
The Rewrite Rule Machine Node Architecture and
its Performance*

Patrick Lincoln, José Meseguer, and Livio Ricciulli

Computer Science Laboratory, SRI International, Menlo Park, CA 94025, USA

Abstract The Rewrite Rule Machine (RRM) is a massively paral lel
MIMD/SIMD computer designed with the explicit purpose of supporting very-
high-level parallel programming with rewrite rules. The RRM’s node architecture
consists of a SIMD processor, a SIMD controller, local memory, and network and
I/O interfaces. A 64-node cluster board is already an attractive RRM system
capable of extremely high performance on a variety of applications. A cluster is
SIMD at the node level, but it is MIMD at the system level to flexibly exploit the
parallelism of complex nonhomogeneous applications. In addition to reporting
detailed simulation experiments used to validate the node design, we measure the
performance of an RRM cluster on three relevant applications.

1 Introduction
The Rewrite-Rule Machine (RRM) is a Multiple Instruction, Multiple Data/ Single In-

struction Multiple Data (MIMD/SIMD) massively parallel computer being designed,
simulated, and prototyped at SRI International. The RRM project is unique because it emerged
from an initial design search space that was primarily focused on software issues. The outcome
of this high-level design effort has been coupled with a bottom-up quantitative approach re-
sulting in an architecture which, while trying to balance complexity, performance and cost in
an optimal way, still inherits the important guidelines of the initial theoretical work. Two
main characteristics of the overall design are the use of the concurrent rewriting model of
computation and the use of active memory.

1.1 RRM Software Model
A rewrite rule p → p’ consists of a lefthand side pattern p and a righthand side pattern p’,

and is interpreted as the replacement, called rewriting, of p by p’ in some data structure. The
RRM’s model of computation is concurrent rewriting, that is, the process of replacing in-
stances of lefthand side patterns by corresponding instances of rightand side patterns
concurrently. Since rule application depends only on the local existence of a pattern, rewrite
rules are intrinsically concurrent. A program is then a collection of rewrite rules. In its con-
current execution each rule can be applied simultaneously to many instances (SIMD
rewriting), and many different rules can each be simultaneously applied to many instances.

Rewrite rules have been used for expressing the implicit parallelism of functional programs
in a declarative way, leading to the investigation of so-called reduction architectures (see for
example [11,21]). However, when generalized adequately [18,16], rewrite rules are not lim-
ited to functional computations. They can express with similar ease many other parallel but
nonfunctional applications. As explained in [16], concurrent rewriting gives rise to a
machine-independent parallel language Maude [19,16] in which a very wide range of
parallel applications can be easily expressed in a very high level, declarative way. Maude
supports three different types of rewriting:

*Supported by Office of Naval Research Contract N00014-92-C-0222.

Term Rewriting. In this case, the data structures being rewritten are terms, that is, sytactic
expressions that can be represented as labeled trees or acyclic graphs. Functional and symbolic
computations are naturally expressible using term rewrite rules.

Graph Rewriting. In this case, the data structures being rewritten are labeled graphs. A
very important subcase is that of graph rewrite rules for which the topology of the data graph
remains unchanged after rewriting. Many highly regular computations, including many sci-
entific computing applications, cellular automata algorithms, and systolic algorithms fall
within this fixed-topology subclass, for which adequate placement of the data graph on a par-
allel RRM machine can lead to very efficient implementations. The applications used to
evaluate the RRM in this paper fall within this category.

Object-Oriented Rewriting. This case corresponds to actor-like objects that interact with
each other by asynchronous message-passing. Abstractly, the distributed state of a concurrent
object-oriented system of this kind can be naturally regarded as a multiset made up of objects
and messages; the concurrent execution of messages then corresponds to concurrently rewrit-
ing this multiset by means of appropriate rewrite rules. In a parallel machine this is
implemented by communication on a network, on which messages travel to reach their desti-
nation objects. Many applications are naturally expressible as concurrent systems of
interacting objects. For example, many discrete event simulations, and many distributed AI
and database applications can be naturally expressed and parallelized in this way.

1.2 RRM Hardware Hierarchy
Our parallel programming paradigm diverges from the standard von Neumann model of

computation where every execution step requires some interaction between the CPU and data
memory. One way of describing the RRM architecture is to imagine a parallel system whose
computational units are in its first-level caches. One can think of the SIMD processors as a
self-modifiable programmable active store, and of the data memory as conventional passive
memory. This organization blurs the distinction between the computational agent and memory,

and thus limits the negative effects of random
memory access [17].
As displayed in Fig. 1, the RRM is a 7-tiered
hierarchical architecture. The most basic unit
is a 16-bit processing element with 16 regis-
ters called a cell. Four cells, which share
local communication buses, make up a tile,
and 144 tiles operating in SIMD mode make
up an ensemble, which is expected to fit on a
single die. A node consists of a collection of
hardware devices that constitute a self-
contained computational building block. In
our case the node is a tightly coupled design
that is tuned to supply the ensemble SIMD
processor with enough resources to efficient-
ly sustain computation. A node contains an
ensemble, data and instruction memory, and
I/O and network interfaces, and is expected

to be realized as a multichip module. A cluster consists of 64 or more nodes connected on a
high-speed network, and fitting on a single board. The Rewrite Rule Machine as a whole is a
collection of clusters connected on a network and sharing a common host, which runs a stan-
dard operating system and handles user interaction. We view an RRM system with a single
cluster as an attractive accelerator for applications such as event-driven simulation, image

RRM system

Node Node Node

Tile Tile Tile

Cell Cell Cell Cell

SIMD
Contr.

Instr.
Mem.

Data
Mem.

Cluster
Board

Cluster
Board

Cluster
Board

Ensem-
ble

Netw.
Interf.

IO
Interf.

Host

User User User

4 Cells/Tile;
36864 Cells/Board

o o o o o

o o o o

o o o o o

o o o o o

N

64

144

Fig. 1

processing, neural networks, artificial intelligence, and symbolic computation in general. Such
single-board system has a raw peak performance of 3.6 teraops and, as explained in this paper,
is flexible enough to achieve very good performance on a heterogeneous variety of
applications.

1.3 Implementation of Concurrent Rewriting on the RRM
The RRM is designed to exploit the massive parallelism of many types of applications

expressed with rewrite rules. Fast SIMD rewriting is supported at the chip level, but the RRM
as a whole operates in MIMD/SIMD mode to efficiently and flexibly exploit parallelism at all
levels. The RRM can perform globally-SIMD homogeneous computations, but can also ef-
fectively exploit heterogeneous MIMD parallelism at the cluster and RRM system levels.

Rewrite rules are surprisingly well-suited to massively parallel computation. The most
striking architectural advantage of using rewrite rules for parallel computation is that proper
compilation techniques can greatly reduce the need for synchronization [15]. Consistent with
our framework, rewrite rules allow our design to favor a solution that exposes the underlying
architecture to satisfy synchronization requirements through application-specific software
primitives. Our design supports both the shared memory and message-passing communication
schemes; shared memory consistency is entirely maintained with barrier synchronization
mechanisms and test and set operations, while message passing is supported with a very simple
active message scheme [23]. The simplicity of our hardware somewhat increases software
complexity, but this allows integration of message-passing and shared-memory communica-
tion schemes in a more natural way than in other shared-memory designs [10,13] .

We have developed two compilers mapping rewrite rules to parallel RRM code [2, 15].
The latest compiler exhibits efficiencies within 20% of the corresponding hand-compiled
codes. Given the great flexibility of the concurrent rewriting model, we believe that it is pos-
sible to compile and parallelize conventional code on the RRM with reasonable ease and
efficiency. In this way, support for legacy code written in conventional languages, and inte-
gration of such code with new code written in a rewriting language could be achieved.

Terms and graphs are represented by having each RRM cell represent a vertex. Each cell
has one register holding a datum labeling a vertex, and a variable small number of registers
(two or three) holding the addresses of the child cells. Our indirect addressing scheme allows
extreme flexibility in representing a graph; vertices of the same graph could reside in neigh-
boring tiles, in nonneighboring tiles, in different RRM nodes, or in passive memory. A mix
of software and hardware mechanisms allows communication to occur between vertices re-
siding in any of the above locations. All cells in an ensemble listen to the same SIMD
instructions broadcast by a common controller. The instructions are interpreted depending on
the cell’s internal state; cells to which the instruction does not apply become inactive. Under
SIMD control, cells can communicate with each other to find patterns that are instances of a
rewrite rule lefthand side. Many such instances can be found simultaneously within a single
ensemble and across multiple RRM nodes; the found instances can then be simultaneously
replaced by righthand side patterns. The ensemble’s SIMD controller has a feedback mech-
anism which is used to interrogate cells. In this way, scheduling of code for different rewrite
rules can be made conditional to the appropriate data being present in the cells. Different RRM
ensembles can then work asynchronously in MIMD/SIMD mode on very different types of
data, with each ensemble using only the rules that are relevant for the data it currently has.

1.4 Related Research
Key ways the RRM design differs from massively parallel SIMD machine designs of the

past include (1) its MIMD/SIMD character, (2) its use of software-controlled prefetching
[12,8], which allows data access to be decoupled from the instruction stream, (3) the extreme
simplicity of its SIMD controller and (4) its RISC-like instruction set architecture.

Several other features of the RRM are novel in combination, although most have been seen
in earlier machine designs in isolation. As a concrete comparison, Goodyear/NASA MPP [5]
has local connections between large numbers of (1-bit) cells; however, cells have minimal
computational power and there is no support for indirect addressing. The CM-1 and CM-2
architectures are also composed of SIMD-controlled 1-bit cells and in addition have floating
point hardware support. The RRM has no dedicated floating point support, and features much
more powerful computational agents (much more active memory and a 16-bit ALU). The
CM-5 is a MIMD machine with vector units in each node when fully configured. The vector
units could be thought of as a very limited form of SIMD computational agents, but they
require significant hand-coded software support and are not designed for symbolic
computation. The MasPar line of architectures [6] is another modern SIMD design with some
similarity to the RRM. The MasPar architectures utilize 4-bit computational cells which are
smaller and can store less than RRM cells. MasPar machines support floating point arithmetic
better than the RRM, but lack some of the addressing support, as well as the MIMD/SIMD
capabilities found in the RRM.

Section 2 describes in detail the node architecture, gives a brief description of the ensem-
ble, and discusses the (preliminary) cluster architecture used in the simulations. Section 3
discusses our simulation methodology and experiments. We have measured the performance
of an RRM cluster on three applications: the DARPA Image Understanding benchmark, a
logic level circuit simulation, and a parallel sorting algorithm.

2 RRM Architecture
After a brief description of the system and cluster levels, for which only preliminary de-

signs exist, this section focuses on the detailed architecture of an RRM node by describing and
interelating its components.

2.1 RRM System
The RRM system is composed of a number of cluster boards interconnected with a high

performance network. A host (a conventional workstation) is responsible for the user interface,
compilation, system and high-level synchronization functions. We include a separate I/O
network for generality because I/O requirements will depend on the particular application area
of the final design. The number of cluster boards employed in the system will depend on both
technological issues and performance requirements. For the time being, we focus on a system
with one cluster board.

2.2 RRM Cluster Board
Each RRM cluster board is composed of either 64 or 128 computational nodes; initial

estimates indicate that a 64-node cluster implemented in Multi Chip Module technology will
fit on a reasonably small board of 40×40 cm. Details of the cluster interconnection topology
have not yet been decided; for simulation purposes we model the node-to-node interconnec-
tion network as a point-to-point 500-Mbyte/s bidirectional 2-D mesh. We have derived the
topology, the link controller architecture and the bandwidth estimates (500 Mbyte/s) from the
IEEE SCI standard 1596-1992 [20]. Even though 1-GByte/s communication drivers are al-
ready on the market, we prefer to assume 500-Mbyte/s to be conservative on an aspect of the
design that we have not yet fully explored.

2.3 Node Architecture
The RRM node architecture augments the ensemble SIMD processor with local memory

and with powerful communication capabilities. We have chosen a non-blocking Load/Store
scheme so that software-controlled prefetching can allow overlap of computation and
communication. We have completely decoupled the data flow from the control flow to paral-
lelize the execution of control and data access operations. One of the interesting results of our

design effort is noticing that this paradigm applies to the SIMD world quite well and in some
respects allows an overall simplification of the design. As we shall see later, by sharply
dividing the execution of control and data access instructions between the SIMD controller
and the SIMD processing elements (PEs) one can achieve greater parallelism and at the same
time reduce software and hardware complexity.

 Fig. 2 is a functional block diagram of the node architecture. The ensemble’s cells are
continuously fed in-
s t r u c t i o n s b y t h e
S I M D c o n t r o l l e r ,
which steps through
the instruction memo-
ry. The internal re-
quest buses are used
for distributing data
among the devices of
the node. All devices
are interfaced to this
data path with propri-
etary bus interface

units (BIUs) that, as described below, offer a simple and uniform way of propagating non-
blocking split-transaction requests.

 An important characteristic of this architecture is its flexibility; it can be modified by
adding and removing BIUs and/or buses to fine tune its performance. Each BIU can be con-
nected to an arbitrary small number of devices and, provided it has enough multiplexers, to an
arbitrary number of request buses. The 4-bus configuration depicted above was derived by
gathering execution information from a mix of heterogeneous benchmarks (symbolic Fi-
bonacci, sorting, image component labeling, event-driven simulation, image understanding)
and by choosing parameters that yield good average performance and at the same time exhibit
good hardware utilization. Later, we justify this choice of configuration in more detail.

 Ensemble
Our SIMD processor, called an ensemble, fits on a single die. The ensemble has been the

object of extensive studies in the past [1, 3, 14] and its topology and architecture are based on
the results of extensive theoretical and experimental research. For expository purposes we
summarize the main characteristics of the ensemble.

 The ensemble contains a 12x12 grid of buses and a controller (Fig. 3a). The row buses
(really one large unidirectional bus) are used to broadcast SIMD instructions to all cells within
the chip, and the column buses are used for data input-output. The controller does not have
access to the column buses, which are for the exclusive use of the cells.

Each square formed by the intersection of the buses is called a tile (Fig.3b) and contains
four 16-bit processing elements called cells (Fig. 3c). Each cell is connected to one row bus,
to one column bus and to four local 16-bit buses (NEWS). The four local buses allow direct
communication between cells of adjacent tiles, and one of the buses (North) allows commu-
nication between cells within the same tile. This unique topology offers a large degree of
connectivity while trading off hardware simplicity with having to multiplex eight cells on
each of the NEWS buses. Non-neighboring cells that cannot communicate through the NEWS
buses use the column buses regardless of whether they reside in the same ensemble chip or
reside in different nodes. This greatly simplifies both software and hardware at the expense of
having to service all non-local communication requests off the ensemble chip even in the case
of non-local communication inside the ensemble. A simple fixed-priority scheme synchro-

Network Controller Name Table

Request Buses

Network

BIU

BIU

BIU

BIU

BIU BIU

BIU

BIUBIUBIUBIUBIU

SIMD ProcessorSIMD
Contr

Instr.
Memory

D
a
t
a

M
e
m

o
r
y

I/O
Contr.

22

18X12

18X4

I/O Ports

Memory
Control

Fig. 2

nizes the cells’ access to the shared buses (local NEWS or column). All arbitrations are
explicitly performed by a sequence of SIMD instructions broadcast by the controller. Special
hardware support is provided to allow 16 simultaneous 1-bit communication transactions
between adjacent local cells without the need for bus arbitration.

Each cell consists of a 16-bit ALU, a dual-ported 16x16-bit register file, communication
interfaces, and control logic. Probably the most complex part of the cell is its interface to the
column bus. Because of the great throughput needed to allow sustained computation of 576
cells, a lot of effort has been placed on designing an efficient communication scheme. Each
cell contains a Finite State Machine designed to receive Load/Store requests and service them
autonomously, without interfering with the normal SIMD operations, through the dual-ported
register file. No interlock is provided between the Load/Store and the SIMD operations, thus
completely relying on software to resolve hazards.

 SIMD Controller
Our SIMD controller is simple enough to fit within the SIMD processor chip. Its sim-

plicity is, in our opinion, of paramount importance because it allows decentralization and
simplification of the hardware design and because it permits instructions to be propagated
within the chip, therefore allowing faster clock rates.

The controller’s hardware (Fig 4) consists of an ALU, a register file, and some control
logic. The instruction memory is matched to the controller speed; a secondary program
memory can also be included to implement instruction caching. The SIMD controller steps
through the program memory and executes or broadcasts instructions.

Our instruction set design closely follows the RISC philosophy to allow only simple
elementary instructions and to expose the underlying architecture in order to take advantage
of optimizing compilation techniques. Based on our detailed hardware design for the ensemble
we are confident that all instructions can execute in two half cycles of 5 ns or at 100 MHz.
The RRM uses the A-SIMD mode of execution where, although the controller continuously
broadcasts instructions, individual cells may choose to stop executing instructions based on
the value of their internal registers. This powerful program control scheme causes control
information to be implicit in the ordering of the instruction stream, thus simplifying the
hardware design.

As shown in Fig. 4 the instructions in the Instruction Register (IR) can be either placed on
a latch to be broadcast to the SIMD cells or can be executed internally by the controller
hardware to control the program flow. Synchronization between the controller and the cells
is achieved with a simple wired OR mechanism used to determine whether one or more of the
576 cells is in the active state. Besides program flow control mechanisms, the controller also
offers some simple hardware support for asynchronous message passing between nodes.

Cell
Ins

tru
cti

on
s

Data I/O

Co
lum

n B
us

Control
Instructions

Row Bus

R
e

g
is

te
rs

Data

AL
U

Ensemble Tile

Cell #0 Cell #1

Cell #2 Cell # 3

Row Bus

Row Bus

Co
lum

n B
us

No
rth

 B
us

So
ut

h
Bu

s

West Bus
East Bus

C
o
n
tr

o
lle

r

NEWS Buses

Communication
Interface

Local

Communication
Interface

Distant

Fig. 3

a b c

Controller messages coming from outside the
node contain a predefined vector that points to
some part of the program memory; application-
specific handlers service messages by executing

 the appropriate interrupt routines. To keep the
controller design as simple as possible we do not
anticipate automatic context switch support and
nested interruption capabilities. Messages are
typically very small and rely on the message
handlers for data movement (active message par-
adigm). This part of the controller can be di-
rectly derived from conventional processor de-
sign techniques and therefore is not of particular
interest at this point.

Bus Interface Units and Bus Architecture

 The BIUs (Fig. 5) synchronize information flow between devices within the node. All
transactions are non-blocking. (All requests are buffered and, after issuing a request, a device
is free to perform other tasks.) All requests and messages consist of either two address words
for read requests or one address and one data word for write requests.

It is important to note that a read request, after it has reached its source location and has
obtained the necessary data, is transformed into a
Write/Reply request that is processed by the
hardware as a normal write request, which is then
propagated back to the reader. The detection of
outstanding read requests is obtained using a mix
of software and hardware techniques. The num-
ber of request buses determines how many bus
transactions can happen in parallel. Depending on
the application, internode communication re-
quirements can greatly vary. Here we report the
results of some experiments designed to deter-
mine a sensible number of request buses to be
used in our current node configuration.

Fig. 6 details the perfor-
mance variations of a 4-node
system (expressed as percent-
ages) when the number of bus-
es, memory units, and SIMD
processor BIUs are all varied
from 1 to 12. This graph sup-
ports the choice of a 4-bus sys-
tem because, except for the
hardware simulator applica-
tion, the incremental advan-
tage of increasing the bus width
beyond 4 is very small. Fig. 6
also helps to convey the novel
characteristics of our architect-

Input Q

Output Q

Device Bus

Request Buses
Request Q

Fig. 5

IN
S

TR
U

C
TI

O
N

 C
A

C
H

E
SIMD Controller

AL
U

La
tch

Re
gis

ter
s

PC
IR

Control

Fig. 4

-50

-40

-30

-20

-10

0

10

0 2 4 6 12

%
 V

ar
ia

tio
n

of
 E

xe
cu

tio
n

Ti
m

e

Bus Width

Peano Fibonacci

Shear Sort

Image Understanding

Hardware Simulator

Fig. 6

ure. Sorting, Fibonacci, and the hardware simulator applications never use passive memory
because the problem size was chosen to fit entirely in active memory. The image understand-
ing benchmark, however, relies on passive memory to store temporary results. This bench-
mark’s small performance variation as the bus bandwidth is reduced reinforces the conviction
that our programming model can be quite resilient to memory bandwidth limitations. The
hardware simulator is the application that relies most heavily on the internal node communi-
cation capabilities because of the extremely high connectivity required by this application.

 Network Interface
The network interface supports communication between nodes. It consists of communi-

cation drivers and high-speed hardware queues to store incoming and outgoing messages.
Although we have not yet committed to a final network topology, we have simulated a 2-D
bidirectional mesh with point-to-point links. This part of the node architecture is a good
example of how changing specification parameters cause relatively minor changes to the
overall system. Our current network interface is assumed to have four bidirectional ports
connected to its immediate neighbors; in case, for example, we could only employ an inter-
face with one bidirectional port, four such devices could be placed on a single BIU, thus
emulating the original topology with only very localized changes to the design.

In Fig. 7 we report the result of
an experiment aimed at deter-
mining a suitable number of net-
work interfaces. This experiment
was conducted with a system of
16 nodes. The number of inter-
faces was varied from 1 to 4,
thus measuring the effect of in-
t e r n o d e c o m m u n i c a t i o n
parallelism. In the 1-interface
configuration, packets traveling
between nodes can only be sent
and received sequentially, while
in the 4-interface version pack-
ets can be sent and received in

parallel from the four NEWS directions. As expected, sorting, which is bound by internode
communication bandwidth, shows the highest sensitivity to this parameter and would justify
the adoption of multiple interfaces. We have chosen to adopt a more conservative 1-interface
base configuration so that our performance results would not depend on an optimistic node-
to-node communication mechanism.

Memory Controller, I/O Controller, and Addressing
The flexibility of our node architecture allows tuning the memory subsystem to a required

throughput. Our base configuration uses four memory BIUs, one memory controller per BIU,
and assumes that memory is matched to the memory controller speed. Because of the adoption
of the active memory paradigm, the applications we have developed so far make very little use
of passive memory and therefore are marginally influenced by the memory subsystem
characteristics. Addressing is a part of our design that has been left underspecified because it
is usually not a critical aspect of computer designs. For the moment we do not simulate any
indirect system-level addressing mechanisms and assume instead hard-wired addresses. In the
future we plan to include a standard virtual memory mechanism to handle a larger memory
address space. I/O ports are memory mapped and are accessed just like any other memory

-20

-15

-10

-5

0

1 2 4

%
 V

ar
ia

tio
n

of
 E

xe
cu

tio
n

Ti
m

e

Number of Network Interfaces

Peano Fibonacci

Shear Sort

Image Underst.

Hardware Simulator

Fig. 7

location.

3 Simulation and Performance Results
 We describe here our simulation methodology and performance measurements for an

RRM cluster of 64 or 128 nodes. Although communication-to-computation ratio, bus conten-
tion, network throughput and other performance metrics are all important measurements, we
chose to report only the wall clock time. We have chosen to do so because this is the only
performance evaluation measure that allows easy comparison of the RRM cluster with other
designs to give an accurate relative account of the RRM estimated performance.

