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Abstract. Retrieval of cases is one important step within the case-based
reasoning paradigm. We propose an improvement of this stage in the
process model for finding most similar cases with an average effort of
O[logzn], n number of cases. The basic idea of the algorithm is to use the
heterogeneity of the search space for a density-based structuring and to
employ this precomputed structure, a k-d tree, for efficient case retrieval
according to a given similarity measure sim. In addition to illustrating
the basic idea, we present the experimental results of a comparison of four
different k-d tree generating strategies as well as introduce the notion
of wvirtual bounds as a new one that significantly reduces the retrieval
effort from a more pragmatic perspective. The presented approach is
fully implemented within the (PATDEX) system, a case-based reasoning
system for diagnostic applications in engineering domains.

1 Introduction

Retrieval of sufficiently similar cases is one of the main points in the process
model [25] of case-based reasoning, i.e. before selecting the most useful case(s)
for adaptation, the case base must be restricted to a small set of reasonable can-
didates. Retrieval and selection of cases are often distinguished by the kind of
features they use for case comparison (surface versus structural similarity: [19]).
To detect really useful cases for the problem at hand, the selection step has to
consider all available knowledge of the underlying domain. Thus, computing this
structural similarity match is very expensive. Unfortunately, the retrieval step
which deals with all cases in the case base must be computed very fast. There-
fore, this step can only rely on the comparison of syntactical features (surface
stmilarity) [17]. Basically, there are two different approaches to similarity assess-
ment in case-based reasoning [29, 6]: the representational approach, proposed by
[22] using a structured memory of cases (Dynamic Memory), and the computa-
tional approach e.g. [32, 1, 5], which is based on the computing of an explicit
similarity function sim (e.g. [36]). In this work we will focus on this approach.

* Funding for this research has been partially provided by the Commission of the
European Communities (ESPRIT contract P6322, the INRECA project). The part-
ners of INRECA are AcknoSoft (prime contractor, France), teclnno (Germany), Irish
Multimedia Systems (Ireland), and the University of Kaiserslautern (Germany).



A naive approach to case retrieval would be to compute the surface similarity
by comparing syntactical features of every case in the case base to the current
problem according to a given similarity measure sim. The set of cases which
must be retrieved by the following selection procedure is then determined by
the m-most similar cases (m fixed), or by all cases exceeding a given similarity
threshold 6. Many known case-based reasoning systems use this simple kind of
approach (at least hidden in the implementation).

PROCEDURE SearchLin(CaseBase[1l..n],Query_Case,m)
VAR i, SimCaseQueue[l..m];
BEGIN
FOR i:=1 TO SIZE(CaseBase) DO
IF (sim(Query_Case,CaseBase[i]) > SimCaseQueue[m])
THEN [Update SimCaseQueue with CaseBase[il];
RETURN(SimCaseQueue) ;
END; (* FOR %)
END; (* SearchLin *)

Since the overall complexity of this retrieval procedure is O[n], n number of
cases, for small case bases this strategy is reasonable. But, for increasing case
bases this procedure leads to a too time-consuming process that restricts this
approach to toy domains.

Up to now, the improvement of the efficiency of the retrieval step has been
the goal in different research projects, e.g. [33]. We can distinguish two main
approaches: First, the brute-force methods using massively parallel architectures
like [32, 24] which take up to one processing element for each case in the case
base. Second, precomputation of good indices (cf. [35]) for rapid access to the
case base, e.g. [8, 20]. The first approach needs a lot of hardware support for the
speed up of the retrieval process. By using the second approach, it is difficult
to guarantee the completeness of the retrieval according to the used similarity
measure sim.

The problem of determining the most similar cases (best matches) based on a
given case description and a measure sim is well known as nearest neighbor search
[11]. Cases can then be interpreted as points within a multidimensional search
space where each attribute implements one dimension that can be searched with
an associative procedure. The main idea of the proposed approach is to structure
the search space based on its observed density and using this precomputed struc-
ture for efficient case retrieval according to the given similarity measure [33]. We
developed a retrieval mechanism [28] based on a k-d tree, a multi-dimensional
binary search tree [9, 15, 10]. Within the k-d tree an incremental best-match
search is used to find the m most similar cases (nearest neighbors) within a set
of n cases with k specified indexing attributes (dimensions). The search is guided
by application dependent similarity measures. The overall similarity measure is
split into local measures for each value range and a global measure which is
composed from the local ones [31]. A k-d tree as such is comparable to a dis-
crimination net [13, 12] that has been optimized for similarity-based retrieval of
cases.



We will introduce and compare four different strategies for generating k-d
trees, which base on the notions of interquartile distance, category utility, en-
tropy, average similarity, respectively. Then the basic associative search mech-
anism is presented [15, 10], and completed with an effective improvement of
the underlying search procedures (virtual bounds) that is confirmed with the
respective experimental results.

2 Building a k-d Tree

The basic idea of the approach is to build a tree [33] which splits the search
space into parts which contain a number of similar cases according to the given
similarity measure sim (Figure 1). Therefore, every node within the k-d tree
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Fig.1. An exemplary two dimensional search space and the corresponding k-d tree

represents a subset of the cases of the case base and the root node represents
the whole case base. Every inner node partitions the case set into two disjoint
subsets, storing the bounding values for each dimension (attribute). The leaves
of the tree which contain a specific number of cases are called buckets. For
the construction of the tree, we have to choose the best partitioning atiribute
[30] which divides the case base into two equally sized parts [15]. The process
continues recursively for each of the constructed subsets of the case base until
only a few cases (bucket size) remain which are stored together in one bucket.
The determination of the partitioning attribute (dimension) is the most crucial
part of the approach. For best speedup of the retrieval process the partition of
the search space has to reflect the structure and the density of the underlying
case base.

To estimate the dispersion, we first use a statistical measure, namely the
interquartile distance [15] that can be used for both numeric and ordered nominal
attribute value ranges. While the median splits a given distribution of values into
two equally sized areas, quartiles split them into four. The first quartile ¢; (25 %
quartile) divides the lower half of the distribution into two equally sized areas as
the third quartile ¢3 (75 % quartile) does with the upper half of the distribution.



The median is denoted as the second quartile. The greater the distance between
these quartiles, the greater is the dispersion of the attribute values. During tree
construction the attribute having the maximal dispersion with respect to the
used similarity measure sim is selected as the discriminating one. Since we use
similarities and not distances, we introduce the interquartile similarity as a new
term. It denotes that we select that attribute for discriminating purposes where
the respective quartiles have the lowest similarity (which corresponds to the
greatest distance).

PROCEDURE Create_Tree(CB)
VAR Discriminator,PartitionValue,minSimilarity,i;

BEGIN
IF MakeBucket(CB) THEN RETURN(MakeTerminalNode(CB));
ninSimilarity := infinity;

FOR ALL Attribute[i] DO
IF Spread(Attribute[i],S) < minSimilarity THEN
minSimilarity := Spread(Attribute[i],CB);

Discriminator := Attributel[i];
END (* IF *)
END (* FOR *)
PartitionValue := Median(Diskriminator,CB);

RETURN (MakeInternalNode(Diskriminator,PartitionValue,
Create_Tree(LowerPartition(Diskriminator,PartitionValue,CB)),
Create_Tree(UpperPartition(Discriminator,PartitionValue,CB)));

END (* Create_Tree *)

The procedures Spread (A[i],CB) and Median(Discriminator,CB) compute
the dispersion of the values of attribute A; for the cases in CB using the interquar-
tile similarity with respect to sim, and the median of the discriminating attribute
Discriminator based on the values of Discriminator given by CB. The proce-
dure MakeBucket (CB) is TRUE if the number of values included in CB is less or
equal than the bucket size b, which has been defined before, i.e. |CB| < b (|CB| de-
notes the cardinality of sets). The procedures LowerPartition(A[i],Value,CB)
and UpperPartition(A[i],Value,CB) divide the set CB into two disjoint sub-
sets where LowerPartition includes all cases of which the value of attribute A;
is less than Value. MakeTerminalNode(S) generates a leave node using the cases
from CB. The procedure MakeInternalNode(A[i], Value,lowerSon,upperSon)
generates an inner node that includes the discriminating attribute A;, the parti-
tioning value Value, and two pointers to the leave or inner nodes of the subtrees
lowerSon and upperSon.

The average case effort [27] for generating a k-d tree is O[k * n x logan], for
the worst case O[k * n2]. The average costs for retrieving the most similar case
are O[logan], if the tree is optimally organized. For the worst case, the retrieval
costs are O[n]. The retrieval mechanism is correct and complete in the sense
that it always returns the m most similar cases according to the specified global
similarity measure sim. In spite of these (theoretical) characteristics, our exper-
iments showed that there are some disadvantages resulting from the fact that
the interquartile similarity uses an a priori estimation and considers attributes



in an isolated way that often comes up with unsatisfying results. Thus, we com-
pared the above described way of attribute selection with three other approaches
based on an a posteriori estimation that, after a trial wise splitting, evaluates
the quality of a partitioning process by considering all dimensions (attributes).

