Skip to main content

Robust constructive induction

  • Conference paper
  • First Online:
KI-94: Advances in Artificial Intelligence (KI 1994)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 861))

Included in the following conference series:

  • 191 Accesses

Abstract

We describe how CiPF 2.0, a propositional constructive learner, can cope with both noise and representation mismatch in training examples simultaneously. CiPF 2.0 abilities stem from coupling the robust selective learner C4.5 with a sophisticated constructive induction component. An important new constructive operator incorporated into CiPF 2.0 is the simplified Kramer operator abstracting combinations of two attributes into a single new boolean attribute. The so-called Minimum Description Length (MDL) principle acts as a powerful control heuristic guiding search in the representation space through the abundance of opportunities for constructively adding new attributes. Claims are confirmed empirically by experiments in two artificial domains.

Financial support for the Austrian Research Institute for Artificial Intelligence is provided by the Austrian Federal Ministry of Science and Research. I would like to thank Gerhard Widmer for constructive discussion and help with this paper, and Johannes Fürnkranz for providing the king-rook-king position generator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angluin D., Laird P.: Learning from Noisy Examples, Machine Learning, 2(4), 343–370, 1987.

    Google Scholar 

  2. Bloedorn E., Wnek J., Michalski R.S.: Multistrategy Constructive Induction: AQ17-MCI, in Michalski R.S. and Tecuci G.(eds.), Proceedings of the Second International Workshop on Multistrategy Learning (MSL-93), Harpers Ferry, W.VA., pp.188–206, 1993.

    Google Scholar 

  3. Breiman L., Friedman J.H., Olshen R.A., Stone C.J.: Classification and Regression Trees, Wadsworth International Group, Belmont, CA, The Wadsworth Statistics/Probability Series, 1984.

    Google Scholar 

  4. Dietterich T.G., Michalski R.S.: Inductive Learning of Structural Descriptions: Evaluation Criteria and Comparative Review of Selected Methods, Artificial Intelligence, 16(3), 257–294, 1981.

    Google Scholar 

  5. Fürnkranz J.: A numerical analysis of the KRK domain. Working Note, 1993. Available upon request.

    Google Scholar 

  6. Fürnkranz J., Widmer G.: Incremental Reduced Error Pruning. Proceedings of the Eleventh International Conference on Machine Learning (ML-94), New Brunswick, N.J., 1994.

    Google Scholar 

  7. Kramer S.: CN2-MCI: Ein zweistufiges Verfahren für konstruktive Induktion, Master's thesis in preparation, Vienna, 1993.

    Google Scholar 

  8. Matheus C.J., Rendell L.A.: Constructive Induction On Decision Trees, in Proceedings of the Eleventh International Joint Conference on Artificial Intelligence (IJCAI-89), Morgan Kaufmann, Los Altos, CA, 645–650, 1989.

    Google Scholar 

  9. Matheus C.J.: Adding Domain Knowledge to SBL Through Feature Construction, in Proceedings of the Eighth National Conference on Artificial Intelligence (AAAI-90), AAAI Press/MIT Press, Menlo Park, CA, pp.803–808, 1990.

    Google Scholar 

  10. Pfahringer B.: Controlling Constructive Induction in CiPF: An MDL Approach, in Proceedings of the European Conference on Machine Learning (ECML94), 1994.

    Google Scholar 

  11. Quinlan J.R., Cameron-Jones R.M.: FOIL: A Midterm Report, in Brazdil P.B.(ed.), Machine Learning: ECML-93, Springer, Berlin, pp.3–20, 1993.

    Google Scholar 

  12. Quinlan J.R.: C4.5: Programs for Machine Learning, Morgan Kaufmann, San Mateo, CA, 1993.

    Google Scholar 

  13. Rissanen J.: Modeling by Shortest Data Description, in Automatica, 14:465–471, 1978.

    Google Scholar 

  14. Thrun S.B., et.al.: The MONK's Problems: A Performance Comparison of Different Learning Algorithms, CMU Tech Report, CMU-CS-91-197, 1991.

    Google Scholar 

  15. Watanabe L., Rendell L.: Learning Structural Decision Trees from Examples, in Proceedings of the 12th International Conference on Artificial Intelligence, Morgan Kaufmann, San Mateo, CA, pp.770–776, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bernhard Nebel Leonie Dreschler-Fischer

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pfahringer, B. (1994). Robust constructive induction. In: Nebel, B., Dreschler-Fischer, L. (eds) KI-94: Advances in Artificial Intelligence. KI 1994. Lecture Notes in Computer Science, vol 861. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58467-6_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-58467-6_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58467-4

  • Online ISBN: 978-3-540-48979-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics