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Abstract 

Systems supporting the manipulation of non-trivial program code are complex and are 
at best semi-automatic. However, formal methods, and in partieular theorem proving, 
are providing a growing foundation of techniques for automatie program development 
(synthesis, improvement, transformation and verification). In this paper we report 
on novel research concerning: (1) the exploitation of synthesis proofs for the pur­
poses of automatie program optimization by the transformation of proofs, andj (2) 
the automatie synthesis of efficient programs from standard equational definitions. A 
fundamental theme exhibited by our research is that mechanical program construction, 
whether by direct synthesis or transformation, is tantamount to program verification 
plus higher-order reasoning. The exploitation of the proofs-as-programs paradigm 
lends our approach numerous advantages over more traditional approaches to program 
improvement. For example, we are able to automate the identification of efficient 
recursive data-types which usua11y correspond to eureka steps in "pure" transforma­
tional techniques such as unfoldjfold. Furthermore, a11 transformed, and synthesized, 
programs are guaranteed correct with respect to their specifications. 



1 Introduction 

There is a growing interest in the use of formal methods, and in particular auto­
matie theorem proving, for program development (for example, synthesis, improve­
ment, transformation and verification). Systems supporting the manipulation of 
non-trivial programs are, however, complex and are at best semi-automatic. In this 
paper we report on novel research concerning the exploitation of synthesis proofs for 
the purposes of automatie program improvement. The research takes two different, 
but related, approaches: program improvement by transforming formal synthesis 
proofs, and; program improvement by synthesizing eflicient programs from equa­
tional definitions that correspond to less efficient programs. This research has direct 
applications regarding the improvement of the quality of software produced through 
automatie programming. Our approach has numerous advantages over more tradi­
tional approaches to program optimization wh ich we shall address in the subsequent 
sections. 

Although some of the research has been documented in previous publications, 
[Mad92, MB93], we have since reconstructed and considerably extended the systems 
reported there in. This paper represents an up to'date account of our research. New 
features of our research documented within this paper include the use of higher-order 
variables to delay choices concerning the identification of recursive data-types for 
optimized programs, and the systemization of meta-level control strategies. We 
also highlight a common theme that links the transformation and synthesis aspects 
of the research: namely, that (automatie) program generation can be viewed as a 
higher-order verification process. Moreover, this is the first time we have covered 
the broad scope of this research in one paper. Thus, through necessity, we shall 
describe the research at a fairly high level of abstraction. Whenever appropriate, 
however, we direct the reader toward various references for such things as extensive 
examples, implementational details and low level discussions of the proof theoretic 
properties that apply. 

1.1 Formal Methods and Automated Reasoning 

A dilemma in the field of computer science is that demands for quality and complex­
ity of software are outstripping the tools currently available. As computer programs 
play an increasingly important role in all our lives so we must depend more and 
more on techniques, preferably automatie, for ensuring the high quality (efficiency 
and reliability) of computer programs. By efficient we mean that a program is de­
signed to compute a task with minimum overhead and with maximum space and 
time efliciency. By reliable we mean that a program is ensured, or guaranteed in 
some sense, to compute the desired, or specified, task. 

The most promising technique being developed for the automatie development 
of high quality software are formal methods. Applications of formal methods in 
software engineering depend critically on the use of automated theorem provers to 
provide improved support for the development of safety critieal systems. Potentially 
catastrophic consequences can derive from the failur~ of computerized systems upon 
which human lives rely such as medical diagnostic systems, air traflic control systems 
and defence systems. The failure last year of the computerized system controlling 
the London Ambulance Service provides an example of how serious software failure 
can be. Formal methods are used to provide programs with, or prove that programs 
have, certain properties: a program may be proved to terminate; two programs may 
be proved equivalentj an inefficient program may be transformed into an equivalent 
efficient program; a program may be verified to satisfy some specification (i.e. a 
program is proved to compute the specified function/relation); and a program may 
be synthesized that satisfies some specification. 
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The research described herein addresses both the reliability and efficiency, as 
weIl as the automatability, aspects of developing high quality software using for­
mal methods. We describe novel theorem proving techniques for both automatie 
program optimization and automatie program synthesis. In both cases the target 
program is a significant improvement on the source (the efficiency criteria), and is 
guaranteed to satisfy the desired program specification (the reliability criteria).l 

In the remainder of this section we provide some background to the proofs as 
programs paradigm. §2 concerns the application of formal methods - specifically 
theorem proving - for automatie, and correctness preserving, program improve­
ment. We first, in §2.1, describe the automatie source to target transformation of 
synthesis proofs yielding inefficient programs into synthesis proofs that yield effi­
cient programs. Secondly, in §2.2, we describe program improvement through the 
automatie synthesis of efficient programs from standard equational definitions 

1.2 Background: Proofs as Programs Paradigm 

Exploiting the Proofs as Programs Paradigm for the purposes of program devel­
opment has already been addressed within the AI community [HS90, CAB+86j. 
Constructive logic allows us to correlate computation with logieal inference. This is 
because proofs of propositions in such a logic require us to construct objects, such 
as functions and sets, in a similar way that programs require that actual objects are 
constructed in the course of computing a procedure. HistoricaIly, this correlation 
is accounted for by the Curry-Howard isomorphism which draws a duality between 
the inference rules and the functional terms of the A-calculus [CF58, How80j. 

Such considerations allow us to correlate each proof of a proposition with a 
specific A-term, A-terms with programs, and the proposition with a specification 
of the program. Hence the task of generating a program is treated as the task of 
proving a theorem: by performing a proof of a formal specification expressed in 
constructive logic, stating the input-output conditions of the desired program, an 
algorithm can be routinely extracted from the proof. A program specification can 
be schematically represented thus: 

't/inputs, 3output. spec( inputs, output) 

Existential proofs of such specifications must establish (constructively) how, for any 
input vector, an output can be constructed that satisfies the specification.2 Thus 
any synthesized program is guaranteed correct with respect to the specification. Dif­
ferent constructive proofs of the same proposition correspond to different ways of 
computing that output. By placing certain restrictions on the nature of a synthesis 
proof we are able to control the effi.ciency of the target procedure. Thus by control­
ling the form of the proof we can control the efficiency with which the constructed 
program computes the specified goal. Here in lies the key to both synthesizing 
efficient programs, and to transforming proofs that yield inefficient programs into 
proofs that yield efficient programs. 

2 Program Improvement by Formal Methods 

This section addresses program improvement by: 

1 The terms ,ource and target are used throughout this paper and refer to the input and output 
of the automatie improvement proeess under diseussion. To each source and target proof there 
eorresponds a souree and target program. The souree may be either manually or automatieally 
eonstrueted, where as the target is a1ways obtained through automatie transformation of the souree 
proof. 

2Thus eonstruetive logie ezcludes pure existenee proofs where the existenee of output is proved 
but not identified. 
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1. the optimization of programs through the transformation of synthesis proofs 
(§2.1), and; 

2. the synthesis of efficient programs, from standard equational definitions, using 
meta-level proof planning strategies ealled proof-plans (§2.2). 

In both ease the program improvement is eompletely automatie. Regarding 1. 
a souree proof, together with any souree lemmas, form the input to the system. 
Regarding 2. the souree equational definitions form the input to the system. The 
output in both eases eorresponds to a eomplete target prooffrom whieh an improved 
program ean be routinely extraeted. Moreover, the resulting program is guaranteed 
to satisfy the operational eriteria specified in the root node (goal) of the proofs. 

In both eases meta-variables are employed to eireumvent diffieult proeedural 
ehoiees during the program eonstruetion proeess. The two approaches differ in the 
applieation of the meta-variables sinee how they are employed depends on eharac­
teristies of the kind of optimization required of the target program. The approaches 
also differ in the means by whieh the meta-variables are instantiated. In 1. a souree 
proof is used to ereate explicit target definitions and then meta-variables are used 
in the eonstruction of reeursive definitions. The instantiation of the meta-variables 
is aided by further analyses of the induction steps in the souree proof. In 2. we 
use meta-variables to actually formulate both our explicit definition and reeursive 
definitions. The automatie proof planning technique is used to instantiate the meta­
variables through higher-order unifieation. 

2.1 Program Optimization by Proof 'fransformation 

The Proof Transformation system, heneeforth PTS, has the desirable properties of 
automatability, correctness and mechanisms for reducing the transformation search 
space, and various contral mechanisms for guiding search through that space. As 
far a the author is aware, the PTS is the only working system that aceomplishes 
automatie program optimization through proof transformation. We summarize the 
benefits of this approach below.3 

Knowledge of theorem proving, and in partieular automatie proof guidanee teeh­
niques, ean be brought to bear on the transformation task. The proof transforma­
tions allow the human synthesizer to produee an elegant souree proof, without 
clouding the theorem proving proeess with efficieney issues, and then to transform 
this into an opaque proof that yields an efficient target program. 

The proofs are in asequent ealculus and proved within the OYSTER proof refine­
ment system [BvHHS90).4 OYSTER is a theorem prover for intuitionalist type theory, 
a higher order, eonstructive, typed logie based on Martin LöfType Theory [ML84). 
The main benefit of using such a logie is that, reealling §1.2, it eombines typing 
properties with the properties of eonstructivism, such that we ean both eorrelate 
the propositions of the A-ealeulus with specifications of programs and eorrelate the 
proofs of the propositions with how the speeifieation is eomputed. The main bene­
fit of using asequent ealculus notation, as opposed to that of any of the numerous 
natural deduction systems, is that at any stage (node) during a proof development, 
all the dependencies (assumptions and hypotheses) required to eomplete that proof 
stage are explieitly presented. This provides an analysis of the ealling structure 

3The only other working system which exploits the proofs as programs paradigm for the pur­
poses of program transformation is a program specialization system developed by C.A.Goad 
[Goa80]. However. specialization is not optimization but rather adapts a general purpose pro­
gram according to constraints placed on it's input parameters. The author has reconstructed and 
extended Goad's system. This work is discussed in [Mad89]. 

40YSTER is the Edinburgh Prolog implementation, and extension, of NuPRL; version "nu" of the 
Proof Refinement Logic system originally developed at Cornell [CAS+ 86]. 
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of the programs synthesized. Such analyses are not present within normal pro­
gram code. To exploit such information usually requires additional, and expensive, 
mechanisms such as the production and analyses of (symbolic) dependency graphs 
[Pet84, Chi90]. 

Synthesis proofs differ from straightforward programs in that more information 
is formalized in the proof than in the program: a description, or specijication, of 
the task being performed; a verijication of the method; and an account of the 
dependencies between facts involved in the computation. Thus, synthesis proofs 
represent a program design record because they encapsulate the reasoning behind 
the program design by making explicit the procedural commitments and decisions 
made by the synthesizer. This extra information means that proofs lend themselves 
better to transformation than programs since one expects that the data relevant to 
the transformation of algorithms will be different and more extensive than the data 
needed for simple execution. 

A key feature of our approach consists in the transformation of the various 
induction schemas employed in OYSTER synthesis proofs. Of particular importance 
to inducing recursion in the extracted algorithm is the employment of mathematical 
induction in the synthesis proofs: to each form of induction employed in the proof 
there corresponds a dual form of recursion [BM79]. Such dualities offer the user a 
handle on the type, and efficiency, of recursive behaviour exhibited by the extracted 
algorithm. 

By having a specification present, the PTS ensures that all transformed proofs 
yield programs that are correct with respect to that specification. Traditional pro­
gram transformation systems have no such formal specification and this this means 
there is no immediate means of checking that the target program meets the desired 
operational criteria. Because of the induction-recursion duality, we can also guar­
antee that the target will be an optimization of the source program. Thus target 
programs are guaranteed to compute the input-output relation specified originally 
for the source, and guaranteed todo so more efficiently. 

There are two applications of the PTS corresponding to the way in which in­
ductive proofs are transformed in order to optimize recursive programs: firstly, 
recursive programs are improved by transforming the induction schemas employed 
in the source proofs into logically equivalent schemas that yield more efficient recur­
sion behaviours. Secondly, whilst retaining the dominant induction, the PTS can 
improve a program by transforming, or removing, sub-proofs at the corresponding 
induction cases. We shall consider each application in turn . 

• Transformation of induction schemas: 

source to target transformations of the first kind transform the recursion schemata 
of source programs. Although the individual syntheses have much in common, 
in particular the general shape exhibited by the majority of inductive proofs, the 
main difference between the source and target proofs are the induction schemata 
employed, and the existential instantiations (witnesses) employed at the induction 
proof cases. The PTS exploits the induction-recursion duality by transforming a 
source proof induction schema into a target schema that yields a more efficient re­
cursion schema. To illustrate the process we shall consider the optimization of a 
program, f, for computing the Fibonacci numbers as a simple example. We con­
sider three types of induction rule that can be employed in proofs of the following 

5 By logically equivalent induction schemas we mean that the associated induction theorems are 
inter-derivable. This guarantees that any two proofs satisfying the same complete specification 
but differing only in which of the two schemas employed are functionally equivalent. 
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specification, S, for Fibonacci:6 

So Vinput, 30utput. !(input) = output 

In TABLE 1 we show the (uninstantiated) induction schema corresponding to the 
induction rule employed, where P is some property on natural numbers and all 
variables are universally quantified (s is the successor, or +1, function). Note that 
such rules are presented upside down, with the goal sequent appearing at the bot­
tom. This reflects the goal-directed nature of the sequent calculus. Also shown 
are the complexity and recursive data-type of the A-function constructed through 
the inductive proof. Finally, we show the left hand side of the function's definition 
(Le. the data-type used for computing the Fibonacci numbers) and the right hand 
side (Le. the recursion and terminating branches of the definition). The standard 
definition for Fibonacci appears in the first, course-of-values, column. 

inductlon coura&-of-values stepwise (+ 1) divlde-and-conquer 

schema !(v<,)-+p(vllt-p(·) 
t-p(.,) 

t-p(O) p(v)t-p(.(v)) 
t-p(.,) 

t-p(O) P(v)t-P(v+vl 
t- p.,j 

p(.) t-p(.(.+.l) 

complexity exponential linear logarlthmic 
data-type natural number tuple matnx 

der. LHS In (/n.Jn-l) [ In+l In r (abbMJ. to M) In In-l 

1 n = 0; (1,1) n = 0; 
1 

der. RHS 1 n = 1; M n+2 x M n+2 

In-l + In-2 n > 2 . (/n-l +/n,/n) n> l. M n+2 x M n+2 x M 

TABLE 1: RELATION BETWEEN SOURCE AND TARGET PROOFS AND FUNCTIONS 

Program optimization through proof transformation consists in transforming a 
source induction proof to a target proof whose induction schema has a more ef­
ficient associated complexity. The pre- and post-conditions of the transformation 
correspond to the induction schema, and the recursive data-type, of the source and 
target proofs. Thus, the post-conditions of the exponential to linear transforma­
tion are precisely the pre-conditions for the linear to logarithmic transformation. 
This illustrates how, by "dove-tailing" each of the source to target transformations, 
depicted in TABLE 1, the passage from an exponential procedure to a logarithmic 
one, with linearization as an intermediary optimization, is performed automatically 
through proof transformation (and with the correctness guarantee afforded by the 
specification language). 

Although uniform in strategy, individual inductive proofs will usually differ re­
garding the following procedural commitments made during the synthesis compo­
nent of a proof: (i) the choice of induction schema employedj (ii) the type of object 
introduced at the induction step (e.g. natural number, list, tuple), andj (iii) the 
witness (existential instantiation) of the object. These commitments are responsible 
for constructing the recursion schemata and the recursive data types of the target 
procedures. By incorporating general rules that associate (i) and (ii) with the kind 
of recursive behaviour desired of the target algorithm, and analysing the definitions 
of, and dependency information in, the source proofs to identify (in), the PTS is 
able to construct the target proofs automatically. 

We shall use the linearization of the Fibonacci function for the purposes of 
explanation (i.e. the transformation of course of values induction to stepwise in­
duction). The PTS linearization procedure is, in fact, our adaptation to the proofs 
as programs paradigm of the unfold/fold tupling technique for "merging" repeated 
(sub )computations, [BD77, Chi90]. 

6The Fibonacci function, j is initially defined through lemmata corresponding to the course­
of-values definition given in TABLE 1, column 1: 

base lemmas: jib(O) = s(O); jib(s(O)) = s(O); 

n = 0; 
""en(n); 
odd(n). 

step lemma: "v'x, 3y, 3z.( (x ;i: 0) A (x ;i: s(O)) A jib(s(x)) = y A jib(x) = z) -+ jib(s(s(x))) = y + z. 
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The most natural way to synthesize a procedure for computing the Fibonacci 
numbers is to employ the course-of-values induction to s. This is because it di­
rectly mirrors the course-of-values recursion exhibited by the standard Fibonacci 
definition. The corresponding schema, TABLE 1, will be instantiated as folIows: 

H: ('V'z, 'V'y.((y < z) -+ 3n' .f(y) = n'l I- 3n".f(z) = n" 
C: I- 'V'x, 3n.f(x) = n 

The proof of the induction conclusion, C, requires identifying a witness for n. This 
is obtained by: 

• eliminating on the induction hypothesis, H, twice: 7 first with a value for y of 
x-I, and subsequently with a value of x - 2. The resulting constructs for 
fz-1 and fz-2 appear as two new hypothesesj and 

• adding the new hypotheses to obtain a witness for n. 
i.e. I- 'V'x, f(x) = f(x - 1) + f(x - 2) 

By employing course-of-values induction, and eliminating on the hypothesis twiee, 
we obtain a program such that in order to calculate fib(n) one must first calculate 
fib(n - 1) and fib(n - 2). Each of these sub-goals leads to another two recursive 
calls on fib and so on. In short the computational tree is exponential where the 
number of recursive calls on fib approaches 2n . The automatie linearization of 
such procedures involves constructing a target tuple (as shown in TABLE 1) whose 
elements act as accumulating parameters. The accumulators are used to build up 
the output as the recursion is entered, so that nothing remains to be done as the 
recursion exits. Thus it is not necessary to maintain a stack of recursive calls during 
its implementation, which cuts down considerably on the space requirements of a 
procedure call. 

In order to identify a target (tupIe) definition, the PTS observes how many times 
the induction conclusion C appeals to the hypothesis H, and how many applications, 
namely 2, of the induction constructor/destructor function the proof employs when 
eliminating on the induction hypothesis in order to synthesize constructs for the 
induction witnesses. This completely identifies an explicit definition, Q, for the 
auxiliary recursive procedure through which Fibonacci can be defined:8 

Q: 'V'n,3u,3v.g(n) = (u,v), where (u,v) = (J(n+1),f(n)). 

The provision of such explicit definitions, where the target is defined in terms of the 
source, generally constitute the weIl known eureka step in unfold/fold transforma­
tions, and are notoriously difficult to automate [BD77]. The unfold/fold strategy 
is motivated by the observation that significant optimization of a (declarative) pro­
gram generally implies the use of a new recursion schema. This process usually 
depends on the user providing the requisite explicit target definition (in our ex­
ample: Q). The strategy then proceeds to evaluate the recursive branChes of the 
target definition, primarily through unfolding with the source definitions, until a 
fold (match) can be found with the explicit definition. 

Within the context of proof transformation, the PTS exploit the source proof to 
automatically form such definitions. Every new hypothesis formed as result of elim­
inating on previous hypotheses is recorded in the sequent calculus proof notation. 
This provides the kind of information usually associated with symbolic dependency 

7 A feature of the goal-directed proofs is that elimination rules have the effect of introducing an 
existential instantiation in the hypotheses of sequents. 

8In practice, tuples are represented as conjunctions within the OYSTER system. So a tuple 

(A, B, C) is represented as AAB AC. Hence we avoid the charge that (program) tupling techniques 
rely heavily on any ad hoc requirements to introduce tuples (memo tables 01;" similar objects). 
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graphs and used, for example, in the semi-automatic construction of unfold/fold 
tuple definitions [Chi90, Pet84]. The PTS constructs the explicit definitions com­
pletely automatically without appealing to the user, or requiring the considerable 
over-head required in the formation and analyses of dependency graphs. 

The explicit definition, g, is automatically applied as a sub-goal of s. This will 
produce, in addition to g, a trivial justification su b-goal that the function specified 
by s can be constructed from that specified by the sub-goal: the variable output in 
S is witnessed by v from the body of the g. In effect, the justification sub-proof 
provides us with adefinition for Fibonacci in terms of the auxiliary function g: 

J(n) = v where gn = (.., v) 

Thus, an advantage of using specification proofs is that at the target proofs com­
pletion the PTS ensures that the auxiliary program, corresponding to the sub-proof 
of g, computes the function specified by the g, and by performing the justification 
goal we ensure that the complete program construction, corresponding to the whole 
proof, computes s. 

To synthesize the auxiliary function, g, the PTS applies stepwise, or +1, induc­
tion to g so aS to construct the dual stepwise recursion. In other words, the PTS 

constructs a recursive definition through an inductive proof of the explicit definition 
g. The base case, g(O), evaluates to (1,1) by using symbolic evaluation with the 
base definitions for Fibonacci. At the step case of the induction the PTS is required 
to provide adefinition for the recursive step in terms ofthe hypothesis (Le. g(n+ 1) 
in terms of g(n)). A characterizing feature of such tupling proofs is that the recUf­
sive definition will consist of some, as of yet unknown, function(s) applied to the 
tuple components, U and v, of the induction hypothesis. Hence , using upper-case 
to represent meta-variables, at the induction step of the target proof, the PTS for­
mulates a partiaBy identified definition for the recursive step of 9 in terms of the 
hypothesis (we omit the quantifiers for the remainder of this section): 

g(n+1) = (Mdu, v), M2(u, v)), where (u,v) = g(n). 

The induction step proof then proceeds as in FIG 1 until, by a process of unfolding 
with the source and target definitions, aB references to the source function, J, have 
been removed from the developing target recursive branch (essential if we wish to 
eliminate the source inefficiency). Once this stage has been reached, the PTS could 
use higher-order unification to instantiate M l to AU, v.u + v, and M2 to AU, v. u. 

g(n + 1) = (Mt{u, v), M2(U, v»), where (u, v) = g(n) i ------unfold 9 and unfold 9i source >-+ target 

(f(n+2),f(n+l») = (Mt{u, v), M2(u, v»), where (u,v) = (f(n+ 1),f(n»)i , , 

unfold f source >-+ target 

((J(n + 1) + f(n»,f(n + 1») = (Mt (u,v),M2(U,V»), where (u,v) = (f(n+l),f(n»)i 

fertilize (ul f(n + 1), vi f(n» 

rh8 = Ih8 
"--v--" 

source >-+ target 

(u+v,u) = (Mt(u,v),M2(U,V»)i 

instantiation Mt = AU,V.U + v and M2 = AU,v. u. 

signifies that rh8 = Ih8 is obtained by analysis oC source to identiCy: (1) the tuple size, 

and; (2) the constituent data structures. 

FIG 1: SYNTHESIS COMPONENT OF TARGET PROOF CONSTRUCTION (INDUCTION STEP ONLY) 
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However, the PTS avoids any need for higher-order matching, and the associated 
control problems, by providing general mapping mechanisms which abstract infor­
mation from the induction branches of the source proof. This information is then 
used to instantiate the target meta-variables. The general mapping mechanisms are 
described in detail in [Mad91j. 

Regarding our current example, the procedure is quite simple: the first com­
ponent of the r.h.s tuple (corresponding to the induction conclusion) results from 
substituting the target induction hypothesis tuple components, u and v, for those 
in the source induction step. Hence the first component is u + v (i.e. MI is in­
stantiated as .Au, v.u + v). No higher-order matching, or unification, procedures 
are required since the dominant function of the first tuple component will always 
be that employed at the induction step of the source (where the number of tuple 
elements corresponds to the number of source proof eliminations on the induction 
hypothesis). The second component results from a direct one on one mapping of 
the first component, u, of the target induction hypothesis (i.e. M2 = .Au, v . u). 

The .A program construction extracted from the target proof is shown below (we 
have necessarily simplified the notation). 

>.x.(>.tuple.(8ub( (u, v), [- , x, x])).(step+t{x, (8(0),8(0)), [x, ( u, v), (u + v, u)n)) 

The solution for Fibonacci corresponds to v in the extract (i.e., the second argu­
ment of the first tuple component). The substitution function, sub, substitutes the 
second element of the tuple (the desired output v) for x in the root node specifica­
tion. The steP+l function, corresponding to the application of stepwise induction, 
will automatically build the dual recursion schema into the extract term being syn­
thesized. The application of the steP+l induction constructs a tripie where the first 
member, x, names the induction candidate: the argument over which the recursion 
is defined. The second member, (s(O), s(O)), corresponds to the construction of 
the base case output. The third member is a further tripie where x denotes the 
induction variable, and (u, v) denotes the constructive evidence for the induction 
hypothesis. The induction conclusion, (u + v, u), is composed from the elements, u 
and v, of the hypothesis. 

The form, or shape, of refinement proofs means that jolding is not a necessary 
requirement in order to introduce a recursion into the developing equations. This 
is because the proof synthesis is driven by the heuristic requirement of matching 
induction hypothesis with induction conclusion, i.e., jertilization (we shall say more 
concerning fertilization in §2.2). This can be achieved purely by unfolding both sides 
of the induction step until both head and body match (cf. FIG 1). By unfolding 
terms on both sides of the induction conclusion we gradually remove the induction 
term from the conclusion. This bi-directional rewriting has advantages over the 
more traditional program derivations, such as [BD77, Chi90j, wherein re-writing is 
restricted to the body of the equations: most notably, we avoid the control problems 
of directing sequences of unfolds toward a fold. The bi-directional search toward 
the fertilization step significantly reduces the search space. 

The verification component of the proof will mirror the synthesis component: 

g(n + 1) = (u+v,u), where (u,v) =g(n); 

unfoldg and unfoldg; 

(f(n + 2), f(n + 1)) = (u + v,u), where (u,v) = (J(n+1),f(n)); 

unfold f and fertilize (u/ f(n + 1), v / f(n)); 

((!(n + 1) + f(n)),f(n + 1)) = ((!(n + 1) + f(n)),f(n + 1)). 

FIG 2: VERlFICATlON COMPONENT OF TARGET PROOF CONSTRUCTION 
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An observation is that the essential difference between the synthesis (FIG 1) 
and verification (FIG 2) components of the target construction is that the former 
uses meta-variables (simply compare the first lines of each figure). A common 
theme of our work within the proofs as programs paradigm is that program syn­
thesis/transformation is tantamount to program verification plus meta-variables. 
That is, we recast first-order synthesis proofs as higher-order verification proofs, 
and in doing so circumvent eureka steps concerning the identification of recursive 
data-types. We see a furt her illustration of this theme in §2.2. 

The verification strategy of induction proofs invariably follows the same proce­
dure of applying refinement rules that consist primarily of unfolding the recursive 
branches with the equational definitions that define the function computed by the 
extract program. Indeed, the induction strategy is uniform enough to be system­
ized as a meta-level proof plan, with pre- and post-conditions. So once the PTS has 
automatically made the target proof procedural commitments corresponding to (i) -
(iii), by an analysis of the source proof, then verification is automatically performed 
through the use of an induction proof plan. We shall return to proof plans in more 
detail in §2.2. 

A much more in-depth description of the processes involved, and of the imple­
mentation, are provided in [Mad91]. 

As indicated in TABLE 1, the PTS can automatically optimize linear procedures 
to logarithmic procedures through proof transformation. This is done using the 
method of matrix multiplication and replacing the stepwise induction employed in 
the source proof by a target divide-and-conquer induction. PuB details are available 
in [Mad94] . 

• Transformation of induction cases: 

transformations on induction cases correspond tö transforming the sub-proofs of the 
base and /or step case sub-goals without altering the particular schema for which 
the sub-goals are cases. Different recursive behaviour can be induced in algorithms, 
satisfying the same specification, by refining the step and base cases of the same 
schema in different ways. One important dass of source to target proof transforma­
tion on induction cases with which we are concerned is the transformation of nested 
inductions. Nested inductions are often employed when synthesizing auxiliary Te­

cursive functions, that is, functions which in computing a self-recursive call must 
appeal to some other function, either directly or indirectly.9 

A nested induction may lead to inefficiency since for each of the recursive passes 
induced by the outermost induction, the program will have to fully recurse on the 
innermost recursive schema induced by the innermost induction. Thus the average 
time efficiency of such programs will be a multiple of the time efficiencys associated 
with the two inductions. So for example, the recursive definition of the following 
schematic function h: 

h(n) = !2(h(n), h(n - 1)) 

contains both an auxiliary function call, h(n), and a self-recursive call, h(n - 1). 
Each time a recursive call is made on h, the program must fully recurse down the 
schema associated with h. Proofs wherein a nested (stepwise) induction is applied 
at the step case of the outermost induction may, for example, yield a >. program 
construction of the following (schematic) form: 

>.x. step+l (x, <Po, [x, <PHi ... , >,x. step+l(x, <Po, [x', <PHi ... , <Pe])]), 
where in order to evaluate the step case of the outermost +1 stepwise induction on 

9The nesting may be indirect since the structure introduced for the step case of an induction 
may weil correspond to the application of an extract term from another proof which itself employs 
stepwise/Jist induction. 
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x, with induction parameter x, the program must evaluate a nested induction on 
x. The terms 4Jo, 4JH ... d , 4Jc denote, respectively, the induction base, hypothesis and 
conclusion constructs. A prime, " demarcates the nested induction constructs from 
those of the outer induction. Optimizations on such extract terms are performed 
through "merging" the innermost induction with the outermost induction. This is 
achieved by removing the innermost induction and introducing a tuple structure 
at the cases of the remaining induction. This yields a target construction of the 
following schematic form: 

>.x.>.tuple. step+dx, (4J~, ..• , 4Jö), [x, (4Jk; .. d' ••• , 4JH; .. J, (4Jb, ••• , 4Jc)]) 
where there is a single stepwise induction, on the same variable x. In this case, the 
induction schema cases are satisfied through the evaluation of a tu pie, of fixed size 
n, at the base and step branches. In effect the remaining induction tabulates the 
computation associated with the innermost induction removed from the source. 

As with application 1, the PTS analyses the dependency information in the source 
proofs to obtain explicit definitions and to instantiate meta-variables [Mad91]. For 
example, the auxiliary recursiv.e fact list function, defined in FIG 3, is synthesized 
through a nested inductive proof, at the step case of the outer most induction, in 
order to to synthesize the auxiliary function fact: 

factlist definition fact definition 

factlistn { nil n=O; factn { 1 n =0; 
= factn :: factlistn-I = n x factn_1 n~l. n~l. 

FIG 3: DEFINmONS OF factlist AND AUXILIARY fact 

Here redundancy does not occur directly due to any self-recursive call but rather 
among the auxiliary recursive fact calls: for each recursive pass corresponding to 
the outermost schema, the function must fully recurse on the innermost schema. 

The corresponding target definition is defined through a tu pie function, g', which 
merges the auxiliary fact recursion schema with that of the outermost schema (de­
tails of this process are provided in [Mad91]). As with the previous example, the 
PTS avoids any eureka requirements by automatically forming the explicit target 
definition, g', through an analysis of the source proof (in this case, by analysing 
the nested induction construct). 

g': 'v'n, 3u, 3v.g(n) = (u, v), where (u, v) = (Jact(n),/actlist(n - 1)). 

Stepwise induction is applied to g' and, as we show in FIG 4, the proof proceeds in 
a similar fashion to the previous example: the PTS uses meta-variables to specify 
that the recursive case is so me function of the induction hypothesis. The induction 
conclusion is then refined, by unfolding with g' and the source definitions, until in­
stantiations abstracted from the source proof enable the two sides of the conclusion 
to match: 

g'(n + I) = (Md ... ,tI),M2( ... ,tI») where ( ... ,tI) = g'(n); 

UDfold g' and UDfold g' ; 

(Jc(n + 1),Jcl(n») = (Md"', V),M2("" tI»), where ( ... ,tI) =(Jc(n),Jcl(n -1»); 

uDfold J c UDfold J cl 

((n + 1) x Jc(n),Jcl(n -1):: Jc(n») = (Md"', tI),M2("', tI»), where ( ... ,tI) =(Jc(n),Jcl(n -1»); 

fertilize ( ... /Jc(n), tI/Jcl(n» 

((n + 1) x ... ,,,,:: v) 
iDst.aut.iatioD 

= (Md"', tI),M2("', tI»); 

MI = >.n, .... (n+l) x ... andM2 = >. ... ,tI .... ::v 

FlG 4: SYNTHESIS COMPONENT OF TARGET PROOF CONSTRUCTION (INDUCTION STEP ONLY) 
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Analysis of the proof provides the target recursive definition: 

g~ = {
(nil, nil) 

(n+1)xu,u ::v) 

n=O; 

n~1. 
and; factlistn = m, where (.., m) = g~ . 

The PTS is capable of combining the different kinds of induction transforma­
tion such that, for example, course-of-values (exponential) definitions that employ 
auxiliary functions can be optimized to stepwise (linear) definitions with a single 
induction (single recursion schema). The PTS is also capable of performing more 
esoteric induction transformations involving schemas such as divide-and-conquer in­
duction (cf. TABLE 1), two step induction, and induction based on the construction 
of numbers as products of primes [Mad91). 

2.2 Program Optimization by Proof Synthesis 

The Mathematical Reasoning Group, at the Edinburgh University Department of 
AI, has achieved considerable success regarding the automation ofinductive theorem 
proving using a meta-level control paradigm called 'proof planning' [Bun88]. A 
proof planning system, CLAM, is able to prove a large number of inductive theorems 
automatically [BvHS91). Proof plans are formal outlines of constructive proofs 
and provide a means for expressing, in a meta-Ianguage, the common patterns that 
define a family of proofs [BSvH+91, MHGB93). A tactic expresses the structure of a 
proof strategy at the level of the inference rules of the object-Ievellogic. Proof plans 
are constructed from the tactic specifications called methods. Using a meta-Iogie, a 
method captures explicitly the preconditions under which a tactic is applicable. 

This section reports on the most recent application of CLAM: the use of proof 
plans to control the (automatie) synthesis of efficient functional programs, specified 
in a standard equational form, c, by using the proofs as programs principle [MG94). 
The goal is that the program extracted from a constructive proof ofthe specification 
is an optimization of that defined solely by c. Thus the theorem proving process is 
a form of program optimization allowing for the construction of an efficient, target, 
program from the definition of an inefficient, source, program. Our main concern 
lies with optimizing the recursive behaviour of programs through the use of proof 
plans for inductive proofs. Thus again we exploit the duality between induction 
and recursion (which forms one aspect of the Curry-Howard isomorphism) . 

The main difference from the proof transformation approach to program im­
provement, §2.1, is that there is no source proof to guide the construction of the 
target (only source definitional equations). Hence this is a process of synthesis 
rather than transformation. We again employ meta-variables, except in this case 
a proof planning technique called middle-out reasoning is used to instantiate them 
through higher-order reasoning. In fact, we view program synthesis as the combi­
nation of verification and middle-out reasoning [Mad93). Middle-out reasoning is 
a technique that allows us to solve the typical eureka problems arising during the 
synthesis of efficient programs by allowing the planning to proceed even though 
certain object-level objects are unknown (e.g. identification of induction schema, 
recursive types etc.) Subsequent planning then provides the necessary information 
which, together with the original definitional equations, allows for the instantiation 
of such meta-variables through higher-order unification procedures. 10 

10 >'-Prolog, [MN88), is used for the higher-order unifications and has been interfaced with the 
CLAM system. An indefinite number of unifications may be produced by such an algorithm if 
no means of selecting suitable choices is present. Details of such selection criteria, and of the 
algorithm itself, are provided in [Hes91) . 
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A further property of program improvement through proof planning is that the 
nature of the optimization is controlled by placing certain restrictions on the proof. 
We illustrate one such restriction in the following example. 

A Simple Example 

To illustrate program improvement by proof planning we use a simple example of the 
synthesis of tail-recursive programs from naive definitions using the tail-recursive 
prooJ plan (TRPP) [MHGB93].11 

Consider the following example of a nai've, lengthn , and a tail recursive, lengtht , 
definition for the length function, where lengtht is defined in terms of the auxiliary 
accumulator function length2: 

naive definition tail recursive definition 

lengthn (nil) 0; 
lengtht(l) = length2(1, 0) = 

lengthn (h :: t) 1 + lengthn (t). 
length2 (nil, a) = a = length2(h:: t,a) length2(t, 1 + a) = 

TABLE 2: NAivE DEFINmON AND TAlL RECURSIVE DEFINmONS FOR length 

The key initial step to the TRPP is to provide an explicit target definition by speci­
fying the tail recursive algorithm in terms of the nai"ve algorithm. This is depicted 
on the left hand side of TABLE 3 where we show the schematic form of such explicit 
definitions, together with the particular instance, (1), for our current example: the 
specification goal for synthesizing lengtht . There is no eureka involved with forming 
such explicit definitions: for any function, J, under consideration all that is stated is 
that for any input, x, and any additional vectors, y, that there exists some output, 
z, equal to Ax.J(n).12 

preconditions postconditions 

schematic Vx,Vg,3z. z = fn(x,Y) I- "Ix, vg, Va, 3z. z = G(Jn(x, ii), a) 

instance I- "Ix, 3z. z = lengthn(x) (1) I- "Ix, Va,3z. z = G(lengthn(x),a) (2) 

TABLE 3: PRE- AND POST- CONDITIONS OF ACCUMULATOR GENERALIZATION 

The next stage is for the TRPP to introduce an accumulator into the function being 
synthesized through a generalization procedure. This is done by making a call to 
a (sub)proof plan for accumulator genemlization. The pre-condition of accumu­
lator generalization is satisfied by a schematic equational form of which (1) is an 
instance. The post-condition of the generalization is shown on the right hand side: 
the pre-conditional form is genemlized through the introduction of a meta-variable 
M to produce the post-conditional form. In the majority of transformation systems 
the identification of M is a eureka step. The tail-recursive generalization strategy 
removes the eureka step and identifies M automatically through middle-out reason­
ing. In the case of lengtht the post-condition is (2) and we shaB show how M is 
automaticaBy instantiated as AuAv.append( u, v) through the proof of (2). 

Having applied generalization, the proof of (1) is now cashed out in terms of: 

• . a synthesis goal, proving (2), andj 

11 The examplified application of the TRPP is adequate to iIIustrate the middle-out reasoning 
methodology. However, since it's original implementation, documented in [MHGB93], it has been 
extended to cover a broader range of optimizations such as deforestation and fusion [MG94]. 

12The trivial instantiation of z, i.e. J(x), is prevented by placing a restriction on the proof that 
J is not a tenn of the witness for z . 
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• a justification goal, proving that (2) f- (1). (Le. that the new (tupie) goal 
entails the original theorem.) 

The justification goal is, in fact, a second post-condition of the TRPP and establishes 
that the new (tupie) goal entails the original theoremP So the justification goal 
will, in effect, provide us with adefinition of the tail-recursive function, lengtht. in 
terms of the auxiliary accumulator function, lengthz, synthesized via the synthesis 
goal. 

A characterizing feature of the TRPP is the restriction that the witnesses of the 
two existential quantifiers, one in the induction hypothesis and one in the induction 
conclusion, should be identical. This restriction ensures that we force the value of 
the function before the recursion is entered (determined by the induction hypothesis) 
to be the same as the value as the recursive call is exited (determined by the 
induction conclusion) - Le. the function synthesized is tail recursive [Wai89]. 

To continue the illustration we must explain a bare minimum of technical ter­
minology. As mentioned in §2.1, the verification stages of an inductive proof invari­
ably involve a process whereby formulae are "unpacked" - or unfolded - by replacing 
terms by suitably instantiated definitions. The proliferation of this process such 
that recursive terms are gradually removed from the recursive branches - by the 
repeated unfolding of induction terms - is part of the (heuristic) process known 
as rippling (following [Aub75]). The goal of the rippling proof-plan is to reduce the 
induction step case to terms wh ich can be unified with those in the induction hy­
pothesis. As mentioned in §2.1, this unification is called fertilization. Fertilization 
is facilitated by the fact that the induction conclusion is structurally very similar 
to the induction hypothesis except for those function symbols which surround the 
induction variable in the conclusion. These points of difference are called wave­
fronts. Thus, the remainder of the induction conclusion - the skeleton - is an exact 
copy of the hypothesis. Wave fronts consist of expressions with holes - wave holes 
- in them corresponding to sub-terms in the skeleton. Returning to our example, 
having generalized the specification goal, (1), to produce the higher-order sequent 
(2), the TRPP must next satisfy the synthesis goal of proving (2). This is done by 
applying the induction proof plan, again as a sub-proof plan, to produce the step 
case sequent (3). By convention, wave-fronts are annotated by placing them in 
boxes, and the wave-holes are underlined: 14 

Va, 3z. z = M(lengthn (t), a) f- Va,3z. z = M(11 + lengthn (t) I, a) (3) 

Rippling applies special structural rewrite rules, waue-rules, so as to remove the 
difference (wave-fronts) from the conclusion, thus leaving behind the skeleton and 
allowing fertilization to take place. Wave rules are schematic rewrites - hence 
they employ meta-variables - and are automatically formed, by the proof planning 
mechanism, from recursive definitions and semantic laws. For example, the wave 
rule below is formed from the recursive branch of len th : 

lengthn(IX::.t:.D => 1+lengthn(t) (4) 

So by matching and then applying the current sequent against the available (wave) 
rules, the meta-variable in (3) is instantiated at the step case of the induction. 
Briefly, after rippling on (3), using wave-rule (4), we obtain: 

Va,3z. z = M(lengthn(t),a) f- Va,3z. z = M(Ir-1-+-I-e-ng-t-h-n(-t)-'I,a) (5) 

By using high er-order matching with the applicable wave-rules, the meta-variable 
M is instantiated to .xx, y.x + y through applying the following wave-rule formed 

13This is directly analogous to where a justification sub-goal is produced during the PTS trans­
formation of a source proof by cutting in a new sub-goal specifying a target definition (cf. §2.1). 

14There are additional annotations which further direct the rippling process. We omit these in 
this paper. For fuH details cf. [BSvH+91]. 
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from the law of commutivity V +: 
( U + v + W =? V + 1 U + (H::) 1 

i.e. the result of the applying wave rule (6) to (5) is the following sequent: 

Va, 3z. z = lengthn (t) + a f- Va,3z. z = lengthn (t) + 11 +!! 1 (6) 

Fertilisation can now take place: a in the induction hypothesis is instantiated to 
1 + a from the induction conclusion. Such an instantiation effects our tail-recursive 
restriction: that the witnesses of the two existential quantifiers should be identical. 
This step is perfectly legitimate since the a 's on either side of the sequent are 
bounded by distinct universal quantifiers. 

The base case sequent is as follows: 

f- Va,3z. z = M(lengthn(nil),a) (7) 

M is instantiated to >-x, y.x + y, from the step case, and following symbolic evalu­
ation, using the base definitions of + and lengthn, (7) is refined to: 

f- Va, 3z. z = a (8) 

A further, and very simple, application of middle-out reasoning strips the universal 
quantifier and introduces a meta-variable for the base witness, which is subsequently 
instantiated to a by tautology. 

Analysis of the proof so far, specifically (6) and (8), provides the recursive and 
terminating branches of the auxiliary length2 function (rhs of TABLE 2). However, 
the TRPP must still satisfy the justification obligation. The justification proof will 
provide adefinition for lengtht in terms of length2 , and requires proving the sub­
goal: 

Vx,Va,3z.z=lengthn(x)+a f- Vx,3z.z=lengthn(x) (9) 

The solution to (9) again involves middle-out reasoning: brießy, any universal quan­
tified variables in the conclusion are identified with counterparts in the hypothesis 
- in this case x. Following the introduction of the universally quantified variables, 
x, a meta-variable A is inserted for a into the hypothesis: 

"Ix, 3z. z= lengthn(x) + A f- "Ix, 3z. z = lengthn(x) (10) 

Symbolic evaluation instantiates the meta-variable to 0, and the resulting hypoth­
esis can be matched (fertilized) with the conclusion. This completes the proof. 
The witness 0, for A, provides the definition of lengtht in terms of length 2 (i.e. 
lengtht(l) = length2 (l,0)). 

Rippling has numerous desirable properties. A high degree of control is achieved 
for applying the rewrites since the wave-fronts in the rule schemas must correspond 
to those in the instance. This leads to a very low search branching rate which, 
together with the further search reduction afforded by the proof restrictions, enables 
the automation of the synthesis process. Rippling is guaranteed to terminate since 
wave-front movement is always propagated in a desired direction toward some end 
state (a formal proof of this property is presented in [BSvH+91]). 

2.2.1 Further Applications 

We have found this approach to program improvement to be very promising. This is 
demonstrated by the success we have had in expressing, in addition to tail-recursive 
transformation, a wide variety of well-known, but disparate, program improvement 
techniques within the proof planning framework. For example, constraint-based 
transformation, generalization, fusion and tupling can be seen as proof planning 
[MHGB93]. Each of these types of optimization have characteristic features which 
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are used to determine how higher-order meta-variables are employed in the specifi­
cation goals. These applications also extend the simple tail-recursive syntheses in 
that the wave-rules themselves may contain second-order meta-variables as weIl as 
the sequents to which they apply. 

We have also extended the work of Wadier, [Wad88] and later Chin, [Chi90], 
to encompass a larger dass of functions that can be usefully optimized using the 
infiuential deforestation technique [MG94]. 

We believe that middle-out reasoning will play an increasingly important role 
in theorem proving, since it allows us to address important problems like choos­
ing induction schemata,15 and existential witnesses (which correlate with recursion 
schemata and recursive data types). 

3 Conclusion 

We have illustrated the fact that formal methods in general, and theorem proving in 
particular, provide a foundation for automated reasoning. We have described two 
novel implemented techniques for the automatie generation of high quality (efficient 
and reliable) software using the proofs as programs paradigm. Program improve­
ment by transformation is achieved through the transformation of typed proofs in 
a constructive logic. The synthesis of efficient programs from standard equational 
definitions is achieved through the use of (meta-level) proof-planning techniques. 
A common theme of the research is the maxim that program construction can be 
automated through higher-order verification proofs. 

WeIl known eureka steps concerning the identification of target definitions are 
circumvented by: in the transformational approach, using higher-order meta-variables 
and extracting information from source proofs in order to instantaite them, andj in 
the synthesis approach, using meta-variables in a technique called middle-out rea­
soning to delay procedural commitments until subsequent theorem proving provides 
the requisite instantiations. In both case the meta-variables areemployed according 
to characteristics of the type of optimization desired. 

Both the transformation and synthesis techniques satisfy the desirable properties 
for automatie programmingsystems: correctness, generality, automatability and the 
means to guide search through the transformation space. 
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