
Designing an OffScreen Model for a GUI

Dirk Kochanek

Universitat Stuttgart, Iustitut fltr Informatik
Breitwiesenstral3e 20-22, I)-70565 Stuttgart

F. R. Germany

Abstract. Blind or visually impaired people get access to computers by using a
screen reader. A screen reader is a special access program that operates on a
database modelling the user interface and presents it in an appropriate form to
the user. While in textbased user interfaces this database is fairly simple for
graphical use~ interfaces a more sophisticated design is necessary. This article
describes the design issues of such a database as well as an overview of a
complete architecture of a screen reader system.

Introduction

For a long time access to GUIs was neither considered necessary nor possible [1].
This was on one hand caused by the high price of machines able to nm GUIs. On the
other hand the obstacle built up by presenting text as graphics (pixels) seemed to be
insuperable.

With the advancement of technology and the accompanying breakdown in prices
the use of GUIs became more and more popular. This trend is also reflected by to-
day's applications. A survey among leading software producers conducted in 1992
has shown that 30% are only producing GUI-based software. 93% are producing
some GUI-based software while only 27% plan to have text-based alternatives to the
GUI version [2]. These figures show the strong need for suitable adaptations of
graphical user interfaces for persons who are blind.

The complexity of a GUI due to its graphical nature is putting an additional mental
load on blind users. Using a GUI brings also some advantages. All applications run-
ning on a GUI will mainly use interaction objects provided by the interface. For con-
sistency interaction objects share the same lock and feel. This uniformity can not be
achieved easily in textbased applications.

Screen Readers

A screen reader is a special program giving access to computer systems that are oth-
erwise inaccessible to blind or partially sighted users. It will present its output in a
form appropriate for the users.

A screen reader operates in two modes: tracking mode and review mode. In track-
ing mode the screen reader follows every change occurring in an application. These
changes can be caused by an external event (i.e. arriving mail) of by actions taken by
the user (i.e. keyboard). In review mode the user can explore the screen independent

90

from applications currently running. The user has to therefore either explicitly enter a
special review mode using the standard keyboard or implicitly by using dedicated
keys or a separate keyboard.

Different media can be used to convey the information to the user. Synthetic speech
is a quick and cost effective solution while refreshable braille is a more expensive
medium but offers a unsurpassed notational precision. 213 or even 3D nonspeech
sounds can convey information about status of positions that are otherwise difficult to
present. Although most screen readers are designed to use only one output medium
users will benefit from combining two or more.

The Pixel Barrier

Access programs for textbased applications are usually driven by events such as key-
board actions and changes of the screen content. Keyboard actions can be detected by
hooking into the keyboard service of the operating system. Changes of the screen
content are either detectable by hooking the video service of the operating system or
by constantly monitoring the video (refresh) memory. Video memory is used as a
form of database for retrieving text from the screen.

Access programs operating on a GUI rely on events that have to be filtered within
the GUI. Monitoring changes of the video memory is, compared to a textbased UI, a
time consuming task due to the vast amount of data that has to be compared (> 256K
for a GUI vs. 4K in a textbased UI). On the other hand the video memory is no longer
an easy source for text retrieval because text is no longer stored as character/attribute
pairs. Instead every character is broken into several pixels. These pixels are points of
different colour and intensity.

This ,,pixel barrier" can be overcome by introducing a virtual screen copy (VISC).
The VISC is a database for information about every single pixel to what character it
belongs to. This information can be gained in two ways. First by intercepting the
process when a character is broken into pixels. This can for example be done by
modifying the video driver. Second in reversing the pixel process by applying OCR
techniques to either the video memory or directly to the video signal. While the last
method has the advantage to be completely independent of the operating system and
GUI it is difficult to achieve high accuracy and/or good performance [3] [4] [5].

The second problem that comes up when adapting a GUI is its use of high level in-
teraction objects such as windows, menus, buttons and listboxes. Since the VISC will
contain only information on a lexical level such objects are difficult to detect or dis-
criminate. Several applications nmning concurrently axe causing another problem.
Windows of such applications can overlap making text hard to read, One solution
would be to restrict the scope of presentation to the active application. Since the VISC
is lacking such syntactic information as windows dimensions overlapping windows
can not be separated.

Instead a database that modeling this structure is required. Such a database is then
called offsereen model or OSM. It is also advisable to incorporate information kept in
the VISC into this database.

91

Interaction objects

The elements of a GUI are called interaction objects. Basic objects are windows, a
rectangular region with a frame around it, and icons, a symbol for a minimised appli-
cation. Other interaction objects allow the selection of items from a list. In case the
list has a fixed number of items the object is called menu, for an undefined number
listbox. Actions or settings can be triggered by various forms of buttons. We can dis-
tinguish between pushbuttons, checkboxes, radiobuttons etc. Objects containing de-
scriptive text are called labels or statics while those with changeable text are called
text- or editfields. Settings within a certain range can be represented by sliders or
scrollbars.

While the appearance and mode of operation of a class of interaction objects vary
between GUIs the standard functionality of a class as such remains the same.

Design issues

When designed carefully an OSM should be suitable for different GUIs. This means it
should be independent of the underlying operating system and/or GUI. It should be
furthermore invariant from the source of information. So it should not matter whether
text is retrieved by means of OCR or a modified video driver.

Taking care of these design issues a screen reader operating on an OSM will to a
high degree be independent from the GUI. To simplify development and maintenance
of a screen reader another level of abstraction can be introduced.

Sources of Information

Since the OSM is a specialised database the question rises how to fill its entries. Two
methods of filtering text were already mentioned above (OCR and modified video
driver). The source for syntactic information is the GUI itself. By using so-called
hooks it is possible to get access to internal information within the GUI. This is a
,,legal" method since hooks are provided by the manufacturer of the GUI. On the
other side access is somehow restricted since the hooks are often not designed to filter
information for an OSM.

Another possible way is by directly modifying the GUIs' executable by means of
patching. Patching can be prohibited due to security reasons since it changes pointers
to functions which is in most operating systems an illegal since impossible operation
because GUI and filter run in different address spaces. In systems with lower security
like MS-Windows 3.1 where patching is possible however it allows access to nearly
every piece of information that is considered necessary or has otherwise to be de-
ducted from other sources in a more or less complicated way.

To simplify development of applications more and more user interface toolkits are
used. By modifying or extending such a toolkit events for the screen reader as well as
all necessary information to keep the OSM up-to-date can be deducted. Although this
filter approach is only valid for new applications build with such a modified toolkit it
is a very promising way since the information available is of first hand.

9 2

O S M

Nearly all GUIs are internally using a tree-like structure to represent interaction ob-
jects and their dependencies. Therefore it is only logical to choose a n th tree as basic
data structure for the OSM since a tree best maps the internal structure. It also im-
plicitly incorporates parent-child relations between interaction objects and is also
independent of the type of information kept in one node.

The screen reader needs to perform certain operations on the OSM. These opera-
tions can be identified by the following methods:

instanciate: create and destroy a node in the OSM tree (fig. I a)
update: fill resources of a node. This can be either done by some set-

value function or by directly quel:ying the filter module.
retrieve: read resources of a node. The screen reader has to retrieve in-

formation in order to present a node.
navigate: allows movement in the tree. This can either be done by struc-

ture (parent-child / previous-next) as well as by position (screen
layout) (fig. 1 b)

traverse: loop / for-each function that performs a given action/function
(i.e. search). Possible processing orders are top-down and bot-
tom-up in prefix as well as in postfix sequence.

. . : I ~ d

[] F I . Idblbai~d] ~ N

navigation by struQturc (ohild - next SOClUCnC~):

Run - Command Line: - Run Minimlze, d: - ...

naviga t ion by posit ion (left to r ight , top to bot tom

Bequen~):
Run - C o m m a n d L ine - O K - (Edifficld) - Cancel -

Fig. I. a) internal structure of an OSM segment, b) example for navigation in the OSM

Different interaction objects have to be represented in the OSM. Although a com-
mon object for all possible interaction objects could be used a better solution is to
have unique objects for each type of interaction objects. Different objects may have
the same appearance. For example an application based on the Athena widget set will
use XawButton as its button class while another build for Motif will utilise XMBut-

93

ton. This results in the need to map classes of interaction objects in the GUI to the
class internally used in the OSM. Such a mapping should not be directly coded into
the OSM source code. Instead it should be handled in a more flexible way i.e. by an
alias list.

While different node types in the OSM already contain the information what object
they model each node needs to hold additional information in so-called resources.
Resources can be devided into three groups:

organisatorial: an unique Id, the node type, pointers to "close" relatives,
information source id

common: position (x, y, z) and dimension of the object, its name,
the widget (class) name of the object within the GUI

individual: i.e. status of a button, formatting properties of a label or
fontsize used in a textfield.

Since d_ifferent classes of interaction objects most likely use different resource
names a mapping mechanism similar to the one for classes is necessary.

Fi l ter m o d u l e

In order to have a uniform interface between the OSM and its sources of information
all requests and their corresponding replies should be bundled in a separate module.
This separation will make the OSM independent from changes in the filters as long
as the quality of information remains the same. The filter module is also responsible
to pass events that possibly cause changes in the OSM to it or the screen reader.

 l--n'oerl

~-~-]<::~ events Screen Reader l
replies ~ethods

[:>.L Screen Reader

Fig. 2. Flow of conlxol

94

Fig. 2 shows the flow of control in different OSMs and screen reader systems using
filters. In a) the screen reader is triggered by events coming either directly from the
filter module or through the OSM making the separate connection between filter and
screen reader obsolete. Depending on internal rules update methods of the OSM are
called. The OSM will then request necessary information from the filter and fill re-
sources with the replies. Upon successful update the screen reader can then present
the changes according to the chosen presentation model.

In b) the update will be more tightly controlled by the screen reader. Requests to the
filter are issued by the screen reader. The resources in the OSM are filled with infor-
mation extracted from the replies by using set-value calls. Although this gives a better
control over what is updated it contradicts the separation between the screen reader
and the internals of the GUI. This separation is broken because the screen reader has
to deal with actions such as class mapping that should be a clear task of the OSM.

When a modified toolkit is the source of information the flow of control follows the
one shown in c). Every change in the state of a filtered application is controlled by
functions of the toolkit. The toolkit (filter) can therefore keep the OSM updated at
every moment. From there on following the flow of control like in a) the screen
reader will ask the OSM to update interaction objects. Since the OSM is always up-
to-date this update will immediately report success.

Models of presentation

Depending on the quality of information available to the screen reader through the
OSM and the output medium/media being used different presentation models can be
used.

In case the OSM contains only lexical information a fist-based presentation is most
likely to be used. A hierarchical or spatial presentation is possible if lexical as well as
syntactic information is available.

List-based or hierarchical models can be used with either speech or braille while
the spatial model is only suitable for braille or a combination of speech and multi-
dimensional sound or a combination thereof.

Conclusion

The proposed architecture has proven to be suitable and useful to give blind users
access to three different platforms and GUIs. A working system for MS-Windows and
X_windows has been developed in project GUIB. Future work is investigating the
architecture of filters in NextStep. The increasing awareness by developers of GUIs of
users with special needs will hopefully result in better integration of filters. Stan-
dardisation of interfaces in future releases or new developments of their products may
improve the completness of an OSM.

95

A c k n o w l e d g e m e n t s

This work has been supported by the GUIB consortium, a pilot research project of the
EEC program TIDE (Technology Iniu'ative for the Disabled and Elderly). I would
like to thank my colleagues within the consortium as well as A. Vogel and M. Brand-
her for their work in X-Windows and NextStep.

L i t e r a t u r e

[1] Boyd, L.H., Boyd, W.L., and Vanderheiden, G.C. (1990): 'The graphical user
interface: crisis, danger, and opportunity', Journal of Visual Impairment and
Blindness, 84, 12, pp. 496-502.

[2] Gill, L (1993): Acces to Graphical User Interfaces by Blind People, RNIB,
London, ISBN 1-85878-004-7

[3] Sehwerdffeger, R.S.: Making the Gill talk. BYTE, Dec. 1991, pp.118-128.
[4] Gunzenl~user, R. and Weber G. (1994): Graphical User Interfaces for Blind

People, in: ProcewAings of 13th World Computer Congres, Hamburg August 28
- September 2, 1994, Elsevier, Amsterdam~ in print

[5] Harness, S., Pugh, K., Sherkat, N., Whitrow, R. (1993): Fast Icon and Charac-
ter Recognition for Universal Access to WIMP Interfaces for the Blind and
Partially Sighted, in Ballabio, E.; Placencia-Porrero, I.; Puig de la Bellacasa, R.
(eds.) Rehabilitation Technology, IOS Press, Amsterdam, pp. 19 - 23.

