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Abstract

We analyze a simple version of a protocol developed by Philips for the physical layer of an interface bus

that connects the various devices of some stereo equipment �tuner� CD player������ The protocol� which uses

Manchester encoding� has to deal with a signi�cant uncertainty in the timing of events� due to both hardware

and software constraints� We present a formal speci�cation of the protocol� and a proof of correctness for

the case where the tolerance of the clocks used within the system is less than �

��
� A counterexample shows

that the protocol fails for tolerances greater than or equal to this value� The veri�cation is carried out using

a model of linear hybrid systems� which is similar to the phase transition system model of Manna and Pnueli�

and the model of linear hybrid automata of Alur� Henzinger and Ho� The semantics of linear hybrid systems

is de�ned via a translation to the timed I�O automata model of Lynch and Vaandrager�
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�� Introduction

Hybrid systems are reactive systems that consist of both digital and analog components�
The digital components are typically computers or microprocessors controlled by programs�
whereas the analog components will be continuously changing environment variables� Due
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to the rapid development of processor and circuit technology� we see more and more devices�
ranging from aircraft and cars to consumer electronics� in which software interacts with
physical processes� Consequently� the speci�cation� design and veri�cation of hybrid systems
has recently become an active area of research ����

We have the opinion that the development of formal methods should go hand in hand with
the application on realistic case studies� Following this philosophy� we report in this paper on
the analysis of a simple protocol for the physical layer of an interface bus that connects the
devices of a stereo equipment� The protocol� which is a simple but realistic fragment of what
actually runs within Philips equipment that one can buy in the shop� is naturally described
as a hybrid system� In the rest of this introduction we will �rst outline the protocol� and
then discuss the model of �linear	 hybrid systems that we developed for our analysis�

��� The Protocol

In modern audio equipment the various components 
ampli�er� tuner� CD player� boxes�����
are not only connected by cables that transport the audio signals� but also by a special cable

the �bus	� for the exchange of control information� This tiny �local area network	 makes
it possible for the di�erent devices to talk to each other� and to o�er a series of new� useful
services to the consumer� A consumer can for instance wake up the whole system by touching
a single button
 there is no need to switch on the tuner �rst� then the CD player� then the
ampli�er� etc� Instead the system will do this job by broadcasting a �wake up	 message over
the network� Also� it becomes possible to o�er a �dubbing service	
 by pressing a single
button the consumer can order the system to transpose a compact disc to a cassette� He�she
does no longer have to go through the whole button�pushing protocol that was previously
needed to copy music� Instead the system knows the protocol and implements it by using
the network�

Of course it is well�known how to build a local�area network� The only reason why it
is di�cult in this particular case is that it must be cheap
 consumers are only willing to
pay a tiny bit more for the additional services provided by the network� In fact� the only
additional hardware that Philips needs to implement the network consists of a few transistors�
resistors� etc�� for the bus interface� The software runs on microprocessors that have to be
present anyway� Because the clocks of these microprocessors drift� and because sometimes
the programs dealing with the network have to wait for other programs that run on the same
microprocessors� the network protocol has to deal with a signi�cant uncertainty in the timing
of events� In fact� Philips allows for a tolerance of ��� on all the timing� The goal of the
protocol that we have analyzed is to achieve reliable communication between the devices
despite this very large timing uncertainty�

The protocol uses the well�known Manchester encoding of bit strings� In this encoding it
is assumed that the voltage on the bus is either high or low� The time axis is divided into bit
slots of equal length� one bit slot for each bit in the string� In the block�shaped signal that
is sent over the bus� a bit ��	 is represented by a downgoing edge in the middle of a bit slot�
and a bit ��	 is represented by an upgoing edge in the middle of a bit slot� If the same bit is
sent twice in a row then an additional edge is required� which is placed exactly in between the
corresponding two bit slots� An example of the encoding is displayed in Figure ���� Besides
the ��� tolerance on the timing� the protocol has to face a number of other di�culties
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Figure ���
 Manchester encoding of the string ��������	

�� Although a receiver knows the length of the bit slots 
����s�� it does not know the
time at which the �rst bit slot begins� This problem is resolved by requiring that the
voltage on the bus is low whenever no message is being transmitted� and that the �rst
bit of a string is always ��	� Thus� when a receiver sees the �rst upgoing edge it knows
that this occurs in the middle of the �rst bit slot�

�� A receiver does not know the length of the bit string it is receiving�

�� In reality� the signal on the bus does not have a block shape� In particular� it takes
a signi�cant amount of time for the voltage on the wire to change from high to low�
This means that it is not possible for the hardware at the receiver side to determine
reliably when downgoing edges occur� and for this reason the receiver has to decode
the signal without �seeing	 the downgoing edges� This is always possible� except that
a message ending on ���	 cannot be distinguished from the same message ending on
��	� To resolve this problem� we require that all messages either end on ���	 or have
an odd length�

�� Di�erent senders may start sending at approximately the same time� so bus collisions
may occur�

�� The message delay in the bus can be signi�cant�

For simplicitywe ignore in this paper all the exciting complications that arise from problems �
and �� and consider a setting where one sender and one receiver are communicating through
a bus in which messages travel with negligible delay� The speci�c question that we will
address is to �nd the maximal allowable tolerance on the timing for which a speci�c decoding
algorithm developed by Philips is still correct in this setting�

��� Linear Hybrid Systems

Abadi and Lamport ��� plead for the use of �old�fashioned recipes	 when developing methods
for specifying and reasoning about computer systems


A new class of systems is often viewed as an opportunity to invent a new semantics�
A number of years ago� the new class was distributed systems� More recently� it
has been real�time systems� The proliferation of new semantics may be fun for
semanticists� but developing a practical method for reasoning about systems is
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a lot of work� It would be unfortunate if every new class of systems required
inventing new semantics� along with proof rules� languages� and tools� ��� page ��

Following this philosophy� they show in ��� how real�time systems can be handled in TLA
����� a Temporal Logic of Actions that was originally proposed in the context of untimed
systems� In subsequent work Lamport demonstrates how TLA can deal with hybrid systems
����� We agree with Abadi and Lamport� and would like to carry out their program for the
I�O automata model of Lynch and Tuttle ����� This model has been highly successful in the
area of distributed systems 
for some examples of recent applications see ���� ��� ����� and so
it seems interesting to investigate whether it can handle hybrid systems as well�

The I�O automata model is based on labeled transition systems� In the untimed case the
transition labels can be input and output actions� which model the interaction of a systemwith
its environment� and internal actions� which model internal computation steps� In ���� ��� it
is shown how real�time systems can be represented as labeled transition systems by adding�
as additional labels� time�passage actions� In the resulting model of timed I�O automata�
the continuous progress of real�time is represented by a continuum of discrete time�passage
transitions� The new model of linear hybrid systems that we will de�ne in this paper can be
viewed as a subclass of timed I�O automata�

An important aspect of the I�O automata model is the view on correctness
 both a system
and its speci�cation are described as I�O automata and correctness amounts to inclusion
of traces between these automata� In ���� ��� ��� it is argued that inclusion of timed traces

provides the �right	 notion of implementation for timed I�O automata� and it is shown that
the simulation proof techniques that have been developed for the untimed model carry over
smoothly to the timed case� In ���� an embedding of the untimed model into the timed model
is presented� which makes it possible to view a timed I�O automaton as an implementation
of an untimed I�O automaton via the notion of timed trace inclusion� Here� we will also use
inclusion of timed traces as the implementation relation between linear hybrid systems�

A �nal characteristic of the I�O automata approach is the speci�c syntax that is used for
de�ning systems
 by viewing states as valuations of a collection of state variables� transitions
can be de�ned in guarded command style or equivalently via action predicates with primed
and unprimed variables that refer to the values of the state variables before and after a
transition� In our approach the only di�erence at the syntactic level between the timed
and the untimed model is that in the timed case there is an additional action predicate
to specify time�passage transitions� Via our notion of a linear hybrid system we present
syntactic restrictions on this predicate which guarantee that the underlying transition system
is a timed I�O automaton� and in particular satis�es the trajectory axiom� The trajectory
axiom is a fundamental property saying that if there is a time step between two states�
there exists a continuum of intermediate states that are also related by time steps� In a
linear hybrid system the state variables are partitioned in discrete and continuous variables�
just like in the phase transition systems of Manna and Pnueli ���� ���� But whereas phase
transition systems and other models that have been proposed for hybrid systems contain
several additional components 
activities� important events� invariants� rate intervals� interval
sequences� evolutions� etc��� the operational behavior of a linear hybrid system is de�ned by
action predicates only� just as in the untimed case� Thus all the �old�fashioned	 notations
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and proof techniques for labeled transition systems carry over immediately� and we do not
have to rede�ne and reinvent from scratch� We want to stress however that there exists a
close connection between the syntactic restrictions that we impose on the action predicate
for time� and concepts that play a role in the phase transition systems of Manna and Pnueli�
and in the linear hybrid automata of Alur� Henzinger and Ho ��� ���

One could argue that the case study presented in this paper is not dealing with hybrid
systems in the proper sense� All real�time systems are hybrid systems� and this paper concerns
a real�time veri�cation problem because instead of our model of linear hybrid systems we could
have used 
for instance� the more restricted timed automata model of Alur and Dill ���� In
this model there are continuous entities� called clocks� but these all change with exactly the
same rate� The main reason why we use linear hybrid systems in this paper is that they allow
for a more natural description of the audio control protocol than the timed automata of ����

�� The Timed I�O Automata Model

In this section we give a brief account of the model of timed I�O automata ���� ��� ��� which
is a variant of the I�O automata model of Lynch and Tuttle ���� extended with features to
model real�time� but without a notion of fairness� As the time domain we use in this paper
the set R of real numbers� with typical elements d� d�� � � �

��� Action Signatures

An action signature S is a triple 
in
S�� out
S�� int
S�� of three disjoint sets of respectively
input actions� output actions and internal actions� We assume that these sets are disjoint
with the set R� of positive real numbers� elements of which set will play the role of time�
passage actions� The derived sets of external actions� locally controlled actions and actions

of S are de�ned respectively by

ext
S�
�
� in
S�� out
S��

local
S�
�
� out
S� � int
S��

acts
S�
�
� in
S�� out
S� � int
S��

An action signature is called �nite if all three components are �nite sets�

��� Timed I�O Automata

A timed I�O automaton 
or just automaton� A consists of four components�


� A set states
A� of states�

� A nonempty set start
A� � states
A� of start states�

� An action signature sig
A�

we write in
A� for in
sig
A��� out
A� for out
sig
A��� etc���

�This de�nition is a slight variant of the de�nition from ����� The di�erence is just the explicit indication
of the amount of elapsed time in the time	passage action instead of using a �now function that associates the
current time to a state�
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� A set steps
A� � states
A��
acts
A�� R���states
A� of transitions�

In this paper s� s�� u� u�� � � � range over states� and a� b� � � � over actions in acts
A� � R�� As
usual s

a
�A s� abbreviates 
s� a� s�� � steps
A�� The subscript A is frequently omitted when

no confusion can arise� An action a of automatonA is said to be enabled in a state s if s
a
� s��

for some state s�� We require that A satis�es the following axioms


A� Each input action is enabled in each state�

A� If s
d
� s� and s�

d�

� s��� then s
d�d�

� s���

To state the last axiom� some auxiliary de�nitions are needed� An interval is a nonempty
convex subset of R� Let I be an interval� Then an I�trajectory is a function w 
 I � states
A�
such that

w
d�
d��d
� w
d�� for all d� d� � I with d � d��

If I is left�closed� then denote w
inf 
I �� by w�fstate� Similarly if I is right�closed� then
denote w
sup
I �� by w�lstate� If I is closed then w is said to span from state w�fstate to state
w�lstate�

A� If s
d
� s� then there exists an ��� d��trajectory from s to s��

Axiom A� is also referred to as the input�enabling requirement� The intuition behind this
axiom is that input actions are under control of the environment� and that the system cannot
prevent the environment from doing these actions� Axiom A� gives a natural property of
time� namely that if time can pass in two steps� then it can also pass in a single step� Finally�
the trajectory axiom A� says that if time can pass with an amount d� then it is possible to
associate states with all times in the interval ��� d� in a consistent way� For a further discussion
of this axiom we refer to ���� ����

��� Composition and Hiding

Intuitively� the composition of two timed I�O automata is their Cartesian product� with the
added requirement that automata synchronize on shared actions and on passage of time� The
synchronization of shared actions models communication between system components
 if a
is an output action of A and an input action of B� then the simultaneous performance of a
models communication from A to B� Since we do not want synchronization between output
actions of di�erent I�O automata� or synchronizations involving internal actions� we require
that the I�O automata are compatible in the sense that they do not share these actions�

Formally� we say that two action signatures S� and S� are compatible if out
S� ��out
S� � �
	� int
S� � � acts
S�� � 	� and int
S� � � acts
S�� � 	� The composition S�kS� of a pair of
compatible action signatures S�� S� is de�ned to be the action signature S with

in
S� � 
in
S� � � in
S� ��
 
out
S� �� out
S� ���

out
S� � out
S� � � out
S� ��

int
S� � int
S� � � int
S� ��
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It is easy to see that S is an action signature and that composition of action signatures is
commutative and associative� We say that a pair of timed I�O automata is compatible if their
action signatures are compatible� The composition A�kA� of a pair of compatible timed I�O
automata A�� A� is the timed I�O automaton de�ned by

� states
A� � states
A���states
A� ��

� start
A� � start
A� ��start
A� ��

� sig
A� � sig
A��ksig
A� ��

� steps
A� is the set of triples 

s�� s��� a� 
s
�
�� s

�
��� in states
A��
acts
A��R

���states
A�
such that� for i � f�� �g� if a � acts
Ai� � R� then si

a
�Ai

s�i else si � s�i�

The reader can check that A is a timed I�O automaton indeed� and that composition of timed
I�O automata is commutative and associative up to isomorphism� Note that� by de�nition�
time is only allowed to pass in the composition if both component automata allow the same
amount of time to pass�

