
A Method of Access to Computer Aided Software
Engineering (CASE) Tools for Blind Software Engineers

Paul Blenkhorn and David Gareth Evans

Technology for Disabled People Unit, Systems Engineering Group,
Department of Computation, UMIST, Manchester, M60 1QD, England.

Abstract. This paper proposes a technique to allow blind software engineers
to access the information held in Computer Aided Software Engineering
(CASE) tools. Such tools support systems analysis and design methods that
typically encode information as hierarchically structured two-dimensional
graphs. The paper discusses the problems that blind engineers face in
accessing this type of information by considering the structure of system
models built in one Software Engineering notation, namely Hatley-Pirbhai