Baum mit alter Prozedur generiert  Baum mit Category-Utility (CobWeb)generiert

Fig. 2. Contrasting the Four Different Indexing Trees

Using the Category-Utility of CobWeb: The basic idea behind the cate-
gory utility is to prefer attributes that have great effects on other attributes
[14]. This is an advantage to the above described attribute selection based on
the interquartile similarity. But, a disadvantage is the restriction to symbolic
attributes, even the CLASSIT approach [16] that uses the variance offers no
satisfying solution here because the mean value is necessary for the compu-
tation of the variance but not available for all attributes. Another drawback
of this approach is that the category utility measure [14] does not use the
available similarity measures for the tree generation process.

Using the Entropy Measure: The entropy measure prefers attributes such
that the information gain is maximized [30]. The measure is very general and
has been used for a wide range of problems. Since it is based on probabilities,
again the information included in the similarity measures is not used. A
second problem arises because it very much focuses on the classes within the
case descriptions. Such information is not always available. In addition, it is
a drawback that the whole tree generation process heavily depends on the
correctness of such classes.

Using the Measure of the Average Similarity: The idea behind this ap-
proach is to build up subtrees and buckets based on cases that are as similar
as possible. Thus, all the information that is already included in the available
cases and similarity measures is used. As a consequence, no class description



has to be included in the case descriptions, and there is no restriction with
respect the attribute types that can be used.

For our experiments we chose the car database [21] from the UCI Repository
of Machine Learning Databases and Domain Theories (ftp ics.uci.edu). It
includes 205 different cars that are described using 25 attributes like manufac-
turer, technical data, price, and a risk estimation for insurance companies. The
resulting indexing trees for all four different strategies for generating k-d trees
are shown in Figure 2.
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Fig. 3. Comparing the Number of Examined Cases to Find m most Similar Cases

We conducted many experiments to analyze the different approaches to the
generation of indexing trees. Some of these results are summarized in Figure 3.
Here the figure shows, for all four generation procedures, the number of examined
cases for the task to find the m most similar cases (for m = 1, 2, 3, 5, 10, and
20, respectively). Up to m = 10, the average-similarity approach is the best. If
the task is to find more than the ten most similar cases, the CoBWEB approach
is the best. But, if we also look at Figure 4, the average-similarity approach
becomes clearly the best suited one. Here, the required time in seconds is shown
for finding the m most similar cases.

3 Searching Similar Cases using a k-d Tree

The search for similar cases in the k-d tree is done via a recursive tree search
procedure according to the global similarity measure sim. Normally, there are
no fully identical cases in the case base and we have to look for the most similar



ones. Using the tree as a kind of binary search tree leads to a bucket where a
specific number b of cases are stored. At this stage, it is necessary to compute
the similarity of each case stored in the bucket using the predefined similarity
measure sim. If we are looking for the m most similar cases we can build up a
queue containing these most similar cases. Using this queue, we draw a hyperball
around the given problem that includes the m most similar cases found in the
current bucket. Thus, every case which is at least as similar as the examined
ones must be within this constructed k-dimensional hyperball. By using this
hyperball we are able to decide which buckets we have to examine next. For
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Fig.4. Comparing the Respective Retrieval Time

an efficient implementation of this basic idea, we use two test procedures [15]:
BaLL-WITHIN-BounNDs (BWB) and BounDs-OvERLAP-BALL (BOB) (Figure
5). These procedures check whether it would be reasonable to explore certain
areas of the search space in more detail, or not. Such tests can be carried out
without retrieving the respective cases. The geometric bounds of the considered
subspaces are used to compute a similarity interval whose upper bound then
answers the question to explore, or not. For finding the m most similar cases for
a given working case (or query case), we apply recursive tree search. Thus, as
input we need the query case X,, the number m of most similar cases, the k-d
tree represented by its root node, and the global similarity measure sim. During
search a priority queue PQC' is continuously updated which includes the m most
similar cases (while PQC[n] denotes the nth most similar case, PQS[n] denotes
the actual similarity value of the nth most similar case). If the recursive search
procedure examines a leaf node, the similarity of all included cases is computed
and, if necessary, the priority queue PQC is updated. If the examined node is



an inner node, then the search procedure is recursively called for that son node
which should include the query case. If this call terminates, it is tested whether
it is also necessary to examine the other son node by using the BOB test.