A register transfer-level simulator of an RRM cluster has been implemented. The simula-
tor holds a very detailed description of all the hardware down to the register level; it uses the
libraries provided by the general-purpose simulation package Csim [9]. This package is an
extension of the C language that allows very efficient process-oriented event-driven
simulations. Each device of each node is a separate process that interfaces with other processes
through synchronization lines (events) and hardware queues (mailboxes). This simulation
scheme is very similar to a Verilog Hardware Description Language (VHDL) type of behav-
ioral simulation. Contention is carefully taken into account at all levels, and timing (the amount
of time each process takes to perform a given operation) is derived from a careful analysis of
the hardware as it would be implemented with realistic high-end microelectronics technology.
 All chips are clocked at 100 MHz. Request bus transactions execute at 50 MHz, while
node-to-node packets travel at the rate of 500 Mbyte/s. Since the RRM compiler is only partly
complete, we hand-compiled the benchmarks in RRM assembly language. Based on our ex-
perience, we expect the compiled code to perform within ±20% of this handwritten code.

Since the network architecture for the cluster has not yet been determined, further simu-
lation work will be required. However, since our communication assumptions are based on
existing off-the-shelf technologies, the performance estimates derived from the present simu-
lation experiments are well-grounded.

3.1 Performance Estimates
Sorting was implemented with a new version of the Shear Sort algorithm [22]. Even

though our particular implementation is architecture-dependent, the ideas we used can be eas-
ily extended to other architectures offering good connectivity of their computational agents.
The trick is to lay out the problem in a manner allowing efficient communication for both the
normal 2-D pattern necessary for the Shear algorithm and for longer-range links among the
elements of the list. We have found that the register usage to hold long range pointers is fully

justified by performance
improvements. Another
important improvement
to the algorithm dis-
cussed in [22] is the fact
of keeping a sublist of el-

40

60

80

100

120

140

160

180

200

220

240

0 50 100 150 200 250 300

R
R

M
/S

P
A

R
C

-1
0

S
pe

ed
up

Problem Size (Thousands of 16 Bit Integers)

0

500

1000

1500

2000

2500

0 50 100 150 200 250 300

S
P

A
R

C
-1

0
E

xe
cu

tio
n

Ti
m

e
(m

s)

Problem Size (Thousands of 16-Bit Integers)

0

10

1

2

3

4

5

6

7

8

9

11

0 50 100 150 200 250 300

R
R

M
 E

xe
cu

tio
n

T
im

e
(m

s)

Problem Size (Thousands of 16-Bit Integers)

1
2
4
16
64

4464
8928
17856
71424
285696

0.22
1.00
2.16
4.78
9.15

23.20
45.00
106.20
483.20
2164.60

104.6
45.0
49.1
101.1
236.4

16-Bit Integer Sorting

Nodes Problem Size RRM Time (ms) SPARC-10 Time (ms) Speedup

Fig. 8

ements in each processor, thus avoiding the need of alternating shuffle exchanges between odd
and even locations.

 In Fig. 8 we report the speedup obtained by a 64-node RRM cluster over an optimized
quicksort implementation on a SPARC-10/41 with 48 Mbytes of memory. The anomalous
speedup behavior between 4464 and 8929 is due to the internode I/O overhead, which becomes
predominant when the data size grows beyond the active memory available in a single RRM
node. Notice that the RRM’s parallel performance is vastly better than the sequential version,
with execution time growing much slower as the problem size approaches the active memory
size of the RRM cluster. We anticipate some performance degradation when the data set size
grows beyond the active memory available; this will be the object of future studies.

Hardware simulation is representative of a wide class of applications that fall under the
category of Discrete Event Simulation. We have simulated a 540-gate LSI design consisting
of several cascaded binary counters used for digital image processing. Each one of the logic
gates in the LSI design is mapped to an RRM cell. Each gate can have a maximum of 5 inputs
and can be programmed to have a maximum delay of 15 time steps. Mapping of the network
was performed off-line to minimize distant connections. We replicated the same circuit
enough times to obtain a suitable number of gates for the different experiments.

Fig. 9 reports the performance of a 64-node RRM and the Mentor Graphics Quick-Sim
simulation tool run on a SPARC-10/41 for 100,000 iterations. The Quick-Sim execution time
was estimated by subtracting the time taken to simulate one time step form the time taken to
simulate the 100,000 steps to mask out the effects of system-level overhead. These results
point out the great versatility of the RRM interconnection network by indicating good per-
formance figures even for an application where the connectivity required is extraordinarily

high. The largest exam-
ple required a total of
64,592 connections be-
tween gates of which
68% (44195) required,
at each time step, the
use of the distant com-

munication mechanisms.
 The DARPA Image Understanding Benchmark for Parallel Computers [24] is a good

benchmark because it allows direct performance comparisons with other parallel machines
and because it is composed of different phases which test different performance aspects of a
design. The benchmark consists of detecting and abstracting a pattern of rectangles embed-
ded in a cluttered color digital image, and then matching the resulting model with a set of
given hypotheses. We have not yet completed this benchmark; therefore, we report only the
execution times of the low- and intermediate-level processing parts which detect and abstract
the pattern of rectangles from an input test image of size 512x512x8 bits. For this benchmark
we relaxed the assumption of a 64 node board and increased the number of nodes to 128 to
allow a more fair comparison with the ASP and the IUA architectures.

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35
Problem Size (Thousands of gates)

R
R

M
/S

P
A

R
C

-1
0

 S
p

e
e

d
u

p

0

50

100

150

200

250

300

350

400

450

0 5 10 15 20 25 30 35
Problem Size (Thousands of Gates)

S
P

A
R

C
1

0
 E

xe
cu

tio
n

 T
im

e
 (

m
s)

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35
Problem Size (Thousands of Gates)

R
R

M
 E

xe
cu

tio
n

 T
im

e
 (

m
s)

1
2
4
16
64

548
1080
2144
8528
34064

1152
2204
3037
3359
3547

8120
14100
27760
132250
424730

7.05
6.4
9.1
39.37
119.74

Nodes Problem Size RRM Time (ms) SPARC-10 Time (ms) Speedup

Gate-Level Hardware Simulator
Fig. 9

Fig. 10 contains the reported execution times of several parallel machines [7] with the
addition of the RRM performance. Notice that the RRM favorably compares with even the
fastest reported simulated execution times that are based on massive special-purpose signal
processing designs. We expect the symbolic processing phase of the rest of the benchmark to
perform very well in comparison with other machines, given the fact that the RRM was origi-
nally designed to support symbolic computation. A fair performance comparison should point
out that the ASP, IUA and RRM execution times were obtained through simulation and with

substantial development efforts, while the other execution times were obtained with ‘‘real’’
machines and in some cases required minimal software development time. The clock rates of
the ASP and IUA machines were at the time of the simulations (1989) 20 MHz and 10 MHz,
respectively; although this might suggest a technological imbalance (the RRM is clocked at
100 MHz) a more careful analysis of the architectures points out that the RRM’s high clock
rate is justified by its RISC-like design and on-chip controller; in addition, our understanding
is that the ASP and IUA clock rate estimates would still be reasonably adequate today and
have not been much influenced by recent advances in microelectronic technology.

4 Conclusion
 We think that our design is well-suited for massively parallel computation because it

unifies state-of-the-art computer architecture and hardware solutions with a well-understood
and mature high-level programming paradigm. Our declarative model of computation allows
parallelism to be exploited at many levels simultaneously while reducing synchronization
overhead. We have shown very good performance of an RRM cluster on a set of representative
applications. We have also laid down the basis for further tuning of our base architecture to
application requirements and technological constraints, thus providing design flexibility that
will be very useful for future implementations. In the near future we will develop and simulate
more applications and experiment with a range of network architectures for the cluster. The
current RRM compiler will be extended to handle a wider class of rewrite rules and will be
enriched with optimization techniques. In addition, a hardware prototype of the SIMD pro-
cessor will be built using the SPLASH-2 FPGA system [4].

Acknowledgments We are saddened by the untimely loss of our colleague and friend Dr. Sany Leinwand. Sany
contributed much to the RRM project; particularly to its architecture, simulation, and VLSI aspects. We gratefully
thank Prof. Joseph Goguen for his fundamental contributions to the RRM and for his most valuable assistance and
advice, and Prof. Hitoshi Aida for his crucial help in earlier stages of the RRM design. Besides their other contributions
to the RRM project, we especially thank Mr. Babak Taheri for his help during the early stages of the RRM node design,
and Mr. Timothy Winkler for his important contributions to the RRM ensemble design and simulation.

References
1. H. Aida, J. Goguen, S. Leinwand, P. Lincoln, J. Meseguer, B. Taheri, and T. Winkler. "Simulation and
Performance Estimation for the Rewrite Rule Machine". In Proceedings of the Fourth Symposium on the
Frontiers of Massively Parallel Computation, pages 336344. IEEE, 1992.
2. H. Aida, J. Goguen, and J. Meseguer. "Compiling Concurrent Rewriting onto the Rewrite Rule Ma-
chine". In S. Kaplan and M. Okada, editors, Conditional and Typed Rewriting Systems, Montreal,
Canada, June 1990, pages 320332. Springer LNCS 516, 1991.
3. H. Aida, S. Leinwand, and J. Meseguer. "Architectural Design of the Rewrite Rule Machine
Ensemble. In J. Delgado-Frias and W.R. Moore, editors, VLSI for Artificial Intelligence and Neural

(D)ARPA Image Understanding Benchmark for Parallel Computers
 Low- and Intermediate-Phase Cumulative Execution Times

Connected Comp.
Rectangle Detection
Total

23.07
4.36
27.43

35.99
13.92
49.91

78.25
7.6
85.85

21.72
20.97
42.69

0.5
1.26
1.76

0.1509
0.0157
0.1666

0.0003
0.0683
0.0686

0.0049
0.0898
0.0947

Sun-4 FX80/8 Seq81/8 Warp CM2/64k ASP IUA RRM/128

(Sec.)

Fig. 10

Networks, pages 1122. Plenum Publ. Co., 1991. Proceedings of an International Workshop held in
Oxford, England, September 1990.
4. Davis E., Arnold J., Buell D. "SPLASH-2". In Proceedings of the ACM Symposium on Parallel
Algorithms and Architectures, 1992.
5. K. Batcher. "The Architecture of Tomorrow’s Massively Parallel Computer". In Frontiers of Mas-
sively Parallel Scientific Computing, September 1986. NASA CP 2478.
6. T. Blank. "The MasPar MP-1 architecture". In CompCon 1990, 1990.
7. C.Weems, E. Riseman, and A. Hanson. "The DARPA Image Understanding Benchmark for Parallel
Computers". Journal of Parallel and Distributed Computing, 11(1), 1991.
8. Veidenbaum A. Gornish E., Granston E. "Compiler-directed data prefetching in multiprocessors with
memory hierarchies". In Proceedings of the 1990 International Conference on Supercomputing, 1990.
9. H. Schwetman "Csim: A c-based, process-oriented simulation language". MCC Technical Report.
10. Gupta A., Heinlein J., Gharachorloo K. " Integrating Multiple Communication Paradigms in High
Performance Multiprocessors". Technical Report CSL-TR-94-604, Computer Systems Laboratory,
Stanford University, 1994.
11. R. Keller and J. Fasel, editors. Proc. Workshop on graph reduction, Santa Fe, New Mexico.
Springer LNCS 279, 1987.
12. Levy H., Klaiber A. "An architecture for Software-controlled Data Prefetching". In International
Symposium on Computer Architecture 1991, volume 19-3, May 1991.
13. Agarwal A., Kubiatowicz J. "Anatomy of a Message in the Alewife Multiprocessor". In Proceed-
ings of the 7th ACM International Conference on Supercomputing, 1994.
14. S. Leinwand, J.A. Goguen, and T. Winkler. "Cell and Ensemble Architecture for the Rewrite Rule
Machine" In Proceedings of the International Conference on Fifth Generation Computer Systems 1988,
Tokyo, Japan, pages 869878. ICOT, 1988.
15. P. Lincoln, N. Martí-Oliet, J. Meseguer, and L. Ricciulli. "Compiling Rewriting onto SIMD and
MIMD/SIMD Machines". To Appear in PARLE’94, 1994.
16. P. Lincoln, N. Martí-Oliet, and J. Meseguer. "Specification, Transformation and Programming of
Concurrent Systems in Rewriting Logic". G. Belloch, K. M. Chandy, and S. Jagannathan (editors),
Proceedings of the DIMACS Workshop on Specification of Parallel Algorithms, American Mathematical
Society, Providence, RI, 1994.
17. Active Memory Technology LTD. "Introducing the DAP/cp8 Range". DAP Series Technical
Overview, April 1990. Sales Support Note 7.
18. J. Meseguer. "Conditional Rewriting Logic as a Unified Model of Concurrency". Theoretical
Computer Science, 96(1):73155, 1992.
19. J. Meseguer. "A logical Theory of Concurrent Objects and Its Realization in the Maude Language.
 In Gul Agha, Peter Wegner, and Akinori Yonezawa, editors, Research Directions in Concurrent
Object-Oriented Programming, pages 314390. MIT Press, 1993.
20. Microprocessor and Microcomputer Standards Subcommittee. "IEEE standard for scalable coherent
interface". IEEE Standard, 1992.
21. S. Peyton-Jones. "The Implementation of Functional Programming Languages". Prentice Hall,
1987.
22. Sen S. Scherson I. "Parallel Sorting in Two-Dimensional VLSI Models of Computation. IEEE
Transactions on Computers, Feb 1989.
23. T. von Eicken, D. Culler, S.C. Goldsten, and H.E. Schauser. " Active Messages: a Mechanism for
Integrated Communication and Computation". In Proceedings of the 19th International Symposium of
Computer Architecture, May 1992.
24. C. Weems, E. Riseman, A. Hanson, and A. Rosenfeld. "IU Parallel Processing Benchmark." In
Proceedings of the Computer Society Conf. Computer Vision and Pattern Recognition, 1988.

