
ELSEVIER Theoretical Computer Science 165 ( 1996) 171-200 

Theoretical 
Computer Science 

Three-valued completion for abductive logic programs 

Frank Teusink* 

CW!, P. 0. Box 94079, 1090 GB Amsterdam, The Netherlands 

Abstract 

In this paper, we propose a three-valued completion semantics for abductive logic programs, 
which solves some problems associated with the Console et al. two-valued completion semantics. 
The semantics is a generalization of Kunen's completion semantics for general logic programs, 
which is known to correspond very well to a class of effective proof procedures for general 
logic programs. Secondly, we propose a proof procedure for abductive logic programs, which is 
a generalization of a proof procedure for general logic programs based on constructive negation. 
This proof procedure is sound and complete with respect to the proposed semantics. By gener­
alizing a number of results on general logic programs to the class of abductive logic programs, 
we present further evidence for the idea that limited forms of abduction can be added quite 
naturally to general logic programs. 

1. Introduction 

Abduction is a form of inference where one, given some rules and an observation, 
tries to find an explanation of that observation using these rules. For instance, given a 
rule 

shoes_are_wet +- iLis..raining 

the observation shoes_are_wet would be explained by iUs_raining. As such, abduction 
is quite the reverse of deduction, where facts and rules are used to derive conclusions. 
In the above example, from the fact shoes..are_wet one cannot derive anything. But from 
the fact iUs_raining one can derive shoes_are_wet. One can find abduction in many 
fields within the realm of artificial intelligence and knowledge engineering, including 
diagnosis, planning, computer vision, natural language understanding default reasoning, 
and knowledge assimilation. 

Abductive logic programming (first proposed in [14]) is a crossover between logic 
programming and abduction. The idea is to represent the rules as a logic program 
and the observation as a query. Then, abduction is used to infer an explanation 
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using program and query. The best-known semantics for abductive logic programs 
are those based upon (generalized) stable models [12, 22, 18] and argumentation se­
mantics [12, 19]. Proof procedures for these semantics were proposed by Eshghi and 
Kowalski [ 14] and extended by Satoh and lwayama [22] and Kakas and Mancar­
ella [18]. In [5], Console, Dupre and Torasso propose a different kind of semantics, 
based on the two-valued completion of a program. The aim of their paper was to inves­
tigate the relation between abduction and deduction. In [7], Denecker and DeSchreye 
propose a proof procedure for such a two-valued completion semantics, which is based 
on SLDNF-resolution. For a thorough overview on abductive logic programming and 
their semantics, we refer to the excellent survey by Kakas, Kowalski and Toni [ 17]. 

In logic programming, completion semantics was developed as a semantics for de­
scribing what can be computed using SLDNF-resolution. By giving a completion se­
mantics for abductive logic programming, Console et al. showed that abduction is 
closely related to deduction. Denecker and DeSchreye added to this by proposing 
SLDNF A-resolution, a proof procedure for abductive logic programming based on 
SLDNF-resolution. However, a disadvantage of the two-valued completion approach 
is, that it is not defined for arbitrary programs: for many interesting programs there do 
not exist two-valued models of their completion. In general logic programming, it has 
been shown that three-valued semantics are better suited to characterize proof proce­
dures based on SLD-resolution than two-valued semantics. In [16], Fitting proposes a 
three-valued immediate consequence operator, on which he bases a semantics (Fittin9 
semantics). Basically, it states that a formula is true in a program iff it is true in all 
three-valued Herbrand models of the completion of that program. In [20], Kunen pro­
poses an alternative to this semantics (Kunen semantics), in which a formula is true in 
a program iff it is true in all three-valued models of the completion of that program. 

In this paper, we generalize Fitting semantics and Kunen semantics to abductive 
logic programs. In the process, we also propose a three-valued immediate consequence 
operator, and truth- and falseness formulas as presented by Shepherdson in [23], for ab­
ductive logic programs. With this, we provide abduction with a semantics which gives 
a good characterization of the answers that can be actually computed by effective proof 
procedures. This in contrast with semantics based on well-founded semantics, whose 
proof procedures involve expensive loop checking, and those based on stable model se­
mantics, which become intractable as soon as function symbols are used. Such complex 
semantics are interesting from the point of view of knowledge representation, and are 
definitely of use in specific problem domains, but are not viable candidate semantics 
for general purpose (abductive) logic programming systems. This in contrast to Kunen 
semantics, which is commonly used in the verification of general logic programs. By 
providing a Kunen semantics for abductive logic programs, we present further evidence 
for the idea that limited forms of abduction can be added quite naturally to general 
logic programs. 

The obtained results are also interesting within the context of modular lo9ic prowam­
min9, where one reasons with predicates which are (partially) undefined, or defined 
in other modules, and of constraint lo9ic prowammin9, where some of the predicates 
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represent constraints that are to be handled by a constraint solver. In each of these 
cases there is a distinction between the 'logic programming part' of the program and 
some other part, which is either abducible, handled by an other (unknown) logic pro­
gram, or handled by a constraint solver. In these contexts, it is interesting to see if we 
can find a semantics of the logic programming part, which is parametric with respect 
to the 'abducible', 'open' or 'constraint' part. 

Moreover, we present an alternative proof procedure, based upon SLDF A-resolution: 
a proof procedure proposed by Drabent [11]. This proof procedure solves some prob­
lems associated with SLDNF A-resolution. First of all, by using constructive negation 
instead of negation as failure, we remove the problem of floundering. Secondly, instead 
of skolemizing non-ground queries, which introduces some technical problems, we use 
equality in our language, which allows a natural treatment of non-ground queries. 

The paper is organized in three more or less separate parts. In the first part, we 
give an introduction to abductive logic programming (Section 3 ), and present two- and 
three-valued completion semantics (Section 4 ). Then, in the second part, which starts 
with Section 5, we present the immediate consequence operator (Section 6), and use 
it to characterize Fitting semantics (Section 7) and Kunen semantics (Section 8) for 
abductive logic programs. In the third part, we generalize SLDF A-resolution to the case 
of abductive logic programs (Section 9), and present some soundness and completeness 
results on SLDFA-resolution in Section 10. 

2. Preliminaries and notation 

In this paper, we use k, l, m and n to denote natural numbers, f, g and h to denote 
functions (constants are treated as 0-ary functions), x, y and z to denote variables, s, t 

and u to denote terms, p, q and r to denote predicate symbols, A, B and C to denote 
atoms, L, M and N to denote literals, G, H and I to denote goals, e, !J, a, r and p to 
denote abducible formulas (they will be defined later) and <P and t/J to denote formulas. 

In general, we use underlining to denote finite sequences of objects. Thus, 1=. denotes a 
sequence L 1, ... , Ln of literals and §. denotes a sequence s1, ... , sn of terms. Moreover, in 
formulas we identify the comma with conjunction. Thus, 1=. (also) denotes a conjunction 
L1 /\ · · · /\ Ln. Finally, for two sequences s1, ••• , Sk and t1, ..• , tk of terms, we use (§. = 0 
to denote the formula (s1 = t1) /\ · • · /\ (sk = tk ). 

In the remainder of this section, we introduce some basic notions concerning algebras 
and models. For a more thorough treatment of these notions, we refer to [9]. To begin 
with, an algebra (or pre-interpretation, as it is called in [21]), is the part of a model 
that interprets the terms of the language. 

Definition 1. Let 2? be a language and let ff be the set of function symbols in 2?. An 
!£'-algebra is a complex J = (D, f, .. . ) /E.'!' where D is a non-empty set, the domain 
(or universe) of J, and for every n-ary function symbol f E /F, f is an n-ary function 
f: Dn---+ D. 
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Note, that constant symbols are treated as 0-ary functions. Interpretation of terms of 
!£' in a !£'-algebra J is defined as usual. 

We now define the notion of two- and three-valued models. 

Definition 2. Let !£' be a language. Let :F be the set of function symbols in !£' and 
let (JJl be the set of predicate symbols in !£'. A two-valued Il!-model is a complex M = 
(D, f, ... r, .. . ) fEff,rEi?4 where (D, f, .. . ) fEff is an !£'-algebra, for every n-ary predicate 
symbol r E (J}l, r is a subset of vn, and equality (if present) is interpreted as identity. 

Definition 3. Let !£' be a language. Let :F be the set of function symbols in !£' and let 
~ be the set of predicate symbols in !£'. A three-valued !£'-model is a complex M = 
(D, f, ... r, .. . ) fE.~.rE:#I where (D, f, .. . ) fEF is an !£'-algebra, for every n-ary predicate 
symbol r E (J}l, r is an n-ary function r : nn --> { t, f, J_}, and equality (if present) is 
interpreted as two-valued identity. 

Following [9], we treat equality as a special predicate with a fixed (two-valued) 
interpretation. 

For two-valued models, the interpretation of (complex) formulas is defined as usual. 
For three-valued models, the interpretation of (complex) formulas is defined by the 
use of Kleene's truth-tables for three-valued logic. We use f= to denote ordinary two­
valued logical consequences, while f=3 is used for three-valued logical consequences 
(T F3 </J iff </J is true in all three-valued models of T). 

In this paper, we always use equality in the context of Clark's Equality Theory 
( CET), which consists of the following Free Equality Axioms: 

(i) f(x1, ... ,x.) = f(y1,. .. ,yn)--> (x1 = Y1) !\ · · · /\ (Xn = Yn)(Vf), 
(ii) f(x1, ... ,xn) =:f g(yi, ... , Ym) (V distinct f and g), 

(iii) x =:f t (for all x and t where x is a proper sub-term of t ). 
Note, that the fixed interpretation of equality replaces the usual equality axioms, which 
are normally part of CET. 
One important algebra is the Herbrand Algebra HA. It is the algebra that has the set 
of all closed terms as domain, and maps each closed term on 'itself. Given an algebra 
J, a I-model is a model with algebra J. For instance, the set of all HA-models is the 
set of all Herbrand models. A CET-algebra is an algebra that satisfies CET. Note that 
every CET-algebra extends HA. 

For a formula</>, FreeVar (</>)denotes the set of free variables in </J. A sentence is 
a closed formula (i.e. FreeVar (</>) is empty). A ground formula is a quantifier-free 
sentence. A ground instance of a formula </> is a formula </>' such that </>' is the result 
of substituting all variables in </> (free and local ones) by ground terms. When working 
with some language !£' and models over some domain D, it will sometimes be useful 
to work with the domain elements of D as if they were constants. This can be done 
using the following definitions. Given a language !£' and a domain D, the D-language 
!£'D is obtained by extending !£'with a fresh constant for every domain element in D. 
When working in some language !£' and referring to D-sentences or D-formulas, we 
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intend sentences or formulas in the language 2D. We can extend an 2-algebra J to 
an 2 D-algebra J D by interpreting each new constant in 2 D 'as itself, and extend a 
J-model M to a JD-model Mv by replacing the algebra J by the algebra Jn. Given 
a domain D, a language 2 and a formula </J, a D-ground instance of <P is a ground 
instance of <P in the language 2 n. Given an algebra J with domain D, we sometimes 
refer to D-ground formulas as J -ground formulas. 

Lemma 4. Let J be an algebra with domain D and let M be a J-model. Let <P be a 
quantifier-free formula. Then, M f= <P iff for all J-ground instances <P' of </>Mn f= </J'. 

In the following, given a model M with domain D and a D-ground formula </J, we 
write M f= <P whenever we intend MD f= </J. 

In the remainder of this paper, we will not always specify the language. When no 
language is given, we assume a fixed 'universal' language fe,11 , which has a (count­
ably) infinite number of constant and function symbols of all arities. The advantage 
of using such a universal language is, among others, that for that language CET is 
complete. 

3. Abductive logic programming 

Abduction is the process of generating an explanation E, given a theory T and an 
observation 'f'. More formally, E is an explanation for an abductive problem (T, 'f'), 
if TUE is consistent, 'f' is a consequence of TUE, and E satisfies 'some properties 
that make it interesting'. 

In this paper, we limit ourselves to the context of abductive logic programs, in which 
T is an abductive logic program, 'f' is a formula and E is an abducible formula. 

An abductive logic program P is a triple (dp,&fp,.fp), where 
- dp is a set of abducible predicates, 
- &fp is finite set of clauses A +- 8,L_, where A is a non-abducible atom, 8 is an 

abducible formula and !,, is a sequence of non-abducible literals, and 
- .fp is a finite set of first-order integrity constraints. 

An abducible formula (w.r.t. to a program P) is a first-order formula build out of 
the equality predicate '=' and the abducible predicates. An abducible formula c5 is said 
to be (in)consistent, if CET U {6} is (in)consistent. 

Example 5. Here is an example abductive logic program Prweety· 

- dpr .. ,.,.,1, = {penguin, ostrich} 

{

fiies(x) +- bird(x) /\ -iab(x)} 
_ &f = ab(x) +- penguin(x) 

Prw-.·ty ab(x) +- ostrich(x) 

bird( tweety ). 
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In the remainder of this paper, no integrity constraints are used, i.e. Jp is always 
empty. Integrity constraints are used to restrict the explanations for a given observation 
to a smaller class of 'legal' explanations. As such, they can be seen completely separate 
from the 'program part' of the abductive logic program, which specifies the explanations 
for a given observation. In this paper, we want to concentrate on the 'program part' 
of abductive logic programs. That is, we want to give a semantics for it, and develop 
a proof procedure for it. Also, on a more practical level, a reason is that the proof 
procedure we propose has no way of dealing with integrity constraints in full generality. 
One should note however, that there exist techniques that, under certain conditions, 
can translate integrity constrains to some set Jf)Jlp of program rules with head False 
(a propositional variable). Instead of testing whether a candidate explanation b of a 
problem (P, </J) satisfies the integrity constraints, one can find an explanation of the 
problem (P', </J /\ -,Fa/se), where P' is the program (dp, f}/lp U J 9lp, 0). 

If we compare our definition of abductive logic programs with the definitions given 
in [17], the main difference is, that we add equality to our abducible formulas. Of 
course, equality is not abducible, in the sense that one can assume two terms to be 
equal, in order to explain an observation; we use equality in context of CET, which is 
complete when a universal language is used. However, when one thinks of the class 
of abducible formulas as the class of formulas that can be used to explain a given 
observation, it makes perfect sense to include equality. Note that also Eshghi in [13] 
uses a kind of equality in its abducible formulas. However, it is a restricted notion of 
equality, consisting of only the identity and transitivity axioms, and inequality between 
distinct skolem constants. 

4. Completion semantics for abductive logic programs 

In [4], Clark introduces the notion of completion of a general logic program, and 
proposes the (two-valued) completion semantics for general logic programs. The central 
notion in the definition of the completion of a program, is the notion of the completed 
definition of a predicate. 

Definition 6. Let P be a program and let p be a predicate symbol in the language 
of P. Let n be the arity of p and let x1, ..• ,Xn be a sequence of fresh variables. 
Let p(!i_1) +- 01,/;.1 ..• p(!irn) +- Bm,L.m be the clauses in P with head p, and let, 
for i E [l..m], Yz = FreeVar(0;,/;_1)- FreeVar(p(!i_1)). The completed definition of p 
(w.r.t. P) is the formula 

Intuitively, the completed definition of a predicate states that 'p is true iff there 
exists a rule for p whose body is true'. 

The completion ( comp(P)) of a general logic program consists of the completed 
definitions of its predicates, plus CET to interpret equality correctly. In the (two-valued) 
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completion semantics for general logic programs, a formula is true in a program iff it 
is true in all (two-valued) models of the completion of that program. 

In [5], Console et al. propose a two-valued completion semantics for abductive logic 
programs. The idea is, that the completion of an abductive logic program only contains 
completed definitions of non-abducible predicates. As a result, the theory comp(P) 
contains no information on the abducible predicates (i.e. the abducible predicates can 
be freely interpreted). 

Definition 7. Let P be an abductive logic program. The completion of P (denoted by 
comp(P)) is the theory that consists of CET and, for every non-abducible predicate p 
in P, the completed definition of p. 

Example 8. Given the program Prweery of Example 5, the completed program comp 
(Prweety) consists of the following formulas 

fiies(x) ~ bird(x) /\ -iab(x) 

ab(x) ~ penguin(x) V ostrich(x) 

bird(tweety) ~ t. 

plus CET. 

Using this notion of completion for abductive logic programs, Console et al. give 
an object level characterization of the explanation of an abductive problem (P, cp). 
Intuitively, it is the formula (unique up to logical equivalence) that represents all 
possible ways of explaining the observation in that abductive problem. Before we can 
give its definition, we have to introduce the notion of most specific abducible formula. 

Definition 9. For abducible formulas e and (J, e is more specific than (j if CET F 
8 ~ (J. 8 is most specific if there does not exist a (]' (different from e, modulo logical 
equivalence) such that (j is more specific than e. 

We now give the definition of explanation, as proposed by Console et al. (i.e. the 
object level characterization of Definition 2 in [5]). As we want to reserve the term 
'explanation' for an alternative notion of explanation we define later on, we use the 
term 'full explanation' here. 

Definition 10. Let (P, cp) be an abductive problem. Let c5 be an abducible formula. 
Then, c5 is the full explanation of (P, cp ), if c5 is the most specific abducible formula 
such that comp(P) U {<fa} f= c5, and comp(P) U { c5} is consistent. 

Note, that in this definition <fa and fJ switched positions with respect to the ordinary 
characterization of abduction. The advantage of this definition is, that for a given 
abductive problem, the full explanation is unique (up to logical equivalence). 
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Example 11. Consider the program Prweecy and observation --1fies(tweety). The full 
explanation for this observation is penguin(tweety) V ostrich(tweety). With this sim­
ple program, this can be easily checked by using the equivalence formulas in 

comp(Prweety ): 

--1f ies( tweety) ~ --i( bird( tweety) /\ --iab( tweety)) 

~ --ibird(tweety) V ab(tweety)) 

~-it V penguin(tweety) V ostrich(tweety) 

~penguin( tweety) V ostrich( tweety ). 