The BOB test is TRUE if the cases of the actual tree node have to be explored.
The inner nodes are correct generalizations of all the cases they represent in
the sense that they include the geometric (upper and lower) bounds (for every
indexing attribute) which correspond to the respective subspace.
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Fig. 5. Basic idea of the BOB and BWB test

BOB <= Sim(Xomin, X4) > PQS[m] ( = Sim(PQC[m], X,) )

These geometric bounds are used to compute a similarity interval whose upper
bound then answers the question to explore, or not. The closest point X,
within the actual node’s subspace is computed as the projection onto the actual
node’s geometric bounds (Figure 5). X, is on the actual node’s bounding box
on the edge facing the query case X,. If there is no overlapping in any of the k
dimensions between the node’s bounding box and the k-dimensional ball round
Xy, then X,y is a corner of the bounding box. If X, is within the bounding box
then X, = X, (Figure 5). Before the recursive search procedure terminates,
the BWB test is applied. This test is TRUE if the k-dimensional ball round X, is
completely within the bounding box of the actual tree node (Figure 5).

BWB < Sim(X\", X)) < PQS[m] A Sim(X), X)) < PQS[m]Vj=1,... k

In this case, no overlapping with other bounding boxes is possible. Thus, the
search 1s finished, and the m most similar cases for the current problem accord-
ing the given global similarity measure sim are found.

With the following procedure RetrieveCases a search for similar cases is per-
formed as follows:

1. Initialization of the global array Query[l...k] with the query case



2. Initialization of the global variables:

Queue[1...m].Case :=nil
Queuel[1...m].Sim =0
Bounds[1...k].Upper :=co
Bounds[1...k].Lower :=—o0

3. Call of RetrieveCases(root), where root denotes a pointer to the root node
of the respective k-d tree. After the procedure has finished Queue[1. .m] will
contain the m most similar cases of the CaseBase with respect to Query and
the used similarity measure sim.

PROCEDURE RetrieveCases (treelNode)
VAR temp,Discriminator,PartitionValue;

BEGIN
IF (TerminalNode(treeNode)) THEN
[Update Queue[l..m] using Query, sim and the cases in treeNode];
IF BallWithinBounds THEN [Finished] ELSE RETURN; (% BWB %)
END;

Discriminator := treeNode.discriminator;

PartitionValue := treeNode.partitionValue;

IF Query[Discriminator] <= PartitionValue THEN
temp := Bounds.Upper[Discriminator];
Bounds .Upper [Discriminator] := PartitionValue;
RetrieveCasesh(treeNode.lowerSon);
Bounds .Upper [Discriminator] := temp;

END

ELSE
temp := Bounds.Lower[Discriminator];
Bounds.Lower[Discriminator] := PartitionValue;
RetrieveCases(treelNode.uppersSon) ;
Bounds.Lower [Discriminator] := temp;

END;

IF Query[Discriminator] <= PartitionValue THEN

temp := Bounds.Lower[Discriminator];
Bounds.Lower[Discriminator] := PartitionValue;
IF BoundsOverlapBall THEN RetrieveCases(treeNode.upperSon); (* BOB #*)
Bounds.Lower [Discriminator] := temp;
END
ELSE
temp := Bounds.Upper[Discriminator];
Bounds .Upper [Discriminator] := PartitionValue;
IF BoundsOverlapBall THEN RetrieveCases(treeNode.lowerSon). (* BOB *)
Bounds .Upper [Discriminator] := temp;
END;

IF BallWithinBounds THEN [Finished] ELSE RETURN; (% BWB *)
END; (* RetrieveCases *)



4 Improved Retrieval using Virtual Bounds

We now improve the above introduced bounds tests based on the known cases.
The basic idea is to describe the subspaces that really include cases more pre-
cisely. Therefore, all occurring maximal and minimal values for each attribute
are stored. This led us to the definition of the notion of Minimal Virtual Bounds
(cf. Figure 6).
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Fig.6. BOB Tests and Minimal Virtual Bounds

In the right part of Figure 6, we can get an intuitive understanding how much
from the description space need not to be considered during search by looking
at the ”white areas”. A BOB test that uses minimal virtual bounds recognizes
that Bucket IT does not include any better cases (cf. Figure 6).

The Minimal Virtual Bounds of a tree node for the dimension k are defined as
follows:

minBounds[k].Upper := max({Case;[k]})
minBounds[k]. Lower := min({Case;[k]})

{Case;[k]} denotes the set of all attribute values of attribute & of all cases Case;
being represented by the respective tree node.

While minimal virtual bounds led to an improvement of the BOB tests, an
analogous idea (of Mazimal Virtual Bounds) can be used to improve the BWB
tests. For the latter, it is reasonable to describe the searched subspace as precise
as possible such that the k-dimensional hyperball around the query case has the
maximal chance to be completely within that ball. Thus, we introduced Mazimal
Virtual Bounds, as described in Figure 7.

Within such maximal virtual bounds it is guaranteed that no more similar
cases can be found within those borders. The computation of the maximal virtual
bounds requires more effort because it is not based on the analysis of the cases
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Fig. 7. BWB Tests and Maximal Virtual Bounds

but on the analysis of all neighboring subspaces. Again the virtual bounds can
be computed during tree generation.

Within the maximal virtual bounds, it is guaranteed that only cases of the
respective subspace itself belong to it. There are no more similar cases outside
these boundaries. Thus, the search is finished.
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Fig.9. Improved Performance (Retrieval Time) with Virtual Bounds

5 Evaluation

From a more general perspective, we showed that choosing those attributes for
discrimination purposes that maximize the average similarity within the parti-
tions in the k-d tree result in the best performance. The taken approach using

an a posteriori evaluation goes a step away from the original idea of the k-d tree
approach [15] and a step towards the conceptual clustering approach [16]. The
resulting k-d tree already represents a certain classification of the cases. But, it
also differs from known approaches by the following aspects:

Our implementation of the original k-d tree approach [15] has been combined
with an a posteriori evaluation like in conceptual clustering systems.

The a posteriori evaluation is based on the new measure of average similarity
within the respective k-d tree partitions.

We use class-dependent information to dynamically decide on the selection
of an appropriate global similarity measure sim [5, 31].

The global similarity measures can be automatically improved by a compet-
itive learning strategy [37].

The described case retrieval approach is only one subcomponent of the PaT-
DEX case-based reasoning system [38] being combined with other techniques.
PATDEX itself is an integrated subpart of the MOLTKE knowledge acquisi-
tion workbench [3, 4, 2]. Therefore, the similarity assessment process can be
improved by the use of additional knowledge like default attribute values as
well as causal and heuristic determination rules.
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Fig. 10. Used cases with the new approach

From a k-d tree perspective [15], we showed that the retrieval can be significantly
improved by the use of virtual bounds. They are a refinement of the retrieval
procedures within the k-d tree. The virtual bounds are directly stored in tree
nodes of the k-d tree. The overall speedup of the proposed approach (improved
generating and retrieval procedures) compared to the original approach [15] is
about 5 to 10 times. Figure 10 shows the number of used cases for different
retrieval tasks. Compared to the old approach [15] much less cases have to be
examined.

If we look at the comparison of the retrieval times of the new and the old
approach (cf. Figure 11) we can state also a speed up. Compared to the linear
approach (cf. section 1) the power of the new approach becomes clear. Within our
experiments (cf. Figure 11) the search for 20 similar cases (10% of the whole case
base) the retrieval time in the new k-d-tree is faster than the linear approach.
With the old approach [15] this limit was reached with the task to retrieve just
two cases (cf. Figure 11).

6 Conclusions

A k-d tree, together with appropriate generation and retrieval algorithms, en-
ables an efficient support for the retrieval task in case-based reasoning. Since
the number of cases that need to be searched can be significantly reduced, this
approach is especially applicable to huge case bases.

In our laboratory, several experiments have been conducted dealing with other
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Fig. 11. Overall Performance of the proposed approach

parameters such as selection of the partitioning value of the respective discrimi-
nating attribute, dynamic determination of the bucket size as well as incremental
insert and incremental retrieval of cases. For the results cf. [38]. Our approach can
efficiently handle missing attribute values during consultation [26] and unordered
value ranges by (partially) extending the k-d tree to an n-ary tree [38]. Since
the used search procedures are strongly connected to the notion of ”distance”,
the used global and local similarity measures have to meet certain compatibility
requirements, namely to be both monotonic and symmetric.

The combination of information retrieval /nearest neighbor classification and
case-based reasoning has been of increasing interest recently, e.g. [7, 34]. Never-
theless, we are not aware of any similar approach that is also correct, complete,
and efficient.
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