Proving Safety Properties of Hybrid Systems*

Arjun Kapur’ Thomas A. Henzinger* Zohar Manna® Amir Pnueli¥

Abstract

We propose a methodology for the specification, verification, and design of hybrid systems. The methodol-
ogy counsists of the computational model of Concrete Phase Transition Systems (CPTSs), the specification
language of Hybrid Temporal Logic (HTL), the graphical system description language of Hybrid Automata,
and a proof system for verifying that hybrid automata satisfy their HTL specifications.

The novelty of the approach lies in the continuous-time logic, which allows specification of both
point-based and interval-based properties (i.e., properties which describe changes over an interval) and
provides direct references to derivatives of variables, and in the proof system that supports verification
of point-based and interval-based properties. The proof rules demonstrate that sound and convenient
induction rules can be established for continuous-time logics. The proof rules are illustrated on several
examples.

1 Introduction

Hybrid systems are real-time systems that allow continuous state changes, over time periods of positive
duration, as well as discrete state changes, in zero time. Ubiquitous examples of hybrid systems appear
in nature, since all analog physical phenomena, typically modeled by differential equations, that interact
with digital devices, usually modeled by finite automata, can be regarded as hybrid systems. It is the
interaction of continuous and discrete change that makes hybrid systems interesting and nontrivial targets
for formal analysis. While mathematical methods for continuous equations and for discrete transitions have
been studied independently for quite some time, the development of methods for formal reasoning about
hybrid systems is relatively recent; it’s origin in computer science can be traced to [Schn88, MMP92].

Suppose engineers are charged with designing a digital controller for some physical phenomenon and wish
to ensure that the designed controller meets the requirements specification: how should they proceed? We
offer a methodology that allows the engineers to specify a hybrid design in a convenient formalism, and to
prove, using verification rules, that the design satisfies the desired properties.

Our methodology rests on three foundations. For the formal description of hybrid systems, we use
Hybrid Automata [ACHH93], an extension of finite automata with analog variables that are governed by
differential equations. For the formal description of system requirements, we use Hybrid Temporal Logic
(rTL) [HMP93], an extension of interval temporal logic with limit and derivative terms for analog variables.
To facilitate the proof of HTL formulas over the runs of hybrid automata, we introduce Concrete Phase
Transition Systems (CPTSs), a concrete instance of transition systems on phases of continuous state change

[MMP92, NSY92, HMP93].

*This paper appeared in the Proceedings of the Third International Symposium on Formal Technigues in Real-time and
Fault-tolerant Systems, Lecture Notes in Computer Science 863, Springer-Verlag, 1994, pp. 431-454.

tDepartment of Computer Science, Stanford University, Stanford, California 94305. Supported in part by a National Science
Foundation Graduate Research Fellowship.

{Department of Computer Science, Cornell University, Ithaca, New York 14853. Supported in part by the National Science
Foundation under grant CCR-9200794, by the United States Air Force Office of Scientific Research under contract F49620-93-
1-0056, and by the Defense Advanced Research Projects Agency under contract NAG2-892.

§Department of Computer Science, Stanford University, Stanford, California 94305. Supported in part by the National
Science Foundation under grant CCR-92-23226, by the Defense Advanced Research Projects Agency under contract NAG2-703
and NAG2-892, and, by the United States Air Force Office of Scientific Research under contract F49620-93-1-0139.

TDepartment of Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel 76100. Supported in part by the
European Community ESPRIT Basic Research Action Project 6021 (REACT).

We proceed in two steps. First we give a translation of hybrid automata into the computational model
of cpTs. Second we present rules for proving safe HTL formulas over the runs of a cpTs. We consider
both point-based and interval-based safety properties of hybrid systems. Point-based properties refer to all
individual states along a run, such as the safety requirement that the value of the variable x never exceeds 5.
Interval-based properties refer to time periods of positive duration on a run, such as the safety requirement
that during all periods of duration at most 3 the value of z increases monotonically by at most 5. We
introduce verification rules for both types of invariances, and illustrate their use on a variant of the gas
burner example of [CHR91].

Our approach in this paper differs from that used in [MP93] in two respects. The logic used here is based
on an interval temporal logic, while the logic of [MP93] is a point-based temporal logic. The advantages
of an interval-based logic is that it provides a natural expression for developments and changes across an
arbitrary interval. To express the same properties in a point-based logic it is always necessary to introduce
additional auxiliary “freeze” variables which record the state at the beginning of the interval of interest. Since
the continuous development over an interval, forming a phase in a phase transition system, is of principal
interest, it is important to be able to express such properties in the most natural way.

Another difference is that the models for the logic used here are dense, while the models of [MP93] are
based on a sampling semantics in which discrete transitions are interleaved, and continuous activities are
sampled at discrete points. While our approach can be easily adjusted for an interleaving semantics, where it
is possible for the system to be in multiple states at the same time, our truly continuous modeling of phases
allows us to reason directly with limits and derivatives. It also enables one to express fundamental properties
such as precise delay in a more direct and natural way than is possible under the sampling semantics.

2 Hybrid Temporal Logic

The behavior of a hybrid system is modeled by a function that assigns to each real-numbered time a system
state, i.e., values for all system variables. We require that, at each point, the behavior function has a limit
from the left and a limit from the right. Discontinuities are points where the two limits differ.

To specify properties of behavior functions, we present a continuous-time interval temporal logic with a
chop operator [HKP82], denoted as «;”, whose semantics is a continuous-time extension to [Mos85] discrete-
time chop operator.

Syntax

Because we wish to reason about physical phenomena in a natural and formal way, we introduce a logic that
allows derivatives and limits as atomic expressions. Our logic, HTL, is a variant of the hybrid temporal logic
of [HMP93].1 Let V be a finite set of typed variables, where the allowed types are boolean, integer, and real.
We view the booleans and the integers as subsets of the reals, where false and true correspond to 0 and 1,
respectively. For a variable z € V, we write & for the limit from the right (the right limit), and 7 for the
limit from the left (the left limit) of . We write % for the right derivative of & (with respect to time), and
z for the left derivative of # (with respect to time). Note that the terms, right-hand limit and left-hand
limit, are consistent with standard calculus terminology, and that right-hand limits are applied at the left
end of an interval, while left-hand limits are applied at the right end. To avoid confusion, we will mostly use
the terms “limit from the right” and “limit from the left”.

A local formula is a formula over the variables in V', their left and right limits, their left and right
derivatives, and function and predicate symbols from a language £. The formulas ¢ of Hybrid Temporal
Logic (HTL) are defined inductively as follows:

e = Y |fin| |1 Ve |pip0 | V.o

where z € V' and % is an atomic local formula.
A state formula is a first-order logic formula over the variables in V' (i.e., in which no limits, derivatives,

or chops appear). If ¢ is a state formula, we write z (and E)) for the local formula that results from

1'We restrict ourselves to piecewise smooth functions that are always right continuous.

by replacing each variable occurrence x in @ with its limit from the right T (and limit from the left ?,
respectively).

Semantics

Let R be the set of real numbers. A state 0: V — R is a type-consistent interpretation of the variables in V'
(i.e., boolean variables may only be interpreted as 0 or 1, and integer variables may only be interpreted over
the integers). For each € V| let o[z] denote the value o assigns to . We write Xy for the set of states.
Time is modeled by the nonnegative real line R*. A (left-closed right-open) interval [a, b), where a € RY,
b€ RtU{oo}, and a < b, is the set of points ¢ € RT such that a <t < b.
Let I = [a,b) be an interval. A function f: I — R is piecewise smooth in [if

e at a, the limit from the right of f exists, and the derivative from the right of f exists;

e at all internal points ¢ € (a,b), the limit from the right, the limit from the left, and all left and right
derivatives of f exist;

e at all points ¢ € [a,b), f is continuous from the right;?

e if b < oo, then the limit from the left of f exists at b, and the left derivative of f exists at b.
A phase P = (I, f) over V is a pair consisting of

e a nonempty left-closed right-open interval I = [a, b), and

e a type-consistent family f = {f, | # € V} of functions f,: I — R that are piecewise smooth in I and
assign to each point ¢ € I a value for the variable z € V.

It follows that the phase P assigns to every real-valued time ¢t € I a state f(¢) € Xy . Furthermore, the limit
from the right of f at a, and the limit from the left of f at b, if b < oo, are defined.
We write

— .
P = }g%{f(t) |a<t<b}
. —
for the left-end limit state P € Yy of the phase P, and

7 = lim{f(t) |a <t < b}

for the right-end limit state ? € Xy of P,if b < 0.

Let I; = [a,b) and Iy = [¢,d) be two intervals, and let P, = (I1, f) and P> = (I3, g) be two phases. The
phase Py is a subphase of Py if Iy C I and, for all ¢ € I», g(t) = f(¢). The phases P; and P; are adjacent
if b = ¢. For two adjacent phases P; = ([a,b), f) and Py = ([b,¢), g), we denote by P; "P; the phase {[a,c), h)
such that h coincides with f on ¢t € [a,b) and h coincides with g on ¢ € [b,¢). The phase P is said to be
partitioned by the phases P; and Py if P = P; "Ps.

The formulas of hybrid temporal logic are interpreted over phases. A phase P = ([a,b), f) satisfies the
hybrid temporal formula ¢, denoted P |= ¢, according to the following inductive definition:

For a local formula ¢, we distinguish between two cases:

1. If ¥ does not contain left limits or left derivatives, then
P =14 iff the local formula v evaluates to true, where

— x is interpreted as the value of f, at a,

r = fz(a)

2This allows one to chop an arbitrary piecewise smooth function into intervals of the form [a, b) that are continuous from
both the left and the right.

- 7 s interpreted as the limit from the right of f, at a,3

F _ .

z = th_I};{fx(t) |a<t<b}
- 2 is interpreted as the right derivative of f, at a,

T = lim{(fo(t) = F)/(t—a) Ja<t< b}.
t—a
2. If ¢ contains left limits or derivatives, then
P E ¢ iff b < oo and the local formula ¢ evaluates to true, where we evaluate variables, right
limits, and right derivatives as above, and
— 7 is interpreted as the limit from the left of f, at b,
7 = lim{f.(t) |a<t<b}
t—=b
— 7 is interpreted as the left derivative of f, at b,

7 = lim (fx(t)—?)/(t—b)|a<t<b}.

t3b
P = fin iff b< co.
Pl=—p iff P .
Pl Vs ifft PEporPE es.
P |= ¢1; o iff there are two phases, P; and Ps, that partition P such that P = 1 and Ps | ¢o.

P =Va.p iff P’ = ¢ for all phases P’ = ([a,b), f') that differ from P at most in the interpretation f7,
of z.

We will freely use the first-order connectives, “A”, “ — 7 and “3”, in the rest of this paper, as they can be
defined in terms of the other connectives in the usual way.

Note that due to the dependence of the satisfaction relation on the syntactic occurrence of left limits
and derivatives in local formulas, one should be careful in substitutions of formulas referring to left limits
and derivatives. For example, the formula 2 = 7 is not equivalent to true because 2 = 7 is false on all
i{gﬁnite intervals. Also, the formula Jy. (J(y = ;) is not always valid. In particular, any phase in which
z 1s not continuous from the right will fail to satisfy the formula, since variables are required to be right
continuous, while derivatives are not.

A point-based property is a property that can be expressed by an HTL formula which has no occurrences
of limits or derivatives. For example, all state formulas express point-based properties. An interval-based
property is a property that can only be expressed by an HTL formula that contains limits or derivatives. For
example, (T =1); (T = 2) is a point-based property because it can also be expressed by the equivalent HTL
formula (z = 1); (z = 2). On the other hand, (? =1); (? = 2) specifies an interval-based property. For a
variable z and a phase P, the semantics of HTL assigns the same value to Z and z, and so all occurrences
of right limits may be replaced by corresponding variable occurrences. Thus the presence of right limits in
a formula doesn’t preclude it from being a point-based property.

Abbreviations

As in [HMP93], we define abbreviations for common temporal formulas. The following abbreviations express
that a leftmost subphase, a rightmost subphase, or any subphase of a phase satisfies the formula ¢:

< stands for ¢ V (p; true)
> stands for @ V (true;)
O stands for (<) V (D) V (true; g; true)

3The requirement that f; is continuous from the right, guarantees that T = fz(a).

Thus we can express that all subphases of a phase satisfy ¢ as [] ¢, where:

¢ stands for -
We also introduce the abbreviations:

inf stands for —fin

O stands for O(fin A @)

Ose stands for [J(fin — ¢)
p=-t stands for [O;(¢ —¥)

The formulas <>f<p and [J;¢ can be viewed as finitary versions of > ¢ and [¢ which restrict our attention
to finite intervals only.

A phase (I, f) is called continuous if for all v € V, f, is continuous at all internal points of I. The
continuity of all variables can be specified by the formula

continuous : —3U. (ﬁ ~T A (ﬁ = 7), (V # 7))

where U and V are tuples of variables of the same length. This formula states that it is impossible to break
the phase into two adjacent subphases such that the left limit of the state variables at the left subphase
differs from the right limit of the state variables at the{_rjght subphase.

From now on, we will use # as an abbreviation for z .

Example

Before presenting our framework for specifying hybrid systems, we introduce a variant of the gas burner
example of [CHR91] as motivation.

Suppose an engineer wishes to design a controller for a gas burner that has two switch settings, (switch €
{Off, On}), representing Off and On, respectively. The environment expresses its desire to change the switch’s
setting through a request variable, R, that also has two possible values, (R € {Off, On}). Unfortunately, when
the switch is on, there is a possibility, due to various system failures, that some of the gas leaks. In this
hazardous situation, gas leaks at a rate not greater than 1 unit/sec. Moreover, the controller has no way
of determining the rate that gas is actually leaking when the switch is on. The only guarantee that the
controller has is that no gas is leaking when the switch is in the off position.

In the competitive world of gas burner design, the engineer must meet the following safety requirement:

¢ In any subinterval, if the duration of the subinterval is at least 60 seconds, then the cumulative leak
amount within the subinterval is less than one-sixth of the subinterval duration. The purpose of this
requirement is to prevent an excessive amount of gas from leaking into the environment and causing a
safety hazard. Letting L represent the rate at which gas leaks from the system, and z represent the
system’s global clock, we can express the above property as follows*:

T >60 =; 6(L-I1)<?-F

Connection with Linear Temporal Logic

Our desire to reason about point-based properties in HTL, leads to the obvious question; namely, when does
a temporal formula ¢ have the “same semantics” as in HTL? The following proposition states that HTL
subsumes linear-time temporal logic without nested temporal operators in a natural way.

Proposition 1 For any state formula ¢ and phase P = (I, f):
1. PE= O iff 3t €1 such that ¢ holds at t.

4We have dropped the units in the equation, but if I, were measured in lbs/sec, then the constant 6 in the equation would

really be 6sec/lbs, otherwise the units for G(f - T) and @ — T would be different.

2. PEOy iff YteI ¢ holds at t.

The proof of this proposition follows in a straightforward manner from the definitions of the derived HTL
operators [] and .

The following proposition, stated without proof, allows us to use first order tautologies as valid formulas
of hybrid temporal logic:

Proposition 2 For any state formula o, if ¢ is a tautology of first order logic then [] ¢ is valid.

3 Concrete Phase Transition Systems

Following [HMP93], [MMP92], and [NSY92], we model hybrid systems as transition systems. Just as discrete
transitions can be represented as binary relations on states, hybrid transitions can be represented as binary
relations on phases. Phases are characterized by phase invariants, which are presented as assertions (first-
order formulas) pg(V, V) in the two variable tuples V and V, intended to hold at all intermediate points
t € [a,b) of the phase.

For a given phase invariant ¢, a phase P = (I, f) over V is said to be a ¢-phase if P |= continuous A
Ops(V, V).

For example the phase invariant ¢ presented as:
ps(V,V): 3<ae<6 A i=1

characterizes all phases in which z steadily increases at a rate of 1 and always remains within the interval
3,6).
A Concrete Phase Transition System (cPTs) § = (V,®,0,7T) consists of four components:

1. A finite set V of state variables.

2. A finite set ® of phase invariants over V. Each phase invariant ¢ € ® is presented by an assertion of
the form py(V, V), referring to the state variables and their derivatives.

3. An initial condition, ©, which is a state formula over V' that specifies the initial value of the variables
at the left end of the first phase in computations.

4. A set T of transitions. Each transition 7 € T is associated with an assertion p,(V, V'), relating values
at the right-end limit state of a phase to the values at the left-end of a successor phase.

A phase sequence is a finite or infinite sequence of adjacent phases. For a phase sequence P = Py, P, ..., we
denote by P the single phase obtained by the concatenation Py "P; ~---. An HTL-formula can be interpreted
over a phase sequence P by interpreting it over the single phase P

Two phase sequences P; and P, are equivalent if FI = ?;. It follows that all equivalence classes of
state sequences are closed under stuttering: if a phase P; of the phase sequence P is split into two phases P’
and P" that partition P;, the resulting phase sequence

Py,...P_1, P P" Pi1,...P,

is equivalent to P. Closure under stuttering allows for undersampling and oversampling. That is, the truth
value of a formula over a phase does not change by refinement or fusion of some of its subphases.

Let P = Py, Py, Py, ... be an infinite phase sequence with P; = {[a;, ai11), f;) for all i > 0. The infinite
phase sequence P diverges if a; grows beyond any bound as i increases. A finite phase sequence P =
Py, ..., Py, with P, = ([ai, aiy1), fi) for all 0 < i < n, diverges if apy1 = 0.

A phase sequence is a computation of the cpTs 8 if it is equivalent to a phase sequence P = Py, Py, ..., Py, ...
that satisfies the following conditions:®

Initiality If Py = [a,b) then O holds at a.

5P may be finite or infinite. If it is infinite, then [P| = co.

Continuous activities For all 0 < i < |P|, there is a phase invariant ps € ® such that P; is a ¢-phase.

Discrete transitions For all 0 < i < |P|— 1, there is a transition 7 € 7 such that pr(?i[V], %_DZ'H[V])
holds.

Divergence P is divergent.

A finite sequence of finite phases P = Py, Py, ..., P, is called a run fragment of S if it satisfies the first
three requirements of a computation but is not required to be divergent. In fact, such a sequence cannot
be divergent. The system & is called a non-Zeno cPTS if every run fragment of § can be extended to a
computation of §. From now on we restrict our attention to non-Zeno CpPTS’s.

The cpTs S satisfies a hybrid temporal formula ¢, written 8 |= ¢, if all computations of S satisfy .

4 Hybrid Automata

Many of the standard automata and diagram-based methods for presenting hybrid systems have a natural
representation as cPTss. In this paper, we use hybrid automata to specify cpTss.
A hybrid automaton is a directed labeled graph D = (Vp, L, E, Fg, Q, p1, &) consisting of the following:

e A finite set Vp of data variables.

A finite set L of locations where each location £ € L is labeled by

— a finite set Q(€) of differential equations over the variables Vp

— a stay condition pu(€) which specifies the conditions under which the system can stay in location

L.

A finite set E of edges between the locations in L. Each edge is labeled by a guarded command
k(e) : v — «a, where v is a state formula over the variables in Vp (the guard of €¢) and « is a
conjunction of the form wuy := e; A -+ A up, = €, where {us,... uy} is a subset of Vp and
€1,...,€Em are expressions over Vp.

e An entry edge, Ey, that has no originating location, but an entry location ¢; € L. Ejy is labeled by
a formula k(Fy) of the form v1 = ¢1 A -+ A v, = ¢, which specifies initial values for all the data
variables {v1,...,v,} = Vp.

A solution to the gas burner problem introduced earlier is given in Figure 1.

The system GAs has two environment variables: L, which represents the rate at which gas leaks from the
system, and which varies depending on the switch’s setting; and R, which represents the environment’s wish
to change the switch’s setting. We also have the control variables switch, z, y, and T, where:

e switch represents the setting of the gas burner switch.
e z represents the system’s global clock and advances at the rate of 1 at all times.
e y represents a node’s local clock.

e T represents the cumulative time spent in the leaking node £5 since the beginning of the computation
or the most recent period in which switch has been continuously off for at least 100 time units.

In the figure, =Off = On and =On = Off. The transition from ¢; to itself represents the environment’s
changing of the request variable. Similarly the transition from £y to £5 represents the environment’s changing
of the request variable immediately followed by the system’s response which, in our formalism, is represented
as a single transition. As stated earlier, we wish to prove the following safety property about system GAs:

T >60 =, 6(L-L)<7-F.

(y=100 AR=0ff) - (y:=0A T:=0)

.R:Oﬂ ANT=0ANL=0A

= —R

y:O/\;l‘:O/\switch:OffV {t=1,9=1,

R:=0On A y:=0 A switch:=On

(y=100 A R=0ff) >) {_ T<10 — N\

(T:=0A y:=0) (R:=Off A y :=0 A switch:= Off) '

2
E=1g=1,
L<1, T=1}
y < 100 A (y=100 A R=On) - (T':=0 A y:=0 A switch:=On) R=0On A
switch = Off > ul) T <10A

switch = On
T=10 — (y:=0 A switch:= Off)

‘ /

Figure 1: System GAs—Three state gas burner

Sgas = (V, P, O, 'T), where:

V= {R, L, T, m, z, y, switch}

¢ = {¢501¢Z11¢Z2}

O: R=0OfFf AN T=0 A L=0 A y=0 A switch=0ff A m=46; AN =0
T= {T(zo,zo)aT(zO,zz),T(zl,m,T(zl,z1>,7'<e1,e2),T(eQ,zU),T(zz,zl)}

pea: =1 A g=1 A L=0AT=0
Ay<l100 AN R=0ff A m=4£y A switch = Off
pe,: =1 A g=1 A L=0AT=0
Ay<l100 A m=4; A switch=On
pe, . &=1 A g=1 A L<1 A T=1
AR=0n A T<10 AN m=¥{y A switch= Off
Pleote) - ¥y=100 AN R=0Off A m=4 A R =R A L' =1L
AT =0 AN 2'=x2 AN ¥y =0 A switch/ = Off A 7 =4
Pitos): m=4 AR =0n A L'=1L
AT =T ANx=z ANy =0 A switch" =0On A 7 =4,
piryy: R=OF A y=100 A 7=6 A R'=R A L'=1L
AT =0 A 2=z A ¥y =0 A switch’ =Off A 7/ =4
p(zlygl)l F:El A R’ = —-R A L'=1L
AT =T AN x=z ANy =0 A switch/ =switch A 7 =4
Pty R=0n A y=100 A 7m=4 AR =R A L'=1L
AT =0 AN =2z AN ¥y =0 A switch" =0On A 7/ =4,
Plea,to) - T<10 AN m=4ty AR=0OFANL=L ANT=T
Azx=zx ANy =0 A switch = Off A 7' =4
p(g%zl)Z T:10A7r:€2 /\RIIR/\LIIL/\T/IT
Az =z ANy =0 A switch =Off A 7' =4,

Figure 2: The concrete phase transition system associated with system GAs

V. {ﬂ'} U Vb

©: k(Es) N m=4{; where ¢; is the entry location for Fy

& : {¢y, | l; € L} where, for each ¢; € L
pe. s) A om=4L; A (/\#}Eﬂ(lz) 1/))

T A7 e;) | (6, ¢;) € E} where, for each e = (¢;,£;) € E such that k(e) 1y — «
where a is of the form /\:n:1 u; 1= €,

Pyt 7 A (/\:71:11‘;:62) ANm=b N a=L A (/\UE(V—V&I(O())UI:U)

Figure 3: The concrete phase transition system S = (V,®,0,7) corresponding to the hybrid automaton,
D = (VDaLaEaEQJQa/La‘V“)

p-INV PIL. 0 = (V)
PI2. o(V) = (V)
PI3. pr (V. V') A X(V) = (V) VreT
PI4. ps(V,V) A X(V) = o(V) Vo € @
PI5. continuous A [pg(V, V) A (V) =7 X(7) Vo € @
Ov(V)

Figure 4: Rule p-INv—Invariance of point-based state formulas

The concrete phase transition system corresponding to the above system is given in Figure 2.

It is not difficult to construct a cpTs S, corresponding to a given hybrid automaton, and in Figure 3
we present this construction. In the figure, var(a) is the set of variables that get assigned in o« (i.e.,
{uill <i<m}).

From now on, we restrict our attention to non-Zeno hybrid automata, i.e., hybrid automata whose
corresponding CPTS’s are non-Zeno.

5 Proof Rules

We first present the proof rules for point-based properties and then present a proof rule for proving interval-
based properties.

Point-based

To prove point-based invariance formulas of the form [] ¢ where ¢ is a state formula, we use the rule p-INv
given in Figure 4. We use the notation ¢ (V') to emphasize that ¢ is a formula over the variables V, and
(V') to indicate the result of replacing all variables in (V') by their primed versions.

The rule uses two auxiliary assertions ¢ and y. Assertion ¢ is intended to be a stronger version of ¢ that
is inductive, while assertion x is a weaker version of ¢ which holds not only at states within phases but also
at the left limits of such states.

Premise PI1 states that ¢, where ¢ is a state formula, is initially true. Premise PI3 states that if x holds
at some state, which could be a left limit of states in the computation, and a discrete transition 7 is taken,
then ¢ holds in the new state (since, for transitions, V' represents the values of the variables in the new
state). Premise PI4 states that at internal points of a phase, x (V') implies ¢ (V).

10

L-INV LIL. 0 — (V)
LI2. x(V) = ¢(V)
LI3. pr(V, V') A x(V) = o(V') VreT
L14. ps(V,V) A x(V) = ¢(V) Vo € @

LI5. continuous A [py(V, V) A (V) = X(V) Vo € ®
Ow(V)

Figure 5: Rule L-INv—Invariance of left-limit state formulas

-iNv 111, eV, V') — (V. V")
I12. continuous A [pg(V, V) = go(v, 7) Vo € d
3. (Vi,Va) A pr(Va, V) A continuous A [0 ps(V,V) ==¢ (Wi, 7) :; Eg

OV, V)

Figure 6: Rule 1-INv—Invariance of interval formulas

Premise PI5 is the only temporal premise among the five. It requires that if ¢ holds at the left end of a
¢-phase, then y holds at the state which is the limit from the left of the phase®.

Premises PI1, PI3, P14, and PI5 insure that for all time points ¢, ¢ holds. By premise P12, 3 also holds
at all time points, which can be written as [] 4.

For example, using the above rule we can prove the following point-based invariances for system GAs.

eatly » (0<y<100 A 0<T <10 A R=Off A switch= Off)
e att; - (0<y<100 A T=10 A switch= Off)
eattly - (0<y<10 A 0<T<10 A R=0n A switch=On)

We prove the first of these properties in the appendix, the others are proved in a similar fashion.

A similar rule L-INV can be used to prove properties of the form [] 1/}(7), where 1/}(7) is an assertion

in 7

Interval-based

To prove interval-based invariance formulas of the form [] MV, ?) where ¢ is a formula whose variables
appear as left or right limits, we use rule 1-INV given in Figure 6.

Premise I11 expresses the monotonicity requirements of the rule. The temporal premise 112 states that
any ¢-phase satisfies . Premise I3 states that if ¢ is true over a phase P; and we take a discrete transition
T to another phase P> on which ¢ holds, then ¢ will be true over the phase P; "P,. Premises II3 and 112

imply that any subphase satisfies ¢, and by monotonicity, this guarantees []f'z/)(v, 7)
In addition we may add any previously derived point invariants p(V) to the left of any premise, and any

previously derived invariants q(v) or r(v, 7) to the left of any temporal premise.
Before presenting example interval invariants, we introduce the following notation. For a variable z € V|

8To prove temporal entailments such as PI5, we use some known facts based on elementary calculus such as continuous A

D(i‘:O):?f%:?.

11

I-MON IMI. []fapl(v,V)
IM2. O,02(V, V)

M3, o (V. V) A oV, V) =, (V. 7)
0V, V)

Figure 7: Rule 1-MON—Monotonicity of interval invariance formulas

A‘%aj stands for x5 — 23

%

Az stands for 7 — %
r — I

Az stands for

For example using the above rule we can prove the following interval-based invariances for system GAS.
o al loy = ((Axg T AAL=0) V (Az>F A AL<Az—7))

® Df[(l/)l Vs V3) A 1/24] where
w1 AL < AT

bo: AL<T AAz<T +100

Ys AL< Az —100 A Az > T +100 A 6(AL) < Az

ba: (ﬁ.ﬁo,lAszno) & Ar>504+ T +6(AL—T)
o Az >60 = 6(AL) <Az

The second property is used to prove the third property using rule 1-MON presented in Figure 7.

6 Soundness of Proof Rules
We now prove the soundness of the rules.
Proposition 3 Rule P-INV is sound.

Proof of Soundness of P-INV:

Let $ = (V,®,0,7T) be an arbitrary cpTs.

Suppose @, x, 1 are state formulas such that the premises of rule P-INV hold.

We will show that for any computation P of S, that P = [J(¢).

Let_?l be an arbitrary computation of §. o

As P is a computation of 8, it is equivalent to a phase sequence of the form P, = Py, Py, ... where:
(1) For each 0 <i < |P|, P; = {[a;,ai+1), fi)
(2) © holds at aq.

(3) For all 0 < i < |PJ, there is a phase invariant py € ® such that P; is a ¢-phase.

(4)

(5)

4) For all 0 < i < |P|— 1, there is a transition 7 € 7 such that pT(FZ[V], %_32-+1[V]) holds.
5) P is divergent.

We proceed to prove that ¢ and 4 hold at all t € [ag, o). The proof is by induction on j, 0 < j < |P|,
showing that ¢ and ¢ hold at all ¢ € [a;, a;4+1).

Assume that we have already shown that ¢ and ¢ hold at all ¢ € [ag, agy1), for every k, 0 < k < j.
We will show that ¢ and ¢ hold at all t € [a;, a;41).

Case: t =aj and j =0

12

By requirement (2) above, © holds at ag. As premise PII1 holds, ¢ holds at ag. As premise PI2
holds, % holds at aq.

Case: t =aj and j #0
By requirement (4) above, there i1s a transition 7 € T such that
pr (Pi—1[V], E[V]) holds. Fix such a 7. By requirement (3) above, there is a phase invariant py € @
such that P;_, is a ¢-phase. Fix such a phase invariant. Thus P;_1 = continuous A [py(V,V).
By the induction hypothesis, ¢ and ¢ hold for all ¢ € [a;_1,a;). Thus P;_1 = ¢(V). So by premise
PI5, Pj_q E X(V) As pT(Pj_l[V],Fj[V]) holds, by premise PI3, P; = z,o(v) That is, ¢ holds at
a; = 1. By premise P12, ¢ holds at ¢.

Case: t € (a;,a;41)
By requirement (3) above, there is a phase invariant py € ® such that P; is a ¢-phase. Fix such
a phase invariant. Consider the subphase P; = {[a;,?), f), where f is the restriction of f to [a;,1).
Obviously, P; is also a ¢-phase. In particular, P; |= continuous A [ps(V, V). By the previous two
cases, o holds at a;. As ¢ is a state formula, we have ﬁj = ¢(V). So by premise PI5, ﬁj E X(?)

That is, X(V) holds at ¢t. As P; is continuous and ¢ is an internal point in [a;, a;41), we conclude
that x(V) holds at ¢. Since ¢ is internal to [a;,aj41), py holds at t. By premise PI4, ¢ holds at ¢.
So by premise P12, ¢ holds at ¢.

So by induction, ¢ and ¢ hold for all ¢ € [ag, 0). Thus []¢(V) holds by theorem 1.
Proposition 4 Rule 1-INV is sound.

Proof of Soundness of 1-INV:
Let § = (V,®,0,7T) be an arbitrary cpTs.
Suppose ¢(V, V'), ¥(V, V') are state formulas, such that the premises of rule 1-1Nv hold.

We will show that for any computation P of S, that P~ E O w(V, 7)
Let P be an arbitrary computation of & and P be an arbitrary finite subphase of ?I. As P is a finite
subphase of f;, it must be equivalent to a sequence of adjacent phases Py, ..., P, (n > 1) such that

(1) For each ¢ € [1..n], there is a phase invariant ps € ® such that P; is a ¢-phase.
(2) For each ¢ € [1..n — 1], there is a transition 7 € T such that pT(?Z-[V], E-.H[V]) holds.

We proceed by induction on ¢ € [1..n] to show that go(v, 7) holds over the phase P, ; = P, "Py"--- "P;.

Case: Base Case t = 1
By requirement (1) above, there is a phase invariant py € ® such that P; is a ¢-phase. That is,

P; = continuous A [pg(V, V) By premise 112, P, | go(v, 7), and since Py ; = P;, the induction
claim holds for t = 1.

Case: Induction Case — fromttot+1<mn
Let phases Py ; and Piyq be given by ([a,b), g:) and ([b, ¢), gt41), respectively. Let Uy, Us, and Us

denote the values of H[V], }?[V] = ?t[V], and E_H[V], respectively.

By requirement (2) above, there is a transition 7 € T such that
pr (P [V], ,Ft+1[V]) holds. By requirement (1) above, there is a phase invariant py € ® such that P14

is a ¢-phase. Thus P41 |= continuous A [pg(V, V) By the induction hypothesis, P;_; = go(v, 7),
which implies that ¢(Uy,Usz) = true (that is, ¢(V1, V2) evaluates to true when we interpret Vi as
Uy and V5 as Us. In a similar way, Pi41 being a 7-successor of P, implies that p (Usz, Us) = true.

13

Consider now the augmented phase ﬁt+1: ([b,¢), gr+1) where giq1 agrees with g¢41 on the values of
V, that is, ge41[V](r) = ge41[V](r) for each r € [b, ¢) and, in addition, g;4; interprets the additional
variables V1 and V4 as the constant values Uy and Us, respectively. It is not difficult to see that the
conjunction ¢(Vi, Vo) A pr(Va, Va) A continuous A [ps(Va, V3) holds over the phase Piyq.

~ ~ =
So by premise 113, Piyy E 90(V1,V)- Since Piy1[Vi] = Ur = PralV] = Pigqa[V] and Pa[V] =
Per1V] = Progi[V], it follows that Pr_oyy = o(V, V).

By induction, we conclude that Py, &= go(v, 7) which, by premise 111, leads to P1_, = 1/)(7 v) As
P is equivalent to Py _,, P E w(V, 7)

Since P was an arbitrary finite phase of the computation P; we get that

O w(V, 7) is an invariant of S.

7 Related Work

The interval temporal logic (ITL) of [Mos85] uses a discrete semantics involving finite intervals consisting of
a finite number of states. This is justified, since ITL is a logic for hardware verification, where discretization
is both natural and possible. The logic we propose here is intended to be used for verification of controllers
governing hybrid systems, which by definition have continuous components.

Our approach differs from that of the duration calculus community ([CHR91], [CRH93], [RRH93]). The
duration calculus approach requires that both specification properties and possible implementation strategies
be expressed as duration calculus formulas. Verification is the process of proving that the implementation
implies the specification, and is done using an axiom system for the duration calculus. In our approach,
implementation strategies are expressed using hybrid automata. It is our belief that automata offer a more
natural formalism for describing controllers and other hybrid systems.

The extended duration calculus (EDc) [CRH93], intended for verification of hybrid systems, allows one
to specify values at the left and right endpoints of a phase, a feature that is not present in the original
duration calculus of [CHR91]. For example in EDC, the safety requirement for the gas burner would be
ez — bz — 6(e.L —b.L) < e.x — b.z. A thorough explanation of the gas burner, along with its
verification using the original duration calculus, can be found in [RRH93]. The coding of the duration
operator [in HTL is similar to the coding of it in EDC, the latter of which can be found in [CRH93].

Acknowledgments

We would like to thank Nikolaj Bjgrner; Yassine Lakhneche, Hugh McGuire, Henny Sipma, and the anony-
mous referees for their feedback and comments.

References

[ACHH93] R. Alur, C. Courcoubetis, T.A. Henzinger, and P-H. Ho. Hybrid Automata: An Algorithmic
Approach to the Specification and Verification of Hybrid Systems. In R.L. Grossman, A. Nerode,
A.P. .Ravn, and H. Rischel, editors, Hybrid Systems, Lecture Notes in Computer Science 736,
pages 209-229. Springer-Verlag, 1993.

[CHR91] Z. Chaochen, C.A.R. Hoare, and A.P. Ravn. A calculus of durations. Information Processing
Letters, 40:269-276, 1991.

[CRH93] Z. Chaochen, A.P. Ravn, and C.A.R. Hoare. An Extended Duration Calculus for Hybrid Real-
Time Systems. In R.L. Grossman, A. Nerode, A.P. .Ravn, and H. Rischel, editors, Hybrid Systems,
Lecture Notes in Computer Science 736, pages 36-59. Springer-Verlag, 1993.

[HKP82] D. Harel, D. Kozen, and R. Parikh. Process Logic: Expressiveness, Decidability, Completeness.
J. Comp. Sys. Sci., 25:144-170, 1982.

14

[HMPY3]

[MMP92]

[Mos85]

[MP91]

[MP93]

[NSY92]

[RRHY3]

[Schn88]

T.A. Henzinger, Z. Manna, and A. Pnueli. Towards Refining Temporal Specifications into Hybrid
Systems. In R.L. Grossman, A. Nerode, A.P. .Ravn, and H. Rischel, editors, Hybrid Systems,
Lecture Notes in Computer Science 736, pages 60-76. Springer-Verlag, 1993.

O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. In J.W. de Bakker, K. Huizing,
W .-P. de Roever, and G. Rozenberg, editors, Real Time: Theory in Practice, Lecture Notes in
Computer Science 600, pages 447-484. Springer-Verlag, 1992.

B. Moszkowski. A temporal logic for multi-level reasoning about hardware. IEEE Computer,

18(2):10-19, 1985.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specification,
Springer-Verlag, 1991.

Z. Manna and A. Pnueli. Models for reactivity. Acta Informatica, 30:609-678, 1993.

X. Nicollin, J. Sifakis, and S. Yovine. From ATP to timed graphs and hybrid systems. In
J.W. de Bakker, K. Huizing, W.-P. de Roever, and G. Rozenberg, editors, Real Time: Theory in
Practice, Lecture Notes in Computer Science 600, pages 549-572. Springer-Verlag, 1992.

A.P. Ravn, H. Rischel, and K.M Hansen. Specifying and Verifying Requirements of Real-Time
Systems. IEEE Transactions on Software Engineering, 19(1):41-55, 1993.

F.B. Schneider. Real-time, reliable systems project. Proceedings of the ONR Kickoff Workshop
for the Foundations of Real-time Computing Research Initiative, pages 28-32, Office of Naval
Research, 1988.

A Vertification of Gas Burner

A.1 Proofs of Point-based Formulas

We are interested in proving:

e 1'>0

e atly —» (0<y<100 A 0<T <10 A R=Off A switch= Off)

e att; - (0<y<100 A T=10 A switch= Off)

eattly - (0<y<10 A 0LKT<10 A R=0n A switch=On)

We prove the second of these four formulas, the others are proved similarly.
Proofof at £y - (0<y<100 A 0<T <10 A R=0Off A switch = Off):

We take:

Y, o atdy - (0<y<100 A 0T <10 A R=0ff A switch= Off)
X attly - (0<y<100 A 0<T <10 A R=0Off A switch= Off)

PIl: © — (V)
R=0Off A T=0 A y=0 A switch=0ff A 7=6 A ...] —
[at ly - (0<y<100 A 0<T <10 A R=Off A switch= Off)]
which clearly holds.
PI2: (V) — ¢(V)
As (V) and ¥(V) are the same formulas, we get (V) — (V).
PI3: p.(V,V') A x(V) = (V') for every T € T
We only need to consider transitions of the form p(s, ¢, for i € {0, 1,2} since for all other transitions
7' # Lo, making the antecedent of (V') false. Thus we have three transitions, pis, ¢0), (e ,e0), and
P(es,t0), tO consider.

15

P{Lo,Lo)"
7=4 A R =R
AT =0 AN y=0A 7 =1L A [atty - R=0ff A ..)]
A switch = Off A ...

! /
N [aﬂ_ﬁo . <0§y <100 A 0<T" <10)]

AR =Off A switch' = Off
P(L1,£0)"
R=0ff A T=0 A ¥ =0
[A switch’ =Off A 7' =4y A] A x(V)

L fp g o (0S¥ <100 A 0ST <10
ar o AR =Off A switch = Off

P2 ,Lo)"
R=0ff AN T<10 AN T'=T A ¢y =0
[/\switch’:Off/\ =L A ...] A x(V)
y 0<y <100 A 0<T" <10
| T U AR =Off A switch = Off
The first two formulas are valid formulas, while the third formula also requires the previously
established invariant, 7" > 0.

PI4: pu(V, V) A x(V) = (V) for every ¢ € &
We only have to consider the phase relation, p;,, since the other phase relations have m # £5, making
the antecedent false.

[y<100 A ...] A [at_zo - <

0<y<100 AN 0T <10
A R=0ff A switch= Off

= at ey — 0<y<100 A 0<T <10
o A R=Off A switch= Off

PI5: continuous A [py(V, V) A (V) = X(V) for every ¢ € ®

We only have to consider the phase relation, pg,, since the other phase relations have T # Ly,
making the antecedent false.

y=1 A T=0A

at _y —
continuous A [] y <100 A R=Off A 0<y< 100 A
nT=b A 0<T<10 A
switch = Off A -

-, [cﬁ_ﬁo . (0§7§100 AO<T <10)

AR =Of A switch=Off

So consider an arbitrary phase P. Suppose P = continuous A [pry A (V). As continuous A [](T =
O T =T, PET =T, andas 0<T <10, P=0< T < 10. As0<y <100 A O(5 = 1),
P =0 < . As continuous A [J(y < 100), P = ¥ < 100. As continuous A [J(R = Off),
P R = Off. As continuous A ((switch = Off), P |= switch = Off. Thus, P E X(V)

A.2 Proofs of Interval-based Formulas

We are interested in proving:

16

. a?lo@ = ((AJJS?/\AL:O) \% (AI>?/\AL<AJ;_7))
® Df[(l/’l Voha V3) A 1/)4] where

di: AL < AT

bo: AL<T AAz< T +100

Y3 AL<Az—100 A Az > T +100 A 6(AL) < Az

ba: (ﬁ_ﬁoylx\mzno) S Ae>50+ T +6(AL—T)
Az > 60 = ; 6(AL) < Az

We prove the second formula below. The proof of the first formula is done in a similar manner. The third
formula which is the safety requirement for the gas burner, follows from rule 1-M0ON and the second formula.

Proof of [;[(¥1 V ¥2 V¥3) A ol
We take:

I11:

112:

I13:

Y, [(Y1 V ¥e Vb)) A]

oV, V) = (V. V)
As go(v, 7) and w(V, 7) are the same formulas, we get go(v, 7) — w(V, 7)
continuous A [pg(V, V) $fl,0(v, 7) for every ¢ € ®

We must consider all three phase relations.

Pto’ . .

z=1 ANy=1 AN L=0AT=0A

y<100 A R=0Off A m=4{y; A switch= Off

= [Vs Vs) A]

continuous A []

As L = 0, T = 0, and continuous, we immediately get f) = T and ? = ? This makes the

first conjunct in the consequent of go(v, 7) true. By a previously established point invariant,
Weget0§7§100 and0§?< 100, so?—?ﬁloo. ASAJ::?—?S 100, the second
conjunct is also true.

Peyt . .

zt=1 Ay=1 AN L=0ANT=0A

;
continuous A L1| 400 A m=f A switch=Off

= [(W1 Vs Vs) A)

As L = 0, T = 0, and continuous, we immediately get f) = Y and ? = ? This makes the

first conjunct in the consequent of f,o(v, 7) true. As Az = I — %y < 100, the second conjunct
is also true.

2%

continuous N [] g=1Ay=1ArL<] /2 7;\:1/\
2

R=0On A T<10 A 7= switch = On
= [(W Vs Vba) At

As aj_ﬁoyl is false, the second conjunct in the consequent is true. As continuous and D(L <

T = 1) implies AL < AT, the first conjunct in the consequent is true.

e(V1, Vo) A pr(Va, V) A continuous A [pg(V, 7) = ¢(W1, 7) for every 7 € T and for every
¢ €.

There are seven cases to consider (one for each transition).

17

Pleo Lo)s Peo:
As (7 = £y) and continuous implies atlf0, we get:

(AMz <Y AAL=0) V (Az>T AML<Aiz—T7)

continuous and [J(y < 100) implies Y < 100. continuous and D(L =T = 0) implies f) =
L=ILyand T =T =0.
Case: (Arz <y A AL =0)
In this case, AL <0 = ? and Ajz < Y <100 < ? + 100. So the first conjunct of the
consequent holds. As Ajz < 100, the second conjunct of the consequent holds.
Case: (Ajz > Y AAL<Az— 7)
subcase: Az =Y
In this case, Ajz < ? + 100 and AL <0 = ?, so the the first conjunct of the
consequent holds. As A;L <0 the second conjunct holds.
subcase: Ajx > ?
subcase: Y = 100
In this case Ajz > ?—I— 100 and AL < Ajz— 7 < Aiz —100. Either A%L < 10
or (AL < A%z —100 A 6(A2L) < A%z). In the first case, we get 6(A2L) < Ajz,
and so the first conjunct holds. In the second case, 6(A?L) < AZz < Ajz, and so
the first conjunct holds.

subcase: Y < 100
If Ajz <100+ ? then the first invariant gives

(A2z <yo A AIL=0) V (Alz >ys A AL < Az — y)

As y» = 100 and = — z; < 100 = y2, we get A2z < ys. Hence A?L = 0 and
AML=0< ? Thus the first conjunct holds.
If Az > 100+ ?, then AjL < Ajz — 100 and 6(A;L) < Az as in the subcase
Az = 7 Thus the first conjunct holds.
We still need to show that the second conjunct holds. We consider two cases.
subcase: A1z = 110
In this case AjL =0 = ?, so the second conjunct holds.
subcase: Ajx > 110
If A2z < 110 then A?L < 10, and so the second conjunct holds. If AZz > 110 then
Az > 50+ Ty + 6(A2L — T3). As T = Ly and T = 0, the second conjunct holds.

Thus in all subcases, both conjuncts of the consequent hold.

Pleo L2} Pea-

As a7_£071 is false, the second conjunct holds. We still need to prove that the first conjunct of
the consequent holds. We consider three cases corresponding to the three disjuncts of the first
conjunct in the antecedent.

Case: AIL < A3z . .
As L =Lyand T =Ty, we get L— Ly <T—"1T,. As continuous and [J(L <T = 1) implies
T —L<T—T weget A\L=TL —L+L—L,<T —T+T T, <AT. So the first
conjunct of the consequent holds.

Case: AIL < Ty and Az < Ty + 100 .
As e = azq9and T = Ty, ¢ — 21 < T +100. As continuous and [J(z = T = 1) implies
?—r:?—T, we get AMz=7 —z4a—z < ?—T—}—T—i—lOOS ?—1—100. So the

first conjunct of the consequent holds.

18

Case: (AL < Az —100) and (A%z > Ty + 100) and (6(AIL) < Alz)
By reasoning similar to the previous cases, we get Ajz > ? 4+ 100 and Ay L < A;z — 100.

We still need to show 6(A;L) < Ajz.
As aty £y holds, by the previous invariant

(AZx <yo A AL =0) V (Adz >y A AL < Az —)

subcase: A2z <ys A AIL =0
As 0 < T < 10, and continuous and [](L <T= 1) implies ? -7 > f) — L, we get
10 > f) — L<A;L. As Az > 100, we get 6(A;L) <60 <100 < Ajz > 100.
subcase: A2z > ys A A2L < A2z — yy
subcase: A?x < 110
In this case A?L < A%z — 100 (using the point invariant to give 75 = 10). So,
6(A1L) = 6(L —~L+L—Ly) =6(L —L)+6(L—Ly) < 6(F —z)+6(A22—100) <
(7 —z) 4+ 5(A1z) — 600 < Ajz. The last inequality follows from the fact that
Az < 120.

subcase: A2z > 110
A =F—zte—2, =T -T4+Ae=T T+ A% > T —Ty450+To+6(A?L—
Ty) > T 4+504+6(A2L)—6T, > 6T +6(A2L)—6Ty > 6(L —L)+6(A2L) > 6(A1L)
Thus the first conjunct holds.

Ple1,£0)> Plo-
This case is exactly the same as p, ¢,), pe, -

Pley L) Pey:
This case is exactly the same as pg, ¢,), pe, -

Pley,£2) 5 Pea:

As a7_£071 is false, the second conjunct holds. We still need to prove that the first conjunct of
the consequent holds.
As aty ¢y holds, by the previous invariant

(AZz <ys AAIL=0) V (A2z >y A AIL < Alz —y)

Case: Az <ys A AL =0
As L =Ly =Ly, T =0, and continuous and [](L <T-= 1) implies ? -T> f) — L, we
get ? > AjL. As ys = 100, we have A?z < 100. continuous and [(z = T = 1) implies
? —T=7—u. Thus, Az < ? + 100. So the first conjunct holds.

Case: Afz > ys A AIL < Alz —ys
This case is identical to the third case of p(¢, ¢,), pe,- Thus the first conjunct holds.

Ple2Lo)s Peo:
The proof of the first conjunct is very similar to the case p, ¢,), pe,- Instead of ? =Ty we
have 0 < ? < 10. The proof of the second conjunct is very similar to the case p, e,), p, -
PleaLr)s Pey:

We consider three cases corresponding to the three disjuncts of the first conjunct in the an-
tecedent.

Case: AIL < A3z

19

In this case A;L < AT < 10, so both the first and second conjunct of the consequent
hold.

Case: AIL < Ty

In this case AjL < ? < 10, so both the first and second conjunct of the consequent hold.
Case: A2L < A2z — 100 and A%z > Ty + 100

If A2z > 110 then as ? =Ty and f) = Lo, we get Ajz > Az > 50+ Ty +6(AIL—Ty) >

50 + ? +6(AL — ?) So the second conjunct holds. If AZz < 110 then AZL < 10, and
so the second conjunct holds. In either case, Ajz > A3z > 6(A?L) > 6(A1L), so the first
conjunct holds.

20