In their paper, Console et al. restrict their abductive logic programs to the class of 
hierarchical programs. As a reason for this, they argue that 'it is useless to explain 
a fact in terms of itself. Practical reasons for this restriction seem to be twofold: it 
ensures consistency of comp(P), and soundness and completeness of their 'abstract' 
proof procedure ABDUCE. Although we agree that, as is the case with general logic 
programs, a large class of naturally arising programs will tum out to be hierarchical, 
we do not want to restrict ourselves to hierarchical programs. Moreover, the problem 
of checking whether a given program is hierarchical is not al ways easy (see [ 1] for 
some techniques). Thus, instead of restricting ourselves to hierarchical programs, in 
the definition of full explanation, we added the condition that comp(P) U { .:5} has to 
be consistent. 

We now define an alternative notion of 'explanation'. This second definition is more 
in line with the normal characterization of abduction. However, it is also weaker, in 
the sense that there can exist more than one explanation for a given abductive problem. 

Definition 12. Let (P, </>) be an abductive problem. An abducible formula .:5 is an 

explanation for (P,<f>), if comp(P) U {.:5} I=</> and comp(P) U {.:5} is consistent. 

Example 13. Consider again program Prweety and observation ..., flies(tweety). Then, 
penguin(tweety) is an explanation, and so is ostrich(tweety). 

Note, that in both .:5 and </> the free variables are implicitly universally quantified. 
Thus, there is no 'communication' between free variables in 8 and <f>. As a result, the 
observation flies(x) does not stand for the generic 'given a hypothetical individual x, 

what can you tell me (about x) when I observe that x flies'. Instead, it just states that 
you observe that 'all x fly'. 

The following lemma shows that the full explanation of a given abductive problem 
is less specific than any explanation for that abductive problem. 

Lemma 14. Let (P, </>) be an abductive problem such that <f> is ground, let .:5 be the full 

explanation of (P, </>), and let 8 be an explanation for (P, </>). Then, CET I= 8--+ .:5. 
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Proof. [I is the full explanation of (P, </> ), and therefore comp(P) U { </>} f= 6, which 
implies comp(P) f= </>--+b. Moreover, (} is an explanation for (P,</>), and therefore 
comp(P) U { O} f= </>, which implies comp(P) f= e -+ </>. But then, it follows that 
comp(P) f= e-+ b. But fJ--+ [I is an abducible formula and therefore CET f= () -+ b. 

D 

Thus, the difference between the two kinds of explanations is, that the full ex­
planation incorporates all possible ways of explaining a given observation, while an 
(ordinary) explanation is a formula that is just sufficient to explain that given obser­
vation. 

In the above, we used two-valued completion as a semantics. In general logic pro­
gramming, there also exists a three-valued completion semantics. In this semantics, 
the third truth-value models the fact that effective proof procedures cannot determine 
truth or falsity for all formulas. Thus, the third truth-value ( J_) stands for 'truth-value 
undetermined'. In the following example, we show how this third truth-value can be 
useful. 

Example 15. Let us construct the program PTweety' by adding to PTweety the seemingly 
irrelevant clause 

The completion comp(Pr.wety') has no two-valued models. As a result, the observa­
tion ;fiies(tweety) has no (two-valued) explanations. This problem can be solved by 
assigning to p the third truth-value J_, i.e. by switching to a three-valued logic. 

In Section 5, we will characterize Fitting semantics and Kunen semantics for ab­
ductive logic programs, using a three-valued immediate consequence operator. In the 
remainder of this section, we present them semantics using a model-theoretic ap­
proach. 

Fitting semantics and Kunen semantics are based the same notion of completion as 
used in the two-valued case, but use it in the setting of three-valued models. In this 
three-valued setting, special care must be taken to interpret the equivalence operator, 
used in the completed definition of a predicate, correctly. Intuitively, this equivalence 
should enforce that the left-hand side and the right-hand side of the completed definition 
have the same truth-value. However, Kleene's three-valued equivalence ( ....... ) stands for 
something like 'the truth-values of left- and right-hand sides are equal and neither 
one is unknown'. Therefore, instead of.-., another notion of equivalence (3:!) is used, 
which has the required truth-table (see Fig. 1 ). The operator 3=! cannot be constructed 
using Kleene's operators, and therefore has to be introduced separately. Its use is be 
restricted: it will only be used in the completed definition of a predicate. Note, that ......, 
and 3=! are equivalent when restricted to the truth-values t and f. 

Using a model-theoretic approach, Fitting semantics and Kunen semantics can be 
stated very succinctly. 
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..... t f J_ ~ t f J_ 

t t f J_ t t f f 

f f t J_ f f t f 

J_ J_ J_ J_ J_ f f t 

Fig. I. Kleene equivalence and strong equivalence 

Definition 16. Let (P, </>) be an abductive problem. A consistent abducible formula c5 

is a three-valued explanation for (P, </>) (in Fitting semantics), if </> is true in all 
three-valued Herbrand models of comp(P) U {c5}. 

Definition 17. Let (P, </>) be an abductive problem. A consistent abducible formula c5 
is a three-valued explanation for (P,</>) (in Kunen semantics), if comp(P)U{c5} h </>. 

Note, that in these definitions only consistency of c5 (with respect to CET) is re­
quired. The reason is, that in three-valued completion the completed definitions of the 
program-rules are always consistent. In the following, when we refer to a three-valued 
explanation, we refer to an explanation in Kunen semantics. 

From these definitions, it is easy to see that any Kunen explanation is also a Fitting 
explanation. The converse, however, does not hold. To get an idea of the difference, 
consider the following example, involving the universal query problem in ( abductive) 
logic programming. 

Example 18. Let P be the program: 

(p(a) +-- q,{q},0). 

Let </> be the formula lfxp(x). Now, consider the abductive problem (P, </>). In Fitting 
semantics (over the language ff! p ), q is an explanation for this problem. The reason 
is, that in Herbrand models, domain elements are isomorphic to terms of the language. 
On the other hand, if we allow arbitrary (three-valued) models, we can choose richer 
models. For instance, consider the model M with domain {a,b}, in which a is mapped 
onto itself, in which q and p(a) are true, but p(b) is false. Clearly, M is a model of 
comp(P) U { q}. However, </> is not true in M, and therefore q is not an explanation 
for</>. 

There is a large difference in the handling of inconsistencies between two- and three­
valued completion. In the following example, we show how inconsistencies 'disappear' 
in three-valued completion semantics. 

Example 19. Consider the abductive logic program P, with a single abducible predicate 
a, and the following two clauses: 

q+-a. 
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Then, comp(P)U {a} is obviously inconsistent in two-valued completion, because when 
a is true, the completed definition of p reduces to p ~ -ip. Thus, among others, a 
is not an explanation for (P, q). However, by assigning ...L to p, we can construct 
three-valued models of comp(P), and therefore a is a three-valued explanation for 
(P,q). 

Thus, the choice between two-valued and three-valued logic. With a three-valued 
logic, explanations can be inconsistent with respect to some parts of the program. In 
our opinion, the choice of semantics depends on your view on abductive logic pro­
grams, and the relation between abducible and non-abducible predicates. If one assumes 
that a program, i.e. the definition of the non-abducible predicates, can contain implicit 
information on the abducible predicates, in the form of potential inconsistencies, one 
should use two-valued completion. On the other hand, if one thinks of abducible pred­
icates as completely undefined (apart from integrity constraints), or thinks that only 
integrity constraints should be used for constraining the abducible predicates, one can 
use three-valued completion, because then inconsistencies are the result of flaws in 
the program. But even if one thinks that the two-valued semantics is the proper one, 
Kunen's three-valued semantics remains interesting, because it describes the explana­
tions that can actually be computed using a SLD-like proof procedure. One would, 
however, have to prune those explanations that are inconsistent with respect to the 
program. 

5. Three-valued completion semantics 

In Definition 17 of the previous section, we generalized Kunen semantics to abductive 
logic programs. The definition as given there is, however, very succinct. For one thing, 
it does not express the intention behind both Fitting and Kunen semantics. That is, that 
the third truth-value stands for something like 'truth-value not determined'. 

In [16], Fitting proposes the use of three-valued semantics for general logic pro­
grams, using the third truth-value ( ...L) to represent the fact that for some formulas, the 
truth-value cannot be determined. For this purpose, Fitting introduced a t!iree-valued 
immediate consequence operator <Pp, to characterize the meaning of a general logic pro­
gram. He proves that the fixpoints of this operator are three-valued Herbrand models of 
the completed program. He takes the least fixpoint of this operator as the meaning of 
a general logic program (Fitting semantics). However, as Fitting points out, in general 
this semantics is highly non-constructive: the closure ordinal for the least fixpoint can 
be as high as w 1, the first non-recursive ordinal. 

In [20], Kunen proposes a semantics in which the iteration of Fitting's immediate 
consequence operator is cut-off at ordinal w. Moreover, he proves that a sentence </i is 
true in his semantics iff cp is true in all three-valued models of comp(P). 

In the following sections, we define an immediate consequence operator for abductive 
logic programs, and use it to characterize Fitting semantics and Kunen semantics for 
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abductive logic programs. In the process, we also generalize Shepherdson's truth- and 
falseness formulas (see [23]). 

6. The immediate consequence operator 

Let us now define an three-valued immediate consequence operator for abductive 
logic programs. For general logic programs, the immediate consequence operator <l>p 
operates on models, and <l>p(M) denotes the one-step consequences of M, given a 
program P. If we would use this operator on an abductive logic program, this operator 
would generate all observations that need no explanation (i.e. are explained by the 
formula t). We however, want to build an operator that generates all observation cP that 
are explained by some observation b. Therefore, we define an operator <l>p, 0, such that 
<l>p, 0(.H) denotes the one-step consequences of .A, given an abductive logic program 
P and an explanation <5. So, we compute immediate consequences in P, under the 
assumption that <5 holds. One problem is, that for an arbitrary abducible formula <5, <5 

cannot be characterized by a single model. For instance, if <5 is of the form p(a) V 

p(b), it has two minimal models. Therefore, <l>p,[J will operate on sets of models. 
In [16, 20], <Pp operates on Herbrand models. We however follow Doets [9], and 
define the operators on arbitrary J-models, given an algebra J. If we add a J to the 
operators, they operate on J -models. Without a J, they operate on Herbrand models 
(i.e. HA is our 'default' algebra). 

Thus, the operator <l>p,/5 operates on sets of models. To facilitate its definition and 
various proofs, we define the operator <l>p,/5 in two steps. First, we define an operator 
<l>p,LJ, which operates on models. Then, in the second step, we define <l>p, 0 in terms of 
<l>p,LJ. In <l>p,LJ, a model LI models the abducible predicates of P. The idea is that, because 
LI is a model instead of an abducible formula, the set of immediate consequences of a 
model M in P under assumption LI can be characterized by a single model. Because we 
want LI to model the abducible predicates only, we first have to introduce the notion 
of abducible models. 

Definition 20. Let P be a program. A model M is an abducible model (w.r.t. P), if 
all non-abducible atoms in P are mapped to .l in M. 

Example 21. Given the program PTweety, Let us define the Herbrand model Mrweety as 
follows: 
- penguin(tweety) is t in Mrweety, 

- all other ground abducible atoms are f in Mrweezy, and 
- all ground non-abducible atoms are .l in Mrweety· 

Then Mrweety is an abducible model (w.r.t. PTweety). 

Now, the definition of <l>p,LJ is a straightforward generalization of the operator i/.>p 
for general logic programs. For non-abducible atoms, the definition stays the same. 
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However, for an abducible atom A, A is t (resp. f) in <Pp,J(M) iff it is t (resp. f) 
in A. 

Definition 22. Let P be a program. Let J be an algebra and let A be a abducible 
]-model. The three-valued immediate consequence operator <Pt J is defined as fol­
lows: 

- c/>f,,,:t(M)(A) = t iff ,1 F3 AV 
3A +- IJ,L. E J - ground(P): ,1 F3 e /\ M h b. 

- c/>f, ,:t(M)(A) = f iff L1 h --,AV 

VA +- IJ,L_ E J - ground(P): L1 F3 ....,e V M 1=3 --,b_, 

The powers of c/>f,,J are defined as follows: 

ifr:t. = 0 
if rx is a successor ordinal 
if rx is a limit ordinal. 

Note that this definition is not standard for o: = 0. We could define c/>f,,c5 j 0 to be 
the empty set, but at the cost of having a special treatment of the base case in some 
of the lemmas. 

Example 23. Given the program Prweety and abducible model MTweery, we can observe 
that: 

- penguin(tweety) is t in <P1J~ .. ,,n,,Mr .. "·rv i 0, therefore 

- ab( tweety) becomes t in <I>lfa~.--n,,Mr""''' i 1, and therefore 

- .fiies(tweety) becomes fin <1>1j~"'"'Y•Mrweerv i 2. 

Now, we can define <l>p, 0. We will not define <l>p, 0(A) for arbitrary sets of models 
.Jt. Instead, we only define <l>P,c5 i a, for arbitrary ordinals rx. 

Definition 24. Let P be a program and let o be a consistent abducible fonnula. Let J 
be an algebra and let A be the set of abducible J-models of { o}. Then, 

<Pf,,o i r:t. = { <l>'J,,J i rx I L1 E A}. 

In [23], Shepherdson defines the notion of truth- and falseness formulas. These for­
mulas give an elegant alternative characterization of what is computed by the im­
mediate consequence operator. We generalize these fonnulas to abductive logic 
programs. 

Definition 25. Let P be a program. For a natural number n and a formula </J, we define 
the fonnulas Tn( </J) and Fn( efJ) as follows: 
- If <P is an abducible formula, then for all n 
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- If </; is an atom of the form p(§..), where p is a non-abducible predicate, then 
comp(?) contains a definition p(:r) ~ tf;, where Free Vars( if;)=!· We define 

To(</>) '11 f. F0 ( </>) '12 f. 

and 

- If </> is a complex formula, we define 

def def 
Tn(c/J V if;)= Tn(c/J) V Tn(i/J), Fn(</J V i/J) = Fn(c/>) /\ Fn(i/J) 

def def 
Tn(<P--+ lp) = Fn(4J)V Tn(ifi), Fn(</J--+ ijf) = Tn(<f>)/\Fn(l/J) 

Example 26. Given the program Priveet;" we have that 

T2( :fiies(tweety)) = F2(flies( tweety)) 

= F1(bird(tweety) /\ -iab(tweety)) 

= F1 (bird( tweety)) /\ F 1 ( -iab( tweety)) 

= F1(t) /\ T1(ab(tweety)) 

= f /\ T0(penguin( tweety) V ostrich( tweety)) 

=penguin( tweety) V ostrich( tweety ). 

The following lemma is a generalization of Lemma 4.1 in [23] to abductive logic 
programs. 

Lemma 27. Let P be a program. Let J be an algebra with domain D, let LI be an 
abducible J-model and let </; be a D-sentence. Then, for all natural numbers n, 

(i) <P~.L1 T n F3 cf> if{ LI !=J Tn(</J), 
(ii) <P~.L1 T n F3 -i</J if( LI F3 Fn(</J). 

Proof. We prove the lemma by induction on n and formula induction on cf>. 
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Suppose <P is an abducible formula. Then Tn( <P) = ef> and Fn( cp) = -i</J. So, we 
only have to prove that <PJ,,LJ T n F3 <P iff ,1 1=3 cp. This follows directly from the 
construction of <PJ,, LJ. 

Suppose n = 0 and cp is a non-abducible atom p(§.). Then, by definition, p(§.) is J_ 

in <Pf, A T 0 and To(p(§.)) = Fo(p(§.)) = f. Therefore, the claims hold. 
Assume that the lemma holds for all m < n. Suppose <P is the atom p(§.). Because 

<P is a D-sentence, p(§.) is J-ground. Because p is a non-abducible predicate, comp(P) 
contains a definition p(!_) ~ tf;. Now, 

by definition of Tn( p(§.)) 

iff LI h Tn-1 (!. = §. f\ tf;) by induction hypothesis 

iff <frf,,LJ T n - 1 h !. = §. /\ tf; by construction of tf; 

iff :3 p{§.) +-b. E J-ground(P): <Pf, L1 T n - 1 F3 I 
by construction of<Pf,,A 

iff <frf,,Ll T n 1==3 p(:J.) 

The reasoning for Fn(P(§.))(g_) is similar. 
If <P is of the form -itf;, tf; Ar/, tf; VY/ or tf; --+ YJ, the claim follows from the construction 

of Tn( <P) and Fn( cp ). 
Suppose <P is of the form 3xtf;. Then, <PJ,,Ll T n h 3xtf; iff, for some element a of the 

domain of J, <Pf, L1 T n 1==3 If;( a). Because tf;( a) is a D-sentence, we have by induction 
that <PJ,.Ll T n I=~ lj;(a) iff L1 F3 Tn(t/J(a)). Finally, we have that LI F3 Tn(l/J(a)) iff 
LI h Tn(3xtf;). 

The other cases with quantifiers are similar. 0 

Corollary 28. Let P be a program and let fJ be a consistent abducible formula. Let 
J be an algebra with domain D and let cp be a D-sentence. Then, 

(i) <PJ,,b Tn h </Jiff Ju{fJ} h Tn(</J), 
(ii) <PJ,,b T n h -i</J iff Ju { fJ} F3 Fn( <P ). 

Proof. The proof follows immediately from the fact that J U { fJ} 1=3 <P iff <P is true in 
all abducible ]-models of {[J}. 0 

7. Fitting semantics for abductive logic programs 

In this section, we use the three-valued consequence operator defined in the previous 
section to generalize Fitting semantics to abductive logic programs. 

Definition 29. Let (P, </J) be an abductive problem. Let [J be a consistent abducible 
formula. Let .,# be the least fixpoint of tI>~{ Then, c:5 is an explanation for (P, </J) in 
the Fitting semantics, if .,# F3 </J. 
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With Fitting semantics for general logic programs, a formula is true in the Fitting 
semantics iff it is true in all three-valued Herbrand models. The same holds for Fitting 
semantics for abductive logic programs. In order to prove this, we first present two 
lemmas. First of all, the following lemma shows that the fixpoints of <PP,.d are indeed 
three-valued models of comp(P) U { <5}. 

Lemma 30. Let P be a program and let '5 be a consistent abducible formula. Let 
J be an algebra, let LI be an abducible J -model of { <5} and let M be a J -model. If 

<Pt.tJ(M) = M then M h comp(P) U {<5}. 

Proof. Suppose that <P'f,,.d(M) = M. The fact that Mis a model of {<5} follows trivially 
from the definition of <P'f,,tJ. We have to prove that M F3 comp(P). 

Let p(~) ~ l/! be a formula in comp(P). Let p(g_) be a I-ground atom. Then, 

M h tf.t(g_) by definition of l/! 
iff 3 p(g_) +- L. E J-ground(P) : M F3 L. by definition of <Pt tJ 

iff <P'f,,tJ(M) F3 p(g_) because <P'f,,tJ(M) = M 

iff M F3 p(g_) 

and 

M F3 -il/l(g) by definition of If; 
iff '</ p(g_) +- L. E J-ground(P) : M F3 -,!,,_ by definition of <I>'f,,tJ 

iff <I>'f,,.d(M) F3 -ip(g_) because <l>'f,,J(M) = M 

iff M F3 -ip(g_) D 

Corollary 31. Let P be a program and let '5 be a consistent abducible formula. Let 

J be an algebra. If.$! is a fixpoint of <P'f,,0, then .$! FJ comp(P) U { <'5}. 

In the second lemma, we prove the converse. For this, we need the following defi­
nition. 

Definition 32. Let P be a program and let M be a model. The abducible projection 
of M is the abducible model LI such that 
- Ll(A) = M(A), if A is an abducible atom, and 
- Ll(A) = ..l, otherwise. 

Lemma 33. Let P be a program and let '5 be an abducible formula. Let J be an alge­
bra and let M be a J-model such that M 1=3 comp(P) U { £5}. Let LI be the abducible 
projection of M. Then, M is a fixpoint of <P'f,tJ. 

Proof. Suppose that M 1=3 comp(?) U {<'5}. 
We have to prove that <Pfo,tJ(M) = M. 
- If L is an abducible ]-ground literal, LI F3 L iff M h L, and therefore, by definition 

of <P'f,,tJ, <P'f,,J(M) F3 L iff M h L. 
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- If p(g_) is a non-abducible J-ground atom, there exists a J -ground instance p(g_) ~ t/! 
of a formula in comp(P) such that 

<Pt,11CM) F3 p(g_) by definition of <Pt.11 
iff 3 p(g_) ,__ L. E J-ground(P) : M h L. by definition of completion 

iff M h t/! because M F3 comp(P) 

iff M F3 p(g_) 

and 

<Pt,11CM) F3 • p(g_) by definition of <Pt.11 
iff V' p(g_) ,__ L. E J -ground(P) : M F3 •L. by definition of completion 

iff M F3 •t/! because M h comp(P) 

iff M F3 -, p(g_) D 

Theorem 34. Let (P, </>) be an abductive problem. A consistent abducible formula (J 

is an explanation for (P, </>) in the Fitting semantics if! <fa is true in all three-valued 

Herbrand models of comp(P) U {b}. 

Proof. Let .;// be the least fixpoint of <Pff 1. 
( {:=) This follows directly from Lemma 30: as a fixpoint of <Pt,,., is a J-model, take 

J to be HA, and we have that the fixpoints of <Pffj are subsets of the set of Herbrand 
models of comp(P) U { b}. 

( ==>) Let M' be an arbitrary Herbrand model of comp(P) U { b}, and let LI be its 
abducible projection. By Lemma 33, M' is a fixpoint of <P:,~. Moreover, LI is an 
abducible HA-model of {b}. As a result, for some fixpoint A' of <P:,t, M' EA'. 
Because .H is the least fixpoint of <PK1, there exists a M E .H such that M' F3 M. 
But then, if <fa is true in At, it is true in M, and therefore in M', which is what we 
started with; an arbitrary Herbrand model of comp(P) U { <5}. D 

8. Konen semantics for abductive logic programs 

In this section, we propose a Kunen semantics for abductive logic programs. In [20], 
Kunen proposes to cut off iteration of the immediate consequence operator at ordinal 
w, instead of continuing until the least fixpoint is reached. Generalizing this idea to 
abductive logic programming, we get the following semantics. 

Definition 35. Let (P, <fa) be an abductive problem. Let b be a consistent abducible 
formula. Then, b is an explanation for (P, </>) in the Kunen semantics if, for some 
natural number n, <Pf!t r n 1=3 </>. 

Note, that this definition differs from Definition 17. The remainder of this sec­
tion is dedicated to proving that these two definitions give rise to the same se-
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mantics (Theorem 42). In his proof of Theorem 6.3 in [20], Kunen makes heavy 

use of ultra-products. We base our proofs on an alternative proof given by Doets 

in [9]. 
The larger part of the work is done in the proof of Theorem 36, which proves 

one direction of the desired result for the operator <PP,Ll· Basically, with this result 

on <Pp,11 , we have proven the result for <Pp,0, for the case where i5 is a conjunction 

of abducible literals (i.e. has a minimal model over any algebra). The remainder of 

the proof of Theorem 42 is concerned with extending this result to the case where 

i5 is an arbitrary abducible sentence, and proving the other direction of the desired 

result. 

Theorem 36. Let P be a program and let </> be a sentence. Let (5 be a consistent 

abducible formula and let L1 be an abducible HA-model of { i5}. Then, if comp(P)U { f>} 
F3 </J, for some natural number n, <Pff.1 T n h </J. 

The proof of this theorem closely resembles the proof of Corollary 8.37 in [9]. It is 

organized as follows. In Lemma 37 we show that we can replace J with an elementary 

extension of J. Then, in Lemma 39 we show that for certain elementary extensions J of 

HA, <Pf, 11 is continuous. In Lemma 40 we show that for certain elementary extensions 

J of HA, <Pf, Ll T w is a least fix point. From these lemmas, and from the fact that, by 

properties 1 and 2 stated below (see [3] ), we know these desired elementary extensions 

of HA exist, we can prove Theorem 36. 

Lemma 37. Let P be a program. Let J be an elementary extension of HA, let L1 

be an abducible HA-model and let Ll' be an elementary ]-extension of Ll. For every 

sentence </> and natural number n, <Pff.1 T n F3 <P iff <P/11 , T n F3 </>. 

Proof. By Lemma 27, <P~1 T n F3 <P iff L1 h Tn(cf>). Because Ll' is an elementary 

extension of Ll, and Tn( </>) is a sentence, L1 F3 Tn( c/;) iff L1 1 f=3 Tn( </> ). Again, by 

Lemma 27, Ll' F3 Tn(c/>) iff <Pf,Ll' T n h </>. D 

For Lemmas 39 and 40, we need the following definitions and results from model 

theory, concerning recursively saturated models. 

Definition 38. Let 'P = {if;; I i E N} be a sequence of formulas if;; in finitely many 

free variables x1, ... ,xk> YI, ... , Ym and let M be a two-valued model. M is called 'P­
saturated if, for every sequence a1, ••• , am of domain elements, either 

- { tf;; {2:'./ g_} I i E N} is satisfiable in M, or 

- there exist a natural number N such that {lf;;{y/g_} Ii< N} is not satis-

fiable in M. M is called saturated if it is 'P -satu~ted for every sequence 'P. 
M is called recursively saturated if it is '¥-saturated for every computable 
sequence 'P. 
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Property 1. Every countable model has a countable recursively saturated elementary 
extension 

Property 2. Let 'f' = { i// I i E N} be a sequence of sentences with free variable x. Let 
M be a recursively saturated model and let A be the domain of M. Then, 

Lemma 39. Let P be a program. Let J be a recursively saturated algebra with 
domain D and let A be an abducihle ]-model. Let </; be a D-sentence. If </J is t (resp. 
f) in <Pf Ll r w, then, fc>r some natural number n, <P is t (resp. f) in <Pf L1 r n. . . 
Proof. The proof is by induction on the complexity of </;. Only when </J is of the form 
\:/ytj; or :Jytj;, the proof is non-trivial, and we can write :Jytj; as •Vy-.tj;. Let A be the 
domain of J. 

Assume that \:/ ytj; is t in <Pf .J I (J). Then, for all a E A, tj;( a) is t in <Pt Ll I w. By 
induction hypothesis, for all a EA, there exists an n such that tj;(a) is t i~ <Pf Ll r n. 
But then, by Lemma 27, for all a EA, there exists an n such that Tn(l/J)(a) is t in 
A. Because J is recursively saturated, by Lemma 2 there exists an n such that for all 
a E A Tn( i/t )(a) is t in A. But then, Tn (\:/ytj;) is t in A and therefore by Lemma 27, 
\:/ytj; is t in <Pt ,1 T n. 

Assume that 'v ytj; is f in <Pt,Ll I w. Then, for some a E A, tj;(a) is f in <Pt . .J I (J). By 
induction hypothesis, for some a EA, there exists an n such that tj;(a) is fin <Pt,.J In. 
But then, Vyt/,t is f in <Pt.Ll I n. LI 

Lemma 40. Let P be a program. Let J be a recursively saturated CET-algebra and 
let A he an abducible J-model. Then, lfp( <Pt Ll) = <Pt Ll I w. , , 

prove for an arbitrary J -ground atom A that, whenever 
then <Pf,.d T w(A) = t, and if <Pt /I r (J) + 1 (A) = f, then 

Proof. We have to 

<PtLl I cv + l(A) = t, 

<Pt'Ll I w(A) = f. 
For abducible atoms, the claims hold trivially, because then <Pt_Ll r x(A) = t (resp. f) 

iff A F3 A (resp. A F3 ·A). 
Suppose p(,x) is a non-abducible J-ground atom. 

- Suppose p(§.) is t in <Pt,.J I (J) + 1. Then, there exists a J -ground instance p(,x) ,_ l 
of a clause in p such that <PtLl r (J) F3 [,,_. But then by Lemma 39, there exists a 
natural number n such that <Pt:Ll r n f=3 l, and therefore p(§.) is t in <Pt.L1 r n + i. 
Thus, p(,x) is t in <Pt_Ll I (J). 

- Suppose p(,x) is fin <Pf Ll I w + 1. Let p(f1 ) <- !,,,1 •.. p(!_k) <-Lk be the clauses in 
P defining p. Then, for ~ll i E [1..k], <Pf Ll T w F3 •(§. = !..; /\ b;). Because -i(,x = L 
/\ l;) is quantifier-free, it is equivalent to its universal closure. But for all i E [l..k], 
'\/•(§. = !_; /\ b.;) is a D-sentence (where D is the domain of J), and therefore by 
Lemma 39 there exists an n; such that <Pt J T n; F3 '\/-.(~ = L /\ b; ). Because k 
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is finite, there exists an n such that, for all i E [l..k ], we have that <Pt LJ i n I= 
--i(~ = !.; /\ !..;). By construction of <Pt,LJ• we have that p(~) is fin <Pt,LJ i ~ + 1 and 
therefore, p(~) is f in t/.>t,LJ i w. 0 

Before proving Theorem 36, we combine the preceding two lemmas in the following 
corollary. 

Corollary 41. Let P be a program and let 8 be a consistent abducible formula. Let 
J be a recursively saturated CET-algebra and let A be an abducible ]-model of {8}. 
Let cf> be a sentence. If comp(P) U { 8} F3 c/J, then for some n <Pt LJ i n F3 </>. 

Proof. By Lemmas 30 and 40, <Pt,LJ i OJ is a three-valued model of comp(P) U { 8}, 
and therefore <Pt LJ i w F3 c/J. Therefore, by Lemma 39 there exists a finite n such that 

<PtLJ in h c/J. 'o 

Proof of Theorem 36. Suppose that comp(P) u { 8} 1=3 </J. By property 8, there exists 
a recursively saturated elementary extension J of HA. Because J is an extension of 
HA, it is a CET-algebra. Again, by property 8, there exists an elementary ]-extension 
A' of A. By Corollary 14, there exists a finite n such that <PtLJ' in F3 </J. Finally, by 
Lemma 37, <Pff1 j n h </J. 0 , 

Thus, for tl>p,LJ, we have proven the one direction of the desired result. In the fol­
lowing theorem, we prove that the desired correspondence holds for tl>p,0• 

Theorem 42. Let P be a program and let fJ be a consistent abducible sentence. Let 

<jJ be a sentence. Then, comp(P) U { fJ} F3 <jJ iff, for some finite n, <P~1 i n F3 </J. 

Before proving the theorem, we first need to prove two lemmas. The first one states 
that, in some sense, the operator <PP,o behaves 'monotonically' with respect to the 
assumption b. · 

Lemma 43. Let P be a program and let b and a be consistent abducible formulas. Let 

J be an algebra. If J h fJ --* a then, for all natural numbers n, <Pt.0 i n F3 <Pt,,, i n. 

Proof. It suffices to prove that, for all natural numbers n, M E <Pt 0 j n implies 
ME t/.>t,, j n. , 

Supp~se that M E t/.>t 0 i n. Then, for some abducible J -model A of { i:5}, 
M = <Pt LJ i n. But becaus~ J F3 fJ --* a, A is also an abducible J -model of {a}. There­
fore, M 'E <Pt,, in. D 

Lemma 44. Let P be a program and let b be a consistent abducible formula. Let <jJ be 
a sentence and let J be a recursively saturated CET-algebra. Then, comp(P)U{b} f=3 

<jJ implies that, for some finite n, <Pt,0 i n F3 </J. 
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Proof. comp(?) U {b} h <P implies that comp(?) h b ____, cp. Let rI be an abducible 

formula which is a tautology, and let J be the least abducible ]-model of rI. By Corol­

lary 41, there exists a finite n such that <Pt /J T n f=3 b ____, <f>. Because L1 is the least 

abducible J-model of { ()}, we have that <Pj,a r n f=3 c> ____, </> iff <Pt,iJ T n 1=3 c> ____, </>. 

Moreover, because J p3 b ____, rI, it follows by Lemma 43 that <Pj 0 T n F3 6 ____, </>. Fi­

nally, because we know that <Pt,o T n F3 b, it follows that <Pj,0 T 'n p3 </>. D 

Proof of Theorem 42. ( ==?) Suppose that comp(P) U { b} f= 3 rjJ. By property 8, there 

exists a recursively saturated elementary extension J of HA. Because J is an extension 

of HA, it is a CET-algebra. By Lemma 44 there exists an n such that lf>j,,5 T n 1=3 </>. 

Let LI be an arbitrary abducible HA-model of {6}. By property 8, there exists an 

elementary ]-extension J' of LI. Because LI' is an elementary extension of LI, b is a 

sentence and LI F3 b, it follows that A' h b. Therefore, it follows from <I>j,0 T n 1=3 <P 

that <Pt.!J' T n F3 </>. But then, by Lemma 37, <Pft.1 T n h cp. Thus, for arbitrary Her­

brand models LI of b, we have that <Pf!1 T n p3 </>. But then, also <Pif 1 T n p3 </>. 
(-{==) The proof is by induction on n. 'For n = 0, we have that <P~1 i 0 j=3 cjJ implies 

that <P is an abducible formula and that HAU { b} !=3 rjJ. Because b and </> are sentences 

and every model of CET is an extension of a Herbrand model, CET U { 6} f=3 cjJ and 

therefore comp(P) U {b} FJ rjJ. 
Assume that the claim holds for all m < n. If p(§_) is a non-abducible ]-ground 

atom, there exists a ]-ground instance p(g_) ~ t/1 of a formula in comp(P) such that 

<Pt,6 T n F3 p(§_) iff comp(P) U { b} F3 p(§_). 

and 

<Pt.a T n F3 p(§_) 
by definition of !J>f 8 

iff :::J p(§_) +-LE J-ground(P): <Pt.0 T n - l F3 L 
by induction hypothesis 

then :::J p(§_) +-LE J-ground(P): comp(P) U {c5} p3 L 
by definition of completion 

iff comp(P) U { b} F3 p(§_) 

<Pt,c, T n h -.p(§_) 

by definition of <Pt,,5 

iff I;/ p(§_) +- L E J -ground(P) : <Pf,6 T n - l F3 -.L_ 

induction hypothesis 

then I;/ p(§_) +-LE J-ground(P): comp(P) U {b} p3 -.J;. 

definition of completion 

iff comp(P) U { 6} F3 -.p(§_) 

For complex sentences, the proof is by structural induction. D 

Thus, we have proven that Definitions 17 and 35 give rise to the same semantics. 

In the following section, we present a proof procedure for this semantics. 
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9. Generalizing SLDFA-resolution 

In [7], Denecker and DeSchreye propose a proof procedure which is sound with 
respect to the two-valued completion semantics of [5]: SLDNFA-resolution (a proof 
procedure for abductive logic programs based on SLDNF-resolution). The semantics 
they use, is the two-valued completion semantics for abductive logic programs, pro­
posed by Console et al. in [5]. In this paper, we propose an alternative proof procedure, 
which is based upon SLDFA-resolution; a proof procedure for general logic programs 
proposed by Drabent [11]. This proof procedure solves some problems associated with 
SLDNF A-resolution. First of all, by using constructive negation instead of negation 
as failure, we remove the problem of floundering. Secondly, instead of skolemizing 
non-ground queries, which introduces some technical problems, we use equality in our 
language, which allows a natural treatment of non-ground queries. 

In the last few years, various forms of constructive negation have been proposed (see 
for instance [2, 24, 11, 10, 15]), to deal with the problem of floundering in SLDNF­
resolution. [ 11 ], Drabent introduces SLDFA-resolution, a proof procedure for general 
logic programs based on SLD-resolution and constructive negation, proves that it is 
sound and complete with respect to Kunen's three-valued completion semantics, and 
sound with respect to two-valued completion semantics. 

In this section we generalize SLDFA-resolution to abductive logic programs. The 
main difference with the definition given in [11] is that the answers we compute are 
abducible formulas instead of constraints. As a result, most definitions in this section 
are direct copies of definitions in [11]. Only the definition of goal is slightly different. 

The basic idea of using constructive negation in proof procedures for general logic 
programming is, that computed answers to general goals are equality constraints, i.e. 
first-order formulas build out of the equality predicate '='. This notion of computed 
answer generalizes the notion of computed answer substitutions, because a substitu­
tion can be written as a conjunction of primitive equalities. Instead of using equality 
constraints as computed answers, we use abducible formulas. If we only look at their 
definition, we see that abducible formulas are a generalization of equality formulas. 
However, there is a difference in the meaning of an abducible formula when it is used 
as a computed answer. When using an equality constraint 0 as computed answers, one 
requires it to be satisfiable in CET, i.e. CET I= 38. However, when the computed 
answer is an abducible formula, there is no theory with respect to whom one can re­
quire it to be satisfiable. The only requirement for such a computed answer is, that 
it is consistent. Therefore, we require consistency instead of satisfiability. As our ab­
ducible formulas can contain equality predicates, we require our computed answers to 
be consistent with respect to CET. This consistency requirement for abducible formulas 
generalizes the satisfiability requirement for equality constraints, whenever a universal 
language is used. 

Lemma 45. Let 8 be an equality constraint. Then, e is satisfiable in CET se" iff 
CET !£" U { O} is consistent. 
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Proof. The lemma follows directly from the fact that CET y 11 is a complete theory. 
D 

We will not concern ourselves with reducing abducible formulas to normal forms. 
We simply assume the existence of normalization procedures that transform a given 
abducible formula into a format that is intelligible to humans. 

SLDFA-resolution is defined by two basic notions: SLDFA-refutations and (finitely 
failed) SLDFA-trees. An SLDFA-refutation is a sequence of goals, ending in a goal 
without non-abducible atoms, such that each goal in the sequence is obtained from the 
previous goal by a positive or negative derivation step. A positive derivation step is 
the usual one used in SLD-resolution, with the difference that the resolved atom has to 
be a non-abducible atom. A negative derivation step is the replacement of a negative 
non-abducible literal •A in the goal by an abducible formula a such that +-- a,A is 
guaranteed to fail finitely. A finitely failed SLDFA-tree for a goal G is a proof for 
the fact that G fails finitely; it is an approximation that is 'save' with respect to finite 
failure; if a finitely failed SLDF A-tree for G exists, it is guaranteed that G fails finitely, 
but the fact that that there exists an SLDF A-tree for G that is not finitely failed, does 
not imply that G is not finitely failed. 
Before we can define SLDF A-resolution, we have to define the notion of a goal. 

Definition 46. Let P be a program. A goal (w.r.t. P) is a formula of the form 
•(8 A L 1 A ... A Lk), usually written as +-- 8,Li, ... ,Lk, such that 
- () is a consistent abducible formula, and 
- L; (for i E [1..k]) is a non-abducible literal. 
An s-goa/ is a goal in which one of the literals is marked as selected. 

We begin the definition of SLDFA-resolution with the definition of positively derived 

goals. 

Definition 47. Let P be a program, let G be the s-goal +-- 8,N, p(t),M (with p(t) 
selected) and let p(~) +-- a,l:_ be a variant of a clause in P. A goal G' is positively 
derived from G using p(~) +-- a,l:_ if 
- FreeVarG n FreeVar p(~) +-- a,l:_ = 0 and 
- G' is of the form+-- 8,(£ = ~),a,N,~,M. 
If G' is positively derived from G using a variant of a clause R, we call R applicable 

to G. 

Note that the abducible formula in G' is (by definition) consistent because G' is 
(by definition) a goal, and by definition the abducible formula in a goal is consis­

tent. 
We now give the definitions of negatively derived goals,finitelyfailed goals, (finitely 

failed) SLDFA-trees, and SLDFA-refutations. These definitions are mutually recur­
sive. Therefore, we define them inductively, using the notion of rank. 
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Definition 48. Let P be a program and let G be the s-goal +- O,N, --iA,M (with --iA 
selected). Let the notion of rank k finitely failed goals be defined. A goal G' is rank k 

neyatively derived from G if 
- G' is of the form+- O,a,N,M, 
- +- e, a, A is a rank k finitely failed goal, and 
- Free Var(cr) <;.;;;Free Var(A). 

We call 0, CJ a (rank k) fail answer for +- 8,A. 

Definition 49. Let P be a program and let G be a goal. Let the notion of rank k 
.finitely failed SLDF A-tree be defined. G is a rank k finitely failed goal if there exists 
a rankk finitely failed SLDFA-tree for G. 

Definition 50. Let P be a program and let G be a goal. Let the notion of rank k 
SLDFA-refittation be defined. A rankk SLDFA-tree for G is a tree such that 

( i) each node of the tree is an s-goal and the goal part of the root node is G, 
(ii) the tree is finite, 

(iii) if H : ....... 8,L,1,A,J;,.2 (with A selected) is a node in the tree then, for every 
clause R in P applicable to H, there exists exactly one son of H that is positively 
derived from H using a variant of R, and 

(iv) if H: <- 8,L,1,--iA,L,2 (with -,A selected) is a node in the tree, then it has sons 

provided there exist 61, .•• , 6n that are SLDF A-computed answers obtained by rank k 
SLDFA-refutations of+- 0,A, such that 

CET F 8 ---? i51 v ... v bn v CJ1 v ... v (Jm 

If no node in an SLDF A-tree is of the form +- 8, then that tree is called finitely failed. 

Definition 51. Let P be a program and let G be a goal. Let the notion of rank k - 1 
neyatively derived s-yoal be defined. A rank k SLDFA-refutation of G is a sequence 
of s-goals G0, G1, ••• , Gn such that G is the goal part of G0, Gn is of the form ....... e 
and, for i E [1..n], 
- G; is positively derived from G;_ 1 using a variant C of a clause in P such that 

Free Var( C) n Free Var( G0 , ..• , G;_ 1) = 0, or 
- G; is rank k - 1 negatively derived from G;_ 1. 

The abducible formula ::12:'_8, where 2:'_=FreeVar(8)-FreeVar(G), is a SLDFA­
computed answer for G. 

To get some insight in the construction of SLDF A-refutations, let us conclude with 
an example 

Example 52. Consider program Prweery and the observation :fiies(tweety ). In Fig. 2 
we show the SLDF A-refutation for this query in R1. Let us see how this refutation is 
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-,flies( tweety) 

I 
penguin( tweety) 

penguin ( tweety ),flies( tweety) 

I 
penguin ( tweety ), bird ( tweety),-, ab( tweety) 

I 
penguin( tweet¥), -,ab( tweety) 

penguin ( tweety) A 

-,(penguin ( tweety) V ostrich( tweety)) 

-,(penguin ( tweety) V ostrich ( tweety)), 

ti.b(tweety) 

... 
-,(penguin( tweety) V ·~~trich( tweety)) A 

penguin( tweety) 

... 
. .. 

-,(penguin( tweet~) ·v ostrich(tweety)) A 

ostrich(tweety) 

Fig. 2. An SLDFA-refutation for -.jiies(tweety) 

constructed. First of all, consider T2 which is a finitely failed SLDFA-tree for 

<-- •(penguin( tweety) V ostrich( tweety) ), ab( tweety) 

195 

The two dotted lines in the tree lead to two 'goals' which are not valid resolvents, 
because their constraint part is inconsistent. Thus, the root of T2 is a finitely failed 
goal. Secondly, we have T1 is a finitely failed SLDFA-tree for 

<-- penguin(tweety ),flies( tweety) 

This tree is finitely failed, because applying the finite fail answer obtained by T2 in 
a (negative) resolution step with •ab(tweety) results in a 'goal' with an inconsistent 
constraint (see the dotted line). Because, the finitely failed goal in T2 is most general, 
it follows that the third goal in T1 has no resolvents. Thus, the root of T1 is a finitely 
failed goal. This fact is used in the construction of the SLDFA-refutation R 1• 

10. Soundness and completeness of generalized SLDFA-resolution 

In this section we present some soundness and completeness results on SLDF A­
resolution for abductive logic programs. We start by proving soundness with respect 
to three-valued completion semantics for abductive logic programs. 
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Theorem 53. Let P be a program and let G be the goal +-- 8,L_. 
(i) If b is an SLDFA-computed answer for G then comp(?) F3 b __, B /\ !,,.. 