If S is an action signature and H � out
S�� then the action signature HIDE H IN S is
de�ned as the triple 
in
S�� out
S� 
 H � int
S� � H �� If A is a timed I�O automaton and
H � out
A�� then HIDE H IN A is the timed I�O automaton obtained from A by replacing
sig
A� by HIDE H IN sig
A�� and leaving all the other components unchanged�

��� Timed Traces
Let A be a timed I�O automaton� An execution fragment of A is a �nite or in�nite alternating
sequence s�a�s�a�s� � � � of states and actions in acts
A� � R�� beginning with a state and�

if it is �nite� ending with a state� such that for all i� si
ai��
� si��� An execution of A is an

execution fragment that begins with a start state� A state s of A is reachable if it is the last
state of some �nite execution of A�

Executions correspond to what are called sampling computations in ����
 they give infor�
mation about a run of a system at a countable number of points in time� In ���� also a
notion of timed execution is de�ned for timed automata
 these are alternating sequences of
trajectories and actions� which correspond to the super�dense computations of ����� It can
be argued that timed executions provide a more precise representation of the behavior of
real�time systems than 
sampling� executions� However� our trajectory axiomA� guarantees
that for each 
sampling� execution of a timed automaton there exists a corresponding timed
execution� This means that the full externally visible behavior of timed automata can already
be inferred from the technically much simpler 
sampling� executions


Suppose � � s�a�s�a�s� � � � is an execution fragment of A� For each index i� let di be given
by

d� � ��

di�� � if ai � R� then di � ai else di�

The limit time of �� notation ��ltime� is the smallest element of R�� � f�g larger than or
equal to 
i�e�� the supremum of� all the di� Execution fragment � is admissible if ��ltime ���
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and Zeno if it is an in�nite sequence but with a �nite limit time� The timed trace t�trace
��
associated with � is de�ned by

t�trace
��
�
� 


a�� d��
a�� d�� � � ��d
ext
A�� R�� �� ��ltime��

So t�trace
�� records the external actions of � paired with their time of occurrence� as well
as the limit time of the execution� We write t�traces�
A� for the set of traces of admissible
executions of A�

��	 Implementation
Let A and B be timed I�O automata with the same input actions� Then we say that A
implements B if t�traces�
A� � t�traces�
B��

In I�O automata theory� inclusion of 
fair� admissible����� traces is commonly used as im�
plementation relation� Intuitively� one may think of B as de�ning a set of constraints� which
A must obey� Note that A does not need to exhibit all of the behaviors in t�traces�
B��
merely a subset is su�cient� However� by requiring that A and B have the same input
actions� and since input actions must always be enabled� implementations can not be com�
pletely trivial� Of course� the requirement of input enabling is not enough to exclude trivial
implementations� A convincing de�nition of what it means for an implementation to be non�
trivial is presented in ���� via the notion of environment�freedom� Intuitively� a timed I�O
automaton is environment�free if it has a strategy by which� after any �nite execution and
with any sequence of input actions� it can generate an execution which is either admissible�

or Zeno�tolerant� i�e�� Zeno with in�nitely many input actions and �nitely many locally con�
trolled actions� We claim that all timed I�O automata that we discuss in this paper are
environment�free in the sense of ����

��
 Simulations

In the literature� a whole menagerie of so�called simulation techniques has been proposed to
prove that the set of 
�nite� fair� timed�� � �� traces of one automaton is included in that of
another� We refer to ���� ��� for an overview and further references� In this paper we only
need one simple type of simulation� which is the weak timed forward simulation of �����

Suppose A and B are timed I�O automata� A weak timed forward simulation from A to B
is a relation R � states
A�� states
B� that satis�es the following two conditions�


�� If s � start
A� then there exists a state u � start
B� with s R u�

�� If s
a
�A s�� sRu� and s and u are reachable� then there exists a state u� of B such that

u
p
�B u� and s� R u�� where p � t�trace
s a s ���

Here we write u p
�B u� if B has a �nite execution fragment � with �rst state u� �nal state u�

and timed trace p�

�Actually
 the de�nition of ��� is presented in the more general setting of live timed I�O automata� Our
automata can be viewed as live timed I�O automata by taking the collection of admissible executions as the
liveness condition�

�For simplicity
 this de�nition is slightly less general than the one presented in �����
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Lemma ��� If there exists a weak timed forward simulation from A to B� then t�traces�
A� �
t�traces�
B��

The converse implication does not hold� i�e�� there exist timed I�O automata A and B such
that t�traces�
A� � t�traces�
B�� but no weak timed forward simulation from A to B can
be given� In those cases one has to use other� more general simulations� Typically� weak
timed forward simulations fail if B contains some form of nondeterminism�

�� Linear Hybrid Systems

In this section we de�ne the notion of a linear hybrid system� and describe the semantics of
these systems in terms of timed I�O automata�

��� Terms and Formulas

We start from a many sorted signature � containing a collection of types and predicate�
function and constant symbols over those types� We assume that � contains equality predi�
cates for each type� and a special type Real with constant symbols �� �� a binary predicate
symbol 
� binary function symbols � and �� and unary function symbols 
 and 
����� i�e��
the signature of an ordered �eld�

Next there is a set V of variables containing in�nitely many variables for each type� V is
partitioned into two sets V and V � of unprimed and primed variables� respectively� such that
V � is a copy of V that contains for each variable v � V a corresponding variable v� of the
same type� We will use a primed variable v� to denote the new value of an 
unprimed� state
variable v after a transition� We extend priming of variables to the whole of V such that
v�� � v� and let z� � � � range over V and v� w� x� � � � over V �

To describe properties� we use a �rst�order language over signature � and variables V � We
use symbols e� f� � � � to range over terms� and symbols �� � � � to range over formulas� We adopt
the usual notational conventions for real valued terms� Thus we write e

f
for e � f��� e � f

for �
e 
 f�� � for � � �� etc� With Ve and V� we denote the set of 
free� variables in some
term e resp� formula �� For X a term� formula� set of variables� etc� we denote by X � the
term� formula� set of variables� etc� obtained by replacing all unprimed variables in X by
their primed version�

��� Semantics

We assume a ��algebra A which gives meaning to the function and constant symbols of ��
The type Real has the usual interpretation in A as the set R of real numbers� and also the
constant and function symbols for this type are all interpreted as the usual corresponding
constants and functions 
we set ����� to keep all functions total��� An A�valuation is a
function � that takes every variable v � V into an element of its domain in A� If e is a term�
then we write ��e���A for the evaluation under � of e in A� and if � is a formula then we write
A� � j� � if � holds under ��

�In fact
 for the purposes of this paper any interpretation of Real as an ordered �eld would do
 the only
properties of reals that we use are the axioms for ordered �elds�
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��� Special Types of Formulas

Let D�C be disjoint sets of variables� with all variables in C of type Real� Then the sets
Convex
D �C � and Halves
D �C � consist of the formulas � and  � respectively� de�ned by
the following grammar

� 

�
X
i

eixi�e j � � � j � j if � then � else � j � � � j � � ��

 

�
X
i

eixi�e j � j if � then  else  j � � j  � � j � � j  � ��

where � � f��
��� �g� the e� ei are terms of type Real with variables in D� the xi are in
C� and � is a formula with free variables in D�

Note that Halves
D �C �� Convex
D �C �� The key property of formulas in Convex
D �C �
is that� for �xed interpretation of the variables in D� they denote convex polyhedra in the
space spanned by the variables from C� Similarly� the formulas in Halves
D �C � denote� for
�xed interpretation of the variables in D� the set of points on one side of a hyperplane�

For W � V a �nite set of variables� � an unprimed formula� and x � V � we de�ne

Unchanged
W �
�
�

V
w�W w��w

Stable
��
�
� �� ��

Below
x� ��
�
� �x� 
 x 
 x� � ��x�	x��

��� Syntax of Linear Hybrid Systems

A linear hybrid system 
or just system� P consists of the following components


� A �nite set VP � V of state variables� The set VP � DP � CP is partitioned into DP �
the set of discrete variables� and CP � the set of continuous variables� All continuous
variables have type Real�

� A satis�able formula init
P� with variables from VP �

� A �nite action signature sig
P��

� For each a � acts
P�� fTIMEg� a �nite list param
P � a� of terms� the action parame�

ters� and a formula pred
P � a�� the action predicate� such that

� if a � in
P� then the terms in param
P � a� do not contain variables from VP �V �P �
and pred
P � a� is of the form


 �
�

v�VP

v��fv

where 
 does not contain variables from VP � V �P � and the fv do not contain
variables from V �P �

� if a � TIME then param
P � a� � 
t�� for some variable t �� VP �V �P � of type Real�
and pred
P � a� is of the form�


�Here and elsewhere we use Lamport�s list notation for conjunction�
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� t � �
� Unchanged
DP �
� 
���
�

V
j�J Stable

j�

where 
 is in Convex
DP �CP�� � is the substitution that replaces each variable
x � CP by

x��x
t
� J is a �nite index set� and all the 
j are in Halves
DP �CP��

The action predicate for TIME consists of four parts� which intuitively state that
 
�� time
always passes with a positive amount� 
�� time steps leave the discrete variables unchanged�

�� the rates of the n continuous variables are contained in a convex polyhedron over Rn�
and 
�� time steps preserve a number of properties� Part � is obvious� Part � says that
our model adopts the two�phase functioning principle of ����
 a phase where instantaneous

input� output and internal� actions cause discrete changes of the state space� is followed by
a phase in which the discrete part of the state remains unchanged and the continuous part is
transformed according to a law depending on time progress� This law is given in part �� and
forms a generalization of the notion of rate intervals of ���
 it gives lower and upper bounds
on the rate of change of linear combinations of the continuous variables with respect to time�
Finally� part � allows us to state that certain actions other than time passage actions must
occur before or at some point in time� This part plays the same role as the invariants of ��� ��
and the important events of ����� Note that although the �rate	 formula
 can be any formula
in Convex
DP �CP�� we require that the �stable	 formulas 
j are taken from the smaller set
Halves
DP �CP�� If we would allow for arbitrary conjunctions within a stable formula� then
the underlying timed I�O automaton would in general not satisfy the trajectory axiom�

��	 Semantics of Linear Hybrid Systems

Let P be a linear hybrid system� De�ne aut
P� to be the ��tuple A consisting of


� The set states
A� of valuations of the variables VP 
just these� in their domains�

� The set start
A� of states in states
A� that satisfy formula init
P��

� For each input� output or internal action a � sig
P� and for each valuation � such
that A� � j� pred
P � a�� sig
A� contains an input� output respectively internal action

a��param
P � a����A� Here the result of applying �����
�
A on a list of terms is de�ned as the

list obtained by applying ������A on each of these terms separately�

� The set steps
A� of triples 
s� b� s�� in states
A��
acts
A� � R���states
A� for which
there is some a � acts
P�� fTIMEg and an A�valuation � such that

� A� � j� pred
P � a��

� �v � VP 
 s
v� � �
v��

� b � a��param
P � a����A�

� �v � VP 
 s�
v� � �
v���

Here we identify actions TIME
d� and d� Valuation � is called a witness for 
s� b� s���
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Theorem ��� Let P be a linear hybrid system� Then aut
P� is a timed I�O automaton�

Proof� See Appendix ��

For each trajectory w and for each continuous variable x� de�ne wx
�
� �t�w
t�
x� to be the

function that gives the value of x along w� The functions wx are not necessarily di�erentiable�
but if they are then for each state on the trajectory formula 
�
� holds� where 
 is the
�rate	 formula in the action predicate for TIME and 
 is the substitution that replaces each
continuous variable x by the �rst derivative !wx� From the proof of Theorem ��� it follows that
whenever there is a trajectory between two states� there is also a �straight line	 trajectory l
between these states for which the functions lx are trivially di�erentiable� If �rate	 formula 

denotes a bounded polyhedron for each valuation of the discrete variables� then the functions
wx will be continuous for each trajectory w� although not necessarily di�erentiable�

��
 Precondition�E�ect Notation

When describing systemswe will often use guarded commands to specify the action predicates�
In the case of �deterministic	 action predicates� i�e�� ones where the value of the primed
variables is determined by that of the unprimed variables and the action parameters� guarded
commands allow us to give slightly more concise speci�cations� since we do not have to state
explicitly that certain variables remain unchanged�

Let the set Stat of statements be de�ned by the following grammar


Stat 

� x 
� e j Stat� Stat� j if � then Stat j case �� � Stat� � � ��n � Statn�

where x � V � e a term and �� �i formulas� all with unprimed variables only� To each state�
ment Stat we associate a formula Form
Stat� and a �nite collection of �modi�ed	 variables
Mod
Stat� as follows


Form
x 
� e�
�
� x��e

Form
Stat� Stat� �
�
� Form
Stat� �� Form
Stat� �

Form
if � then Stat�
�
� if � then Form
Stat� else

Unchanged
Mod
Stat��

Form
case �� � Stat� � � ��n � Statn�
�
� if �� then Stat� else

if �� then Stat� else
���
if �n�� then Statn�� else Statn

Mod
x 
� e�
�
� fxg

Mod
Stat� Stat� �
�
� Mod
Stat� � �Mod
Stat� �

Mod
if � then Stat�
�
� Mod
Stat�

Mod
case �� � Stat� � � ��n � Statn�
�
� Mod
Stat� � � � � � �Mod
Statn�

In the de�nition of a system P an expression

a�e�� � � � � en�
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Precondition

�

E�ect

Stat

will be interpreted as a de�nition of the action parameter and predicate of an action a


param
P � a�
�
� 
e�� � � � � en��

pred
P � a�
�
� � � Form
Stat� �Unchanged
VP 
Mod
Stat���

In this case� we write prec
P � a� for the formula ��

�� Protocol Specification

In this section� we present the formal speci�cation of the protocol� Following a brief descrip�
tion of the many�sorted algebra that we use� we will �rst give linear hybrid systems for each
of the components of the protocol� and then de�ne the full protocol as the composition of
the automata denoted by these systems� At the end of this section we will moreover present
the de�nition of the system that speci�es the allowed external behavior of the protocol�

��� Data Types

We start the speci�cation of the protocol with a description of the various data types that
we will need� We assume a many�sorted signature � and a ��algebra A which� besides the
ingredients listed in Section ���� consist of the following components


� a type Nat of natural numbers� with a constant symbol zero� a successor function
symbol succ� and a predicate symbol odd� all with the usual interpretation� Also� there
is an embedding � 
Nat� Real of the natural numbers into the reals� We will suppress
�"s in terms�

� a type Bit of bits that the protocol has to transmit� with constants symbols � and ��
Again there is an embedding � 
 Bit� Real� which we will suppress in terms�

� a type List� with as domain the collection of �nite lists of bits� There is a constant
symbol � for the empty list� an embedding h�i 
 Bit � List� and a binary function
symbol #� denoting concatenation of lists� Besides these constructors� there are function
symbols

head 
 List� Bit last 
 List� Bit length 
 List� Nat

tail 
 List� List last two 
 List� List

head takes the �rst element of a list 
de�ned arbitrarily as � in case of the empty list��
tail returns the remainder of a list after removal of the �rst element� last gives the last
element of a list� last two gives the last two elements of a list� and length returns the
length of a list� These operations are fully characterized by the axioms 
here m is a
variable of type List� and d� e are variables of type Bit�
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head
�� � � last two
�� � �

head
hdi#m� � d last two
hdi� � hdi
tail
�� � � last two
m#hdei� � hdei
tail
hdi#m� � m length
�� � zero

last
�� � � length
hdi#m� � succ
length
m��
last
m#hdi� � d

Here 
and elsewhere� we write hdei for hdi#hei� Finally� we need an operation �nalize 

List� List de�ned by


if last
m��� � odd
length
m�� then �nalize
m��m else �nalize
m��m#h�i�

� a type Bool of booleans with constant symbols true and false� We view boolean valued
terms as formulas and use b as an abbreviation of b�true�

� a function symbol min 
 Real � Real � Real� with the obvious interpretation� and
two constant symbols Q and T of type Real


� Q denotes one quarter of the length of a bit slot in the Manchester encoding� In
the Philips speci�cations Q equals ����s�

� T gives the tolerance on the timing of the sender and receiver in the protocol�
Philips allows a maximum tolerance of � �

�� �

In this paper we will assume Q � � and � 
 T � ��

��� The Sender

We now de�ne the system S� which models the sender of the protocol� The discrete variables
of S are a variable list � which records the bit string still to be transmitted� a boolean wire high
to keep track of the voltage on the wire� and a boolean transmitting which records whether
the sender is busy transmitting� There is also a continuous variable x which represents a
drifting clock with tolerance T that is reset in the middle of each bit slot� The input action
IN 
m� corresponds to a request by the environment to transmit a bit string m� Upon the
occurrence of such an action in the initial state� S immediately does an UP �action� which
represents an upgoing edge on the bus� Depending on whether the second bit in the string
is absent� � or �� a DOWN �action occurs �Q or �Q time units after the �rst UP � according
to the local clock of S� An action DOWN of course represents a downgoing edge on the bus�
Subsequent UP "s and DOWN "s are generated as required by the Manchester encoding� and
when the transmission is �nished the protocol returns to its initial state� IN �actions that
occur before the transmission �nishes are ignored�

Inputs IN � List
Outputs UP

Internals DOWN

Discrete transmitting � Bool Init � �transmitting
wire high � Bool � �wire high
list � List � list��

Continuous x � Real
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IN �m�
Precondition

� head�m���
� �odd�length�m�� � last two�m��h		i�

E�ect

if �transmitting � �wire high � list�� then 
list �� m

x �� 	�

UP

Precondition

� �wire high
� list ���
� if transmitting then �if head�list��� then x��Q else x�
Q� else x�	

E�ect

transmitting �� true

wire high �� true

if head�list��� then 
list �� tail�list�
x �� 	�

DOWN

Precondition

� wire high

� if list ��� � head�list��	 then x��Q else x�
Q
E�ect

if list�� � list�h	i then 
transmitting �� false�
wire high �� false

if list ��� � head�list��	 then 
list �� tail�list�
x �� 	�

TIME �t�
Action formula

� t � 	
� Unchanged �DS�

� �� T � x
�
�x

t
� � � T

� Stable�Below �x� prec�S �UP���
� Stable�Below �x� prec�S �DOWN ���

��� The Receiver

Next we de�ne system R� which models the receiver of the protocol� System R has only two
state variables
 a discrete variable list� which gives the bit string received thus far� and a
continuous variable x� which represents a drifting clock with tolerance T that is reset whenever
an upgoing edge is detected� There are two actions
 an action UP that corresponds to the
detection of an upgoing edge� and an action OUT by which the receiver passes a received
string on to the environment� The action predicates for UP and OUT are straightforward
formalizations of the informal speci�cations by Philips of the algorithm for the receiver�

Inputs UP

Outputs OUT � List
Discrete list � List Init list��
Continuous x � Real

UP

Precondition

true

E�ect

case

list�� � list �� h�i
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last�list��	 � case

x � �Q � list �� �

�Q � x � �Q � list �� list�h	i
�Q � x � list �� list�h	�i

last�list��� � case

x � �Q � list �� �

�Q � x � �Q � list �� list�h�i
�Q � x � �Q � list �� list�h	i
�Q � x � list �� list�h	�i

x �� 	

OUT ��nalize�list��
Precondition

� list ���
� if last�list��	 then x��Q else x��Q

E�ect

list �� �

TIME �t�
Action formula

� t � 	
� Unchanged �DR�

� �� T � x
�
�x

t
� � � T

� Stable�Below �x� prec�R�OUT���

��� The Full Protocol

The full protocol can now be de�ned as the composition of automata S and R� with commu�
nication between these components hidden


Impl
�
� HIDE fUPg IN 
SkR�

��	 The Correctness Criterion

System P de�nes the collection of allowed behaviors of Impl � It has the same input and
output actions as Impl � but no internal actions� In P each action IN 
m� is followed by an
action OUT 
m� within time


� length
m� � �� Q

�
 T

However� if the environment o�ers another IN �action before the system has generated a
corresponding OUT �action� P moves to a state of chaos in which anything is possible� This
means that in such a situation any behavior of Impl is allowed� In the next section we will
prove that the Impl is indeed a correct implementation of P �

Inputs IN � List
Outputs OUT � List
Discrete list � List Init � list��

chaos � Bool � �chaos
Continuous x � Real

IN �m�
Precondition

� head�m���
� �odd�length�m�� � last two�m��h		i�

E�ect

if list�� then 
list �� m

x �� 	�
if list ��� then 
chaos �� true�

OUT �list�
Precondition

� �list ��� � �� � T�x � �� length�list� � ��Q�
� chaos

E�ect

list �� �
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TIME �t�
Action formula

� t � 	
� Unchanged �DP �
� x� � x � t

� Stable�prec�P �OUT ��

�� Correctness Proof

In this section we will establish that there exists a weak timed forward simulation from
the implementation to the speci�cation� We �rst gain insight into the reachable states by
presenting a number of invariants� i�e�� properties that hold initially and that are preserved
by the transitions� We have omitted all proofs� which are mostly routine and tedious� the
creative part is �nding the right invariants and the order in which to prove them�

From now on� we will assume that tolerance T is less than �
�� � The following scenario shows

what goes wrong if T � �
�� � Assume that the sender"s clock progresses maximally slow and

the receiver"s clock maximally fast� Now the sender and receiver are at rest and the message
to be sent is ����	� Immediately after the IN of this message the sender will output an UP
to the receiver� Both clocks are 
re�set to �� the bu�er of the sender contains ���	 and that
of the receiver ��	� The receiver can output ��	 at �Q local receiver"s time� before the last
UP arrives at �Q local sender"s time� if

�Q � ��T
��T


 �Q�

And this is� as the reader can verify� when T � �
�� �

The variables in the invariants are pre�xed with their origin� e�g�� S�x for sender"s clock
x� Besides the variables present in the sender and the receiver� we add to Impl a 
discrete�
boolean history variable error that indicates whether Impl is in an erroneous or chaotic state�
We will need this variable to express that a premature input has occurred� Variable error is
de�ned by adding a clause �error to the initialization condition of Impl � and a clause

if R�list ��� then error 
� true

to the e�ect of IN in Impl � All the other actions� including TIME � leave error unchanged�
With ���� ��� we know that this is a harmless extension by which� as one can easily verify�
the set of timed traces of Impl is not changed�

We start with a few invariants about the state space of the sender� The �rst invariant
re$ects the observation that the sender is always busy 
i�e�� transmitting� if the bus is high�

Lemma ��� The following property holds for all reachable states of Impl 


S�wire high � S�transmitting�

The second invariant gives upper bounds for the the various stages of progress of the sender

in the �rst conjunct the sender is at rest and ready to accept any input� in the second conjunct
the sender has received its message but has not yet begun to transmit� in the third conjunct
it is waiting to send the next ��	 etc�
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Lemma ��� The following property holds for all reachable states of Impl 


� init
S�
� �S�wire high � S�list ��� � �S�transmitting � S�x��
� �S�wire high � S�list ��� � S�transmitting � head
S�list��� � S�x 
 �Q
� �S�wire high � S�list ��� � S�transmitting � head
S�list��� � S�x 
 �Q
� S�wire high � S�list ��� � head
S�list��� � S�x 
 �Q
� S�wire high � 
S�list�� � head
S�list���� � S�x 
 �Q�

The next invariant gives an upper bound for the clock of the receiver�

Lemma ��� The following property holds for all reachable states of Impl 


R�list�� � if last
R�list��� then R�x 
 �Q else R�x 
 �Q�

We now give invariants for relations between the states of the sender and the receiver� The
next invariant tells us that for a good working of the implementation an input of a new
message can only happen when the receiver is at rest�

Lemma ��	 The following property holds for all reachable states of Impl 


�S�wire high � S�list ��� � �S�transmitting � R�list���

We want to reason about the two clocks in the implementation as if they were not drifting�
but precise� For this reason we introduce a new symbol � with an intended meaning of
�almost equal	� With this we abstract from the amount of drifting�

Notation ��� Let e and f be expressions of type Real� We de�ne


e � f
�
�

�
 T

� � T
e 
 f 


� � T

�
 T
e�

Notice that if T�� we can read � again as �� Also note that e � f if and only if f � e�

Lemma ��
 Let s� s� be states of Impl and e� f terms of type Real in which no continuous

variables occur� Suppose s j� S�x� e � R�x� f � and suppose that s
d
� s�� for some d � R��

Then s� j� S�x� e � R�x� f �

The most important observations about the implementation are those in which the distance
between the clocks is related to the contents of the bu�ers of the sender and the receiver� We
start with the possible distances and then give a more detailed description�
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Lemma ��� The following property holds for all reachable states of Impl 


� S�transmitting � �S�wire high � � R�x � S�x� �Q
� R�x � S�x� �Q
� R�x � S�x� head
S�list���

� S�transmitting � S�wire high � � R�x � S�x
� R�x � S�x
 �Q � S�list ��� � head
S�list����

Lemma ��� The following property holds for all reachable states of Impl 


� S�transmitting �R�list ��� � � last
R�list��� �R�x 
 ��T
��T

�Q �R�x � S�x

� last
R�list��� � ��T
��T

�Q 
 R�x 
 ��T
��T

�Q �R�x � S�x� �Q

� last
R�list��� �R�x 
 ��T
��T

�Q �R�x � S�x
 �Q

� last
R�list��� � ��T
��T

�Q 
 R�x 
 ��T
��T

�Q �R�x � S�x� �Q�

� init
S� �R�list ��� � � last
R�list��� �R�x 
 �Q �R�x � S�x

� last
R�list��� � ��T
��T

�Q 
 R�x 
 �Q �R�x � S�x� �Q

� last
R�list��� � ��T
��T

�Q 
 R�x 
 �Q �R�x � S�x� �Q

� R�list�� � �S�transmitting � �S�wire high�

The following invariant implies that� with our additional assumption that T � �
�� � the above

defective scenario is not possible
 an output of a message by the receiver cannot happen when
the sender is still busy�

Lemma ��
 The following property holds for all reachable states of Impl 


S�list ��� � 

R�list ��� � last
R�list��� � R�x � �Q� � 
last
R�list��� �R�x � �Q��� error �

The last invariant gives an obvious property of the speci�cation automaton�

Lemma ���� The following property holds for all reachable states of P 


P�list�� � 
head
P�list� � � � 
odd
P�list� � last two
P�list� � h��i��

We have now collected enough invariants to establish a weak timed forward simulation from
the implementation to the speci�cation� Besides a part needed to deal with premature inputs�
the simulation consists of two parts
 a part relating the bu�ers of the sender and the receiver
to the bu�er of the speci�cation and a part relating the clocks of the protocol to the single
precise clock of the speci�cation� As in most veri�cations of data link protocols it is essential
to realize at what moment which part of the message is in transit between the sender and
the receiver� In our case this comes down to establishing when there is a ��	 in transit that
is about to be accepted by the receiver�

Theorem ���� The relation determined by the following formula over the state variables of
Impl and P is a weak timed forward simulation from Impl to P 
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SIM
�
� if error then P�chaos else

if R�list�� then P�list�S�list � 
S�list�� � P�x��� else
if R�x � S�x� �Q
last
R�list�
 ��
then � P�list�R�list#S�list

� 
�
 T�P�x 
 �Qlength
R�list�
 �Q
� � last
R�list��
�min
R�x� S�x� �Q
last
R�list�
 ���

else � P�list�R�list#h�i#S�list
� 
�
 T�P�x 
 �Qlength
R�list�
 �Q
� � last
R�list��

�min
R�x� S�x� �Q
last
R�list� � ����

�� Conclusions and Future Work
A �rst main conclusion that can be drawn from this work is that the �old recipes	 from the
I�O automata model carry over smoothly to the setting of linear hybrid systems� The size of
the invariant and simulation proofs in this paper is substantial� but in our opinion justi�ed by
the complexity of the protocol and comparable to the proof size for similar untimed protocols�
A next step will be to see whether more general types of hybrid systems can be handled in
the context of the I�O automata model�

A second main conclusion� of course� is that the audio control protocol is correct� provided
that the tolerance is less than ����� 
 ��� � ����� � � ��� This value is larger than the maximum
tolerance of ��� that is allowed by Philips�

Communication protocols based on Manchester encoding are widely used in applications�
for instance in the Ethernet ����� It is therefore surprising that� as far as we know� there
is almost no work on the rigorous analysis of the tolerance of asynchrony within this or
related protocols� A notable exception is a recent paper by Moore ����� who mechanically
veri�es a biphase mark protocol� The protocol and model of Moore are slightly di�erent
from ours 
for instance� clock jitter is ignored in the model� but despite these di�erences he
surprisingly arrives at a maximal tolerance of ��� which is very close to our result� Clearly�
there are many interesting open questions left concerning this type of protocols� Because they
live at the boundary between continuous physical phenomena 
e�g�� voltage on communication
lines� and physical clocks� and discrete logical phenomena 
e�g�� microprocessors controlled by
programs� their formal analysis is an ideal application area for the theory of hybrid systems�

We think that the audio control protocol that we have analyzed in this paper is a rather
nice example that can play a role as a benchmark for other researchers to test their methods
on� just as the Cat and Mouse example of ���� and the Gas Burner example of ����� In
particular it would be interesting to see whether automatic veri�cation methods such as ���
can handle this protocol� Another challenge is to redo the veri�cation of this paper within
a process algebraic setting such as ����� It is worthwhile to note that Wang Yi"s ���� axiom
of time determinism� which says that if time passes with an amount d the resulting state is
uniquely determined� is not valid for linear hybrid systems
 due to the timing uncertainty�
time nondeterministic transition systems arise naturally in our setting� We think that a
�natural	 process algebraic description of the protocol requires an operator that adds timing
uncertainty to a system�

The second author has checked most of the veri�cation of this paper using the Coq proof
development system ���� We believe that computer support will become very important or
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even indispensable when dealing with larger protocols�

David Gri�oen ��� has analyzed an extension of the protocol with multiple senders that
has to deal with bus collisions� As a next step we also want to take the message delay on the
bus into account� Our analysis has already helped to clarify some ambiguities in the original
description of the protocol� and will hopefully lead to additional con�dence in the protocol�
orthogonal to that obtained via testing�
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�� Appendix	 Proof of Theorem ���

Lemma ��� Let P be a lineair hybrid system� � a formula with variables in VP � s� s
� states

of aut
P�� and � an A�valuation with� for all v � VP � s
v� � �
v� and s�
v� � �
v��� Then

A� � j� Stable
�� � 
s j� � � s� j� ���

Proof� Easy�

Proof of Theorem ��� Let P be a lineair hybrid system� and let A � aut
P�� We must
prove that aut
P� is a timed I�O automaton� and for this it is enough to show that A satis�es
axioms A�� A� and A��
For axiom A�� let s � states
A� and b � in
A�� Then there exist a � in
P� and an

A�valuation � such that b � a��param
P � a����A and A� � j� pred
P � a�� Since a � in
P��
pred
P � a� is of the form 
 �

V
v�VP

v��fv where 
 does not contain variables from VP � V �P �
and the fv do not contain variables from V �P �
Let ��� ��� be the A�valuations given by

��
z� �

���
��

s
z� if z � VP

�
z� otherwise
���
z� �

���
��
��fz� ���

�

A if z � V �P

��
z� otherwise

and let s� be the state of A with� for v � VP � s
�
v� � ���
v��� We claim that ��� is a witness

for 
s� b� s��� Proof


� A� ��� j� pred
P � a�� This follows from two observations

�� A� ��� j� 
� This follows since A� � j� 
� 
 does not contain variables from VP �V �P �
and � and ��� agree on variables outside VP � V �P �

�� For v � VP � A� ��� j� v��fv � This follows since by de�nition of �
��� ��v����

��

A � ��fv��
��

A�
fv does not contain variables from V �P � and �� and ��� agree on variables outside
V �P �

� �v � VP 
 s
v� � ���
v�� This follows since� by de�nition of ��� s
v� � ��
v� for all
v � VP � and �� and ��� agree on variables outside V �P �

� b � a��param
P � a����
��

A � This follows since� b � a��param
P � a����A� the terms in param
P � a�
contain no variables from VP � V �P � and � and �

�� agree on variables outside VP � V �P �

� �v � VP 
 s�
v� � ���
v��� Immediate from the de�nition of s��

For axiom A�� suppose that steps
A� contains transitions s
d
� s� and s�

d�

� s��� Let �� �� be

witnesses for transitions s
d
� s� and s�

d�

� s��� respectively� We must prove that s
d�d�

� s�� is in

steps
A�� and for this it is enough to �nd a witness for s
d�d�

� s��� De�ne A�valuation ��� by

���
z� �

�������
������

s��
z� if z � V �P

d� d� if z � t

�
z� otherwise
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We claim that ��� is a witness for s
d�d�

� s��� By de�nition of ��� and because � is a witness for

s
d
� s�� we have

� �v � VP 
 s
v� � ���
v�

� ��t���
��

A � d� d�

� �v � VP 
 s
��
v� � ���
v��

It remains to prove that A� ��� j� pred
P �TIME�� We know that pred
P �TIME� is of the
form

t � �� Unchanged
DP � � 
����
k�
i	�

Stable

i�

where all 
� 
i are in Convex
DP �CP�� and � maps each variable x � CP to
x��x
t
� We prove

that each of the conjuncts holds under ����

� Since � is a witness for s
d
� s�� A� � j� t � � and ��t���A � d� and thus d � �� Similarly� it

follows that d� � �� Thus ���
t� � d� d� � �� which implies A� ��� j� t � ��

� Since �� �� are witnesses for s
d
� s� and s�

d�

� s��� respectively� we have� for each variable
v � DP � s

�
v� � s
v� and s��
v� � s�
v�� Thus s��
v� � s
v�� for each v � DP � and hence�
by de�nition of ���� A� ��� j� Unchanged
DP ��

� Let � � Convex
DP �CP�� We claim that

A� � j� ���� and A� �� j� ���� � A� ��� j� ���� 
����

The proof is by induction on the structure of �� We present here the case where � is
of the form

P
i eixi�e� The other cases are easy and left to the reader�

So suppose � �
P

i eixi�e� where � � f��
��� �g� the e� ei are terms of type Real
with variables in DP � and the xi are variables in CP � Assume A� � j� ���� and A� �� j�
�����

A� � j� ���� �

A� � j� 

P

i eixi�e���� � fde�nition �
 and ei� e contain no variables from CP g

A� � j�
P

i ei
�
x�

i
�xi
t

�
�e � fde�nition j�g

P
i��ei��

�
A

�
�
x�

i
���
xi�
�
t�

�
���e���A � f� witness for s

d

� s�g

P
i��ei��

�
A

�
s�
xi��s
xi�

d

�
���e���A � f� and ��� agree on variables in DP g

P
i��ei��

���

A

�
s�
xi��s
xi�

d

�
���e���

��

A
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Similarly� we derive

X
i

��ei��
���

A

	
s��
xi�
 s�
xi�

d�



���e���

��

A

Therefore

X
i

��ei��
���

A

	
s��
xi�
 s
xi�

d� d�



�

�
X
i

��ei��
���

A

	
s��
xi�
 s�
xi� � s�
xi�
 s
xi�

d� d�




�
X
i

��ei��
���

A

�	
s��
xi�
 s�
xi�

d�


	
d�

d� d�



�

	
s�
xi�
 s
xi�

d


	
d

d� d�


�

�

	
d�

d� d�


X
i

��ei��
���

A

	
s��
xi�
 s�
xi�

d�



�

	
d

d� d�


X
i

��ei��
���

A

	
s�
xi�
 s
xi�

d




�

	
d�

d� d�



��e���

��

A �

	
d

d� d�



��e���

��

A

� ��e���
��

A

By de�nition of ���� this is equivalent to

X
i

��ei��
���

A

	
���
x�i�
 ���
xi�

���
t�



���e���

��

A

from which it follows that A� ��� j� ����� This completes the proof of the induction step�

Since 
 � Convex
DP �CP�� A� � j� 
��� and A� �� j� 
���� implication ��� gives A� ��� j�

����

� Suppose � 
 i 
 k� Since �� �� are witnesses for s
d
� s� and s�

d�

� s��� respectively�
A� � j� Stable

i� and A� �� j� Stable

i�� Hence� by implication ��	 of Lemma ����
s j� 
i implies s

� j� 
i� and s
� j� 
i implies s

�� j� 
i� Thus s j� 
i implies s
�� j� 
i� and

we can apply implication ��	 of Lemma ��� to obtain A� ��� j� Stable

i�� Since i was
chosen arbitrarily� it follows in fact that A� ��� j�

Vk
i	� Stable

i��

For axiomA�� suppose that steps
A� contains a transition s
d
� s�� for some d � R�� De�ne

the function w 
 ��� d�� states
A� by

w
c�
v� �

���
��

s
v� � c
�
s�
v��s
v�

d

�
if v � CP

s
v� if v � DP
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We must prove that w� which is just the straight line from s to s�� is a ��� d��trajectory from

s to s�� Clearly� w
�� � s� Let � be a witness for s
d
� s�� Since A� � j� Unchanged
DP ��

s
v� � s�
v�� for all v � DP � and it follows that w
d� � s�� Thus w spans from s to s��

Suppose � 
 c � c� 
 d� We show that w
c�
c��c
� w
c��� De�ne A�valuation �� by

��
z� �

������������
�����������

w
c�
z� if z � VP

w
c��
z�� if z � V �P

c� 
 c if z � t

�
z� otherwise

We claim that �� is a witness for w
c�
c��c
� w
c��� The only nontrivial thing to prove here is

that A� �� j� pred
P �TIME�� We prove that each of the conjuncts of � holds under ���

� A� �� j� t � �� By de�nition of ���

� A� �� j� Unchanged
DP �� By de�nition of �� and w�

� Let � � Convex
DP �CP�� We claim that

A� � j� ���� � A� �� j� ���� 
����

The proof is by induction on the structure of �� We present here the case where � is
of the form

P
i eixi�e� The other cases are easy and left to the reader�

So suppose � �
P

i eixi�e� where � � f��
��� �g� the e� ei are terms of type Real
with variables in DP � and the xi are variables in CP � Assume A� � j� ����� We derive

��
X
i

ei

	
x�i 
 xi

t



���

�

A �

�
X
i

��ei��
��

A

	
��
x�i�
 ��
xi�

��
t�




�
X
i

��ei��
�
A

	
w
c��
xi�
 w
c�
xi�

c� 
 c




�
X
i

��ei��
�
A



�
h
s
xi� � c�

�
s�
xi��s
xi�

d

�i


h
s
xi� � c

�
s�
xi��s
xi�

d

�i
c� 
 c

�
A

�
X
i

��ei��
�
A

	
s�
xi�
 s
xi�

d




�
X
i

��ei��
�
A

	
�
x�i�
 �
xi�

�
t�
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� ��
X
i

ei

	
x�i 
 xi

t



���A

� ��e���A 
here we used that A� � j� �����

� ��e���
�

A

It follows that A� �� j� ����� This completes the proof of the induction step�

Since 
 � Convex
DP �CP� and A� � j� 
���� implication ��� gives A� �� j� 
����

� Let  � Halves
DP �CP�� We claim that

A� � j� Stable
 � � A� �� j� Stable
 � 
����

The proof is by induction on the structure of  � We present here the case where  is
of the form

P
i eixi�e� The other cases are easy and left to the reader�

So suppose  �
P

i eixi�e� where � � f��
��� �g� the e� ei are terms of type Real
with variables in DP � and the xi are variables in CP � Assume A� � j� Stable
 �� We
distinguish between two cases


�� Assume A� � j�  � Then A� � j�  � �� We derive

��
X
i

eixi��
��

A �
X
i

��ei��
��

A�
�
xi� �

X
i

��ei��
�
Aw
c�
xi� �

�
X
i

��ei��
�
A

	
s
xi� � c

	
s�
xi�
 s
xi�

d





�

	
c

d


�X
i

��ei��
�
As

�
xi�

�
�

	
d
 c

d


�X
i

��ei��
�
As
xi�

�

�

	
c

d



��
X
i

eix
�
i��
�
A �

	
d
 c

d



��
X
i

eixi��
�
A

�

	
c

d



��e���A �

	
d
 c

d



��e���A 
here we used that A� � j�  � ��

� ��e���A � ��e��
��

A

It follows that A� �� j�  � Completely analogously we can derive A� �� j�  ��
Hence A� �� j� Stable
 ��

�� Assume A� � j� � �

Assume A� �� j� � �� Let

� �

�����
����
� if � ��
� if � �


 if � ��
� if � ��

We derive
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��
X
i

eixi��
��

A � � � � �

�
X
i

��ei��
�
A

	
s
xi� � c

	
s�
xi�
 s
xi�

d





�
X
i

��ei��
�
A

		
c� 
 c

c�



s
xi� �

	
c

c�



s
xi� �

	
c

c�



c�
	
s�
xi�
 s
xi�

d





�

	
c� 
 c

c�


X
i

��ei��
�
As
xi� �

	
c

c�


X
i

��ei��
�
A

	
s
xi� � c�

	
s�
xi�
 s
xi�

d





�

	
c� 
 c

c�


X
i

��eixi��
�
A �

	
c

c�


X
i

��eix
�
i��
��

A

�

	
c� 
 c

c�



��e���A �

	
c

c�



��e���

�

A 
here we used A� � j� � and A� �� j� � ��

� ��e���
�

A

This means that A� �� j� � and hence A� �� j� Stable
 ��

Thus A� � j� Stable
 � � A� �� j� Stable
 �� and we have completed the proof of the
induction step�

Since� for all i� 
i � Halves
DP �CP� and A� � j� Stable

i�� implication ��� gives
A� �� j�

Vn
i	� Stable

i��


