ¢’s, 8’s
and y’s to column 4, and z’s to column 5 of
the schedule respectively.

5. To improve readability, we use the nota-
tion @—b to mean J.,,=1. Define the shift
change matrix ¢ as the following upper-
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triangular matrix (see Fig.2(b)) :

® for all pairs of 7 and 7,
U Vij, Vir ™ Tij, Vi Lig, XY, Tir— Y,
Xii— 6, .ZTJ—” 8, Wiy X5, Z/Uij;)x—z'j/, where ]./
=j—1(if 2<;<p;) and j'=p.(if j=1);

® for all 7, j, &,
xy—cr (resp. xo—ci) if U: (resp. Us)
occurs the jth time in clause % ;

®y—2z; and

@ all other shift changes are set to 0.

The above definition of & forces the following
conditions needed for the reduction :

1. All shift v’s are in TR and w’s are in FR.

2. All shift ¢’s and 8’s are in TR and ¢’s are
in FR.

3. For all pairs of 7 and J, shift z; is in TR
if x5 is in FR. Consider any pair 7, j. If x;
is in TR, then it has to be preceded by vy
Thus, v; cannot precede ;. Thus, ; must
be in FR. The reverse is obvious.

4. For all 4, if there exists a j such that shift
Zy is in TR, then all other x,;'s(G'=1, -, p;)
are in TR. Consider any 7 and w.l.o.g sup-
pose x: is in TR. From the previous condi-
tion, x:1 is in FR and thus preceded by w:s ;
since x:2 can be preceded only by v: or wis,
Z:z must be in the TR. This in turn implies
that x:z is in FR, and the argument repeats.

5. Shift xy (resp. x;) precedes ¢ only if U;
(resp. U;) occurs in clause Cy and sets Cy
to True.

Clearly the reduction can be done in
polynomial time. We claim that F has a satisfy-
ing assignment if and only if the constructed
CSAP (D) instance has a feasible schedule.
Assume I has a satisfying truth assignment ¢.
Define the feasible schedule as follows. For
each 7 such that #(U.,)= True, assign all shift
Zi's to column 3 of TR, and all shift xz's to
column 3 of FR. The reverse occurs for each
t(U:)=False. For each clause Cy, assign shift
¢x to be adjacent to any x;; whose correspond-
ing literal occurs in C,. This is always possible
since every clause has at least one true literal.
As there are more true literals than clauses,
shift &’s are used to absorb the remaining true
literals. Conversely, given a feasible schedule,
we assign U; to True if one (and thus all) s
shifts are in TR, and assign U; to False other-
wise. For every shift ¢, in column 4, suppose it
is preceded by a shift x; in column 3. Then, we
know that the literal U; is True and sets the
clause Cx to True. Thus, F is satisfiable. []

We have deliberately used many shifts to
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ease discussion. One could replace y and z by #,
vi; by xi and wy by Xy, thereby reducing the
number of shifts needed to 2P+ m+2=4m+2.

4. Greedy Algorithm for ME-CSAP

We describe a greedy algorithm G to solve
ME-CSAP, ie. CSAP with monotonic shift
change matrix and exact demand matrix,
regardless of offday distribution. Essentially, G
assigns shifts in increasing shift numbers. All
workstretches are assigned contiguously from
left to right. The leftmost (resp. rightmost) slot
of a workstretch refers to its first (resp. last)
unassigned slot, and the fail of a workstretch
refers to the sequence of slots from its leftmost
slot to its rightmost slot. For each assignment,
we greedily pick the workstretch with the long-
est tail (ties broken arbitrarily).

Henceforth, let o denote the kth workstretch
of o; o, denote a slot in workstretch £ at day
(position) 7; 0x,:—1 and ¢x,:+1 denote the slots to
the left and right of o.,: respectively, consider-
ing wraparound. Let /(%) denote the position of
the leftmost unassigned slot of 4.

Suppose ; is the current shift to be assigned.
Let B be the set of days where at least one shift
7 has not yet been assigned in the schedule. We
say that a workstretch is potentially assignable
at position 7 to shift j if its leftmost slot position
is 7 and 7 is in B. Let A be the set of work-
stretches that are potentially assignable at their
respective leftmost slot positions to shift ;.
Algorithm G is given as follows:

procedure G :
Step 1. for j=1 to J do

Step 2. B—{1<i{<]|day 7 has some
unassigned shift ;’s};

Step 3. A—{1<k<K|o. is potentially
assignable at position /(%) to
shift j};

Step 4. while B+ @ do

Step 5. if A=® return fail ;

Step 6. choose £ A such that o,

has the longest tail ;

Step 7. assign j took,un ;

Step 8. update A and B ;

Step 9. endwhile

Step 10. endfor
Step 11. return ¢ ;

To prove that greedy works, we introduce
the notion of dominance.
Definition 4.1. Given a partial schedule ¢
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such that workstretches % and %' are poten-
tially assignable at position 7 to an unassigned
shift j, % is said to dominate £" with respect to
position 7 and shift ; if assigning j to ox,; always
leads to a feasible solution whenever assigning
that 7 to ow,: instead does.

Lemma 4. 1. (Swapping Lemma) Let j(1<5<
J) be the current shift. Let ¢ be the partial
schedule constructed by G so far. Let % be any
workstretch in A that has the longest tail.
Then, % dominates all workstretches with
respect to /(%) and ;.

Proof. For simplicity, let i=/(%k). We prove
by an adversary argument as follows. Suppose
¢* is a hypothetical feasible schedule extended
from o such that shift ; resides in #,; instead of
or:. We show how to construct another feasible
schedule extended from ¢ such that shift ;
resides in 0%, instead of o#.. First, observe
that :

1. Since we schedule in non-decreasing shift
numbers, oi;>7 ;

2. By monotonicity, ¢#,:;-1<; and of,.1<7;
and

3. Workstretch % is at least as long as #
from position 7 onwards. Reason :

(a) If ow,is also a leftmost slot, then the
fact that G did not pick % means
that o is at least as long as oy

(b) Otherwise, by monotonicity, slots
O to 0#,:-1 have to be assigned j
also. If o were longer than o, from
position 7/ onwards, then £ would
have a longer tail than % and hence
would have been chosen by G instead
of %, a contradiction.

Thus, we have the scenario as shown in Fig.
3(a). We swap the contents of ¢¥; and of...
Surely, the content of ¢%,; (i.e. /) may be moved
to o#: The reverse is possible if ¢¥:.1=> 0%, or
o4 is a rightmost slot; otherwise, it means
0ki1 > 041, and we apply swapping recur-
sively. By doing so, £” will eventually reach its
rightmost slot before £ does, since the latter is
at least as long. Since the swapping does not
violate monotonicity, the lemma holds. O

Theorem 4.1. Let x be an instance of ME-
CSAP. G returns a feasible schedule for x if and
only if x has a feasible schedule.

Proof. If G exits successfully, then all slots in
o would have been assigned shifts in a
monotonic fashion. Thus, ¢ is a feasible sched-
ule. Conversely, if a feasible solution exists, it
suffices to show that after j;(0<;<J) for-
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1 I
L1 ]

Fig.3 Examples of dominance. Shaded slots represent
the leftmost slots. Suppose workstretches % and
%" are both potentially assignable at position 7
to shift 7. In (a), £ dominates %" because % has
a longer tail. In (b), £ dominates %" because %
has a longer tail and a shorter head.

iterations, the algorithm produces a partial
monotonic schedule which meets demands for
shifts 1 to j. This claim may be proved by
induction on the loop index ; as follows. For 7
=(, the partial schedule is the show-up sched-
ule, and the claim obviously holds. Assume that
after iteration j—1(; —1</J), the claim holds. In
iteration j, a leftmost slot always exists by the
induction hypothesis. By the Swapping Lemma,
G always picks a dominating workstretch for
assignment and thus maintains the feasibility of
the partial schedule. ]
We briefly comment on time complexity.
Note that the lower-bound worst-case time
complexity of any algorithm for solving ME-
CSAP is Q(KI), since every slot has to been
assigned once. The complexity of algorithm G
is given as follows. The matrix sum of D is at
most WX I=0(KI). Since each while-iteration
consumes one unit of demand, the total number
of while-iterations= O(K7). Each while-
iteration is O(K). Hence, the worst-case com-
plexity of G is O(max(K?I, I])). However, by
careful implementation using ordinary heaps,
we can achieve an amortized complexity of
O(max(KI* KI log K, I])). Assuming that I
and / are small compared with K, the dominat-
ing amortized complexity is O(KI log K),
which is a factor O(log K) from the optimal.

5. MS-CSAP with Fixed-Length Work-
stretches

We switch our attention to CSAP with slack
demands or MS-CSAP. MS-CSAP is intuitively
more difficult than ME-CSAP because we can-
not associate a fixed value to the * -shifts.

In this section, we consider MS-CSAP where
workstretches have equal lengths. An exarnple
of such schedule is given in Fig.4. Such a
schedule is geometrically simple in that it
belongs to the class of schedules where none of
the workstretches is longer than another at both
ends. We term such class of schedules doubly-

May 1995

jagged schedules. It turns out that MS-CSAP
with doubly-jagged schedules can be solved
greedily by extending the definition of potential
assignability. Consequently, MS-CSAP with
fixed-length workstretches can be solved greed-
ily.

Again, consider assigning workstretches
from left to right in increasing shift numbers.
Let j denote the current shift number and sup-
pose there is an unassigned shift ; on day i.
Redefine potential assignability as follows :

Definition 5. 1. A workstretch #% is said to be
potentially assignable at position 7 to shift j if

1. 0%, is unassigned ;

2. there is no unassigned shift ; on days (%),
-+, 7—1; and

3. there is at least one unassigned # -shift for
each day /(k), - i—1.

One may verify that, at any one time, a
workstretch is potentially assignable to shift ;
at at most one position. Let p(%) denote the
potentially-assignable position of workstretch
k. The head of workstretch % is defined as the
sequence of slots from 6x,x) t0 Or.p)-1 and the
fail is the sequence of slots from s s to its
rightmost slot. Algorithm AG (augmented
greedy) is same as G, except the following
step :

Step 7. assign* -shift (s) to the head of %
and assign j to Owp) ;

This greedy approach still works, due to the
following corollary of the Swapping Lemma :

Corollary 5.1. Given two workstretches &
and %’ potentially assignable at some position 7
to current shift 7, £ dominates £ with respect to
7 and j if (see Fig.3(b)) :

1. &’s tail is longer than or equal to £”s; and
. 2. k’s head is shorter than or equal to £”s.

Proof. Use an adversary argument similar to
the proof of the Swapping Lemma. Suppose j
has been assigned to o#,; instead of ¢} ;. Then,
the head slots of ¢ are all assigned * -shifts,
while the head slots of ¢# and slot ¢7; must be
assigned shifts greater than j or *-shifts. By
swapping the contents of ¢ and o from posi-
tion /(k) onwards, we can derive a feasible
schedule which has ; assigned to ¢, instead of
On,:, and the corollary holds. U]

Theorem 5.1. Let x be an instance of
MS-CSAP with a doubly-jagged show-up sched-
ule. AG returns a feasible schedule for x if and
only if x has a feasible schedule.

Proof. Consider any point in the execution of
AG. Suppose the unassigned portion of the
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Manpower Scheduling with Shift Change Constraints

1277
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Fig.4 Schedule with fixed-length workstretches and
its workstretch representation.

Shift\Day Workstretch\Day Worksgtretch\Day
M TWHEFSU UMTWHFS UMTWHEFS
11001000 14101 - - - « - 1012 - - - -
212322120 2102 - -~ - - - 21022 -~ - -
3]0110110 3102 +-+~-+--0 3023 --~--0
411011220 4704 ----0 4 |04 * - - -0
511001110 5105 ---00 51056 -~-00
6] 1232000 6106 --000 6066 -000
710010000 7108 --~-000 71088 ~-0200
8] 2111310 810800000 80800000
9100 - - - - -~ 91002 - - - -~

100 0 0 - - - - 100 0 0 - - ~ -

1110 0 0 0 - - - 110 0 0 0 - - -~

1200 000 0 ~ - 1210 0 0 0 0 - -

13]10 000 0 0 - 13J]0 0 0 0 0 0 -

Fig.5 (a) Demand matrix where Sunday is a fixed

offday. (b) Partial schedule after day 1 (Mon-
day) has been assigned. (c) Partial schedule
after day 2 (Tuesday) has been assigned.

schedule is doubly-jagged. Let ; be the current
shift. Then, for any 2 workstretches which are
potentially assignable at some position 7 to
shift 7, one must dominate the other with
respect to 7 and j by Corollary 5.1. Moreover,
it is clear that a workstretch which is #not
potentially assignable at ¢ to ;j is always
dominated by one which is. Thus, any work-
stretch in A with the longest tail dominates all
workstretches. Since AG picks a dominating
workstretch for assignment, the schedule
remains feasible, and since that workstretch is
the longest, the unassigned portion of the sched-
ule remains doubly-jagged. We can prove induc-
tively that the theorem holds. ]

Corollary 5.2. Let x be an instance of
MS-CSAP with fixed-length workstretches. AG
returns a feasible schedule for z if and only if x
has a feasible schedule.

6. MS-CSAP with Fixed Offdays

We now consider MS-CSAP where there
exists a day in which all slots have been as-
signed offdays. We rotate the columns of the
schedule so that that day becomes day ( of the
scheduling period. The resulting schedule
becomes non-cyclic since workstretches do not
wrap-around. Non-cyclicity coupled with

double-jagged workstretches allow MS-CSAP
to be solved with a matching-based algorithm
M which has a lower worst-case time complex-
ity than G or AG.

Basically, M assigns shifts from day 1to 7—1
(i.e. column by column). The tail of a work-
stretch now refers to the sequence of slots from
the current day to its rightmost slot. For each
column, arrange workstretches in non-
increasing order of tail length and assign shifts
in non-increasing order upwards, assigning
* -shifts whenever monotonicity is violated. We
will show that, in this way, M always matches
the s -shifts to the longest possible work-
stretches, which is a sufficient condition for
constructing a feasible schedule if one exists. M
is given as follows and Fig. 5 gives an example
of its execution.

procedure M :

Step 1. for ;=1to /—1 do
Step 2. for workstretch £ in increas-
ing order of tail length do
Step 3. let j be the largest unas-
signed shift ;
Step 4. if 7= 0s,; then assign j to

Uk,z' y
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Fig.6 (a) shows a feasible schedule in which column
i—1 is sorted but column 7 is not; (b) shows
the schedule after sorting column 7; (c) shows
the minimal canonical schedule.

Step 5. else if there is an unas-
signed *-shift then
assign * to oz, ;

Step 6. else return fail ;

Step 7. endfor

Step 8. endfor

Step 9. return o ;

To show the correctness of M, we show how
to convert from an arbitrary feasible schedule
into the schedule constructed by M without
violating feasibility. For every assigned * -shift,
define its shift number to be the shift number of
its preceding slot. If the preceding slot is an
offday, then its shift number is defined to be 1.
A column is said to be sorfed if shifts are
assigned in that column in order of tail lengths
(i.e. for any 2 workstretches, the longer work-
stretch always has the smaller shift number).

Definition 6.1. A canonical schedule is a
schedule such that every column is sorted.

Lemma 6.1. Let x be an instance of MS-
CSAP with fixed offdays. If there exists a fea-
sible schedule for x, then there exists a feasible
canonical schedule for z.

Proof. By induction on the columns of the
schedule. Consider a feasible schedule ¢* such
that columns 1 to i—1(1<{<]) are sorted. We
show that there exists a feasible schedule such
that columns 1 to 7 are sorted. At column ¢, the
workstretches are either surviving workstretch-
es (i.e. those whose starting day is before day
7) or new workstretches (i.e. those whose start-
ing day is at day 7). Since all workstretches are
doubly-jagged, new workstretches are always
longer than surviving workstretches. And since
the preceding slots of new workstretches are all
offdays (shift 0), column 7—1 remains sorted
even considering those new workstretches.
Now pick the longest workstretch k. Suppose
the slot o7, does not contain the smallest shift
number, and the smallest shift number is as-
signed to workstretch £'(i.e. ¢.:). Then, we can
swap the corresponding slots between £ and &’

May 1995

from position ¢ onwards (as shown in Fig. 3
(a)) without violating the feasibility of the
schedule. Perform the process iteratively on the
next longest workstretch until all work-
stretches have been examined. It is clear that
column 7 of ¢* is now sorted (see Fig. 6(a) and
(0)). [l
Given a feasible canonical schedule o, we can
construct the minimal feasible canonical sched-
ule by ’bubbling’ up the #* -shifts to the longer
workstretches as much as possible (see Fig. 6
(c)) :
procedure bubble-up :
Step 1. for /=2 to /—1 do .
arrange workstretches in

Step 2.
decreasing order of tail lengths ;
Step 3. for all adjacent workstretch
pairs £ and %’ do
Step 4. if ow:=% and o0x:=0w,:
then swap the contents of o,:
and Or\i s
Step 5. endfor

Step 6. endfor

Lemma 6. 2. Every iteration of M constructs
a sorted column with the 3 -shifts assigned to
the longest possible workstretches.

Proof. Consider any arbitrary iteration 7.
Clearly, M constructs a sorted column 7. Now
suppose that column 7 is not minimal. Then,
there exists a % -shift which can be bubbled up.
That is, there is a step in M in which a non-
% -shift could have been assigned but a * -shift
was assigned instead. But this is a contradiction
since M only assigns a 3 -shift if it fails to
assign a non- * -shift. J

Theorem 6.1. Let x be an instance of MS-
CSAP with fixed offdays. Then M returns a
feasible schedule for x if and only if x has a
feasible schedule.

Proof. If x has a feasible schedule, then by
Lemma 6.1, there exists a canonical schedule
which is feasible and this schedule can be
minimized by applying the bubbling operation
described above. By Lemma 6.2, we know that
M always produces that minimal canonical
schedule. L]

We comment briefly on the time complexity
of M. In order to assign in increasing order of
tail length (Step 2), we add a preprocessing
step between Steps 1 and 2 which sorts the
workstretches in tail length order. This opera-
tion takes O(K log K) time. Steps 3 to 6 take
constant time. Thus, the worst-case time com-
plexity of M is O(KI log K).
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7. Conclusion

We considered CSAP, the manpower shift
scheduling problem with shift change con-
straints. We showed that CSAP is NP-hard
even when the scheduling period is fixed, sched-
ule is non-cyclic, demand is exact and the shift
change matrix is upper-triangular. We also
presented polynomial algorithms to solve three
sub-problems of CSAP. These sub-problems
have applications in the real-world, as our expe-
rience indicates.

Several open problems arise from this
research. Firstly, we ask if there exists a time-
optimal algorithm for solving CSAP with
monotonic shift change and exact demands. In
Ref.10 ), we presented a pseudo-polynomial
time algorithm based on branch-and-bound to
solve CSAP with monotonic shift change and
slack demands. Its worst-case time complexity
is exponential in the number of 3 -shifts. We
ask whether a polynomial time algorithm can
be designed. Finally, we believe that there
exists other shift change constraints more gen-
eral than monotonicity for which CSAP is
polynomial.

Shift assignment problems with constraints
apart from shift change constraints are also
interesting to consider. For instance, problems
where workers are allowed to state their pref-
erences for working different shifts on different
days. We hope that more research will be con-
ducted for manpower scheduling problems for
they are theoretically interesting and promise
high economic values.

Acknowledgments. I wish to thank Osamu
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