(ii) If G .finitely jails then comp(?) h e--+ -if,,_. 

The proof of this theorem closely resembles the proof of Theorem 4.2 in [11]. The 
differences between the two proofs are, that here we prove soundness with respect 
to three-valued completion semantics, while Drabent's proof proves soundness with 
respect to two-valued completion, and that we work with abductive formulas instead 
of constraints. We omitted the proof, because it is rather lengthy and technical. It can 
be found in [25]. 

The following corollary proves soundness of SLDF A-resolution with respect to the 
three-valued completion semantics for abductive logic programs, as stated in Defini­

tion 17. 

Corollary 54 (Three-valued soundness). Let P be a program and let G be the goal 
+-- 8,f:.. If (J is an SLDFA-computed answer for G, then (J is a three-valued explanation 
for (P, e /\ !,,.). 

Proof. Because bis an SLDFA-computed answer for G, by Theorem 53, comp(P) F3 
b -i. e /\ f:.. Moreover, (J has a 3-valued model, which implies that comp(P) U { D} is 
consistent. But then, comp(P) U { b} h e /\ f:.. Thus, (J is a three-valued explanation 
for (P, e /\ !,,.). D 

Now that we have proven soundness with respect to three-valued completion seman­
tics, the following result is straightforward. 

Theorem 55. Let P be a program and let G : +-- 8, !,,. be a goal. 
(i) If b is an SLDFA-computed answer for G then comp(P) f= b -i. fJ /\ !,,.. 

(ii) If G .finitely fails then comp(P) f= () --+-if,,_. 

Proof. 
(i) Suppose that b is an SLDFA-computed answer for G. Then, by Theorem 53, 

comp(P) F3 tJ __, e /\ f:.. But we know that every two-valued model for comp(P) is 
also a three-valued model for comp(P), and therefore comp(P) f= b -i. e /\ !,,.. 

(ii) Suppose that G finitely fails. Then, by Theorem 53, comp(P) F3 e - -if,,_. But 
every two-valued model for comp(P) is also a three-valued model for comp(P), and 

therefore comp(P) Fe - -if,,_. D 

Using this theorem, we can prove the following soundness result with respect to 
two-valued completion semantics. 

Corollary 56 (Two-valued soundness). Let P be a program and let G be the goal 
+-- 8,f:.. If o is an SLDFA-computed answer for G and comp(P) U {t>} is consistent, 
then (j is an explanation for (P, () /\ L_). 
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Proof. Because [J is an SLDF A-computed answer for G, by Theorem 55 comp(P) I= 
c5 __, 8 /\ !:_. But then, because comp(P) u { 8} is consistent, we have that comp(P)U{ 8} 
F 8 /\ "=-· Thus, [J is an explanation for (P, 8 /\ D. 0 

We now turn prove completeness of the generalized SLDFA-resolution with respect to 
three-valued completion semantics. 

Theorem 57. Let P be a program and let G: <-- 8,!:_ be a goal. Let [J be an abducible 
sentence. Then, for an arbitrary fair selection rule, 

(i) if comp(P) U { 8} F3 8 /\ !:., then there exist computed answers 81, ••• , bn for 
G such that CET F3 [J __, 81 V · · · V c5n. and 

(ii) if comp(P) F3 e __, •!:. then G fails finitely. 

As was the case with Theorem 53, the proof of this theorem is (almost) identical 
to the proof of the corresponding theorem in [11] (Theorem 5.1 ). The only difference 
is, that we use results from Section 5, where Drabent used results from [20]. We omit 
the proof here, because it is rather lengthy and technical. It can be found in [25]. 

Corollary 58 (Three-valued completeness). Let P be a program, let G be the goal 
<-- 8,f:_ and let [J be an abducible sentence. If c5 is a three-valued explanation for 
(P,8 /\ !:_},then there exist SLDFA-computed answers 81,. .. ,bk for G such that 
CET f:=J c5 __, 81 V · .. V [Jk· 

Proof. By definition, o is a three-valued explanation for (P,8 /\ !:_), iff comp(P)U{o} 
F3 8 /\ "=-· But then, by Theorem 57, there exist SLDFA-computed answers c51,. . ., Ok 
for <-- 8,L such that CET h c5 __, 01 V · · · V bk. 0 

ll. Conclusions 

In this paper we generalize Kunen semantics and Fitting semantics to the setting of 
abductive logic programming. This is, we think, the main contribution of this paper. 
We think that, as is the case with logic programming, also with abductive logic pro­
gramming these semantics are of interest, especially when considering SLD-like proof 
procedures, as an alternative to the more informative but also computationally more 
expensive semantics like the argumentation semantics. Also, by providing these seman­
tics, we underline the fact that deduction and (limited forms of) abduction are closely 
related. 

Also, we show that it is not necessary to restrict explanations to ground formulas, 
as is often done when presenting semantics or proof procedures for abductive logic 
programs. However, by allowing variables in explanations, we have to take care with 
free variables in observations and explanations. In our definition of explanation, we 
chose to implicitly universally quantify the free variables in both observation and ex­
planation. By doing so, we do not allow any 'communication' between observation 
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and explanation. As a result, we cannot handle situations where the observation and 
explanation both are to be seen as 'generic' in some set of free variables, i.e. where, 
given observation <P and explanation b, both with free variables ~. and a substitution 
8 with domain fa}, it is understood that {)8 is an explanation for </Jb. We could define 
the notion of explanation differently, by having comp(P) f= fJ __. </> in its definition, 
instead of comp(P) f= fJ-+ c/J. With such a definition, there would be 'communica­
tion' between free variables in (J and c/J. Our reasons for not doing so are mostly of 
a technical nature, concerning the definition of the immediate consequence operator. 
We think that for this alternative notion of explanation, also a Kunen semantics can 
be established, and that the proof procedure would also be sound with respect to this 
alternative notion of explanation. 

In the second part of this paper we present a generalization of Drabent's SLDFA­
resolution, and use it as a proof procedure for abductive logic programming. We show 
that the proof procedure is sound with respect to two-valued completion semantics 
- provided the union of completed program and answer is consistent - and that it is 
sound and complete with respect to three-valued completion semantics. There is quite a 
difference between SLDF A-resolution for abductive logic programming, and Denecker 
and De Schreye's SLDNF A-resolution. For one thing, Denecker and De Schreye want 
the explanations to be ground conjunctions of atoms. For this, they skolemize non­
ground goals, and use 'skolemizing substitutions' in the resolution steps. Instead, we 
allow our explanations to be arbitrary non-ground abducible formulas. These differences 
would make a close comparison between the two proof procedures a rather technical 
exercise. However, we are quite confident that, for any answer given by SLDNFA­
resolution, there is an 'equivalent' SLDFA-computed answer. We expect this not to 
hold the other way around, simply because our proof procedure is based on constructive 
negation, while SLDNF A-resolution is based on negation as failure. 

The great similarity between SLDFA-resolution and SLDNFA-resolution is that they 
both use deduction, and both do not concern themselves with the consistency of the 
obtained answers with respect to the completed program. As a result, they cannot 
be compared with ordinary proof procedures for abductive logic programming, whose 
main concern is consistency of the obtained answers. In this context, choice between 
two- and three-valued completion semantics is an important one; if we use two-valued 
completion semantics, in addition to SLDF A-resolution we do need a procedure to 
check whether the obtained SLDFA-computed answer is consistent with respect to the 
completed program. We think that this will mean a considerable increase in computation 
costs. On the other hand, if we use three-valued completion semantics, the need for this 
consistency check disappears. However, one can argue that this is a 'fake' solution; 
in some sense we just disregard inconsistencies, by weakening the notion of a model. 
In our opinion, the choice of semantics depends on your view on abductive logic 
programs, and the relation between abducible and non-abducible predicates. A second 
reason why it is interesting to look at proof procedures for abductive logic programming 
that do not check for consistency, is the case where you can guarantee that the union 
of computed answer and completed program is consistent. An example of this is the 
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translation proposed by Denecker and De Schreye in [8]. The abductive logic programs 

resulting from this translation are acyclic (Proposition 3.1 ), which implies that the union 

of their completion with a consistent abducible formula is consistent (a corollary of 

Proposition C.2 in [6]). There might be more of these examples, and it might be 

interesting to define classes of programs for which this property holds (among others, 

the above conjecture on acyclic programs should be proven). 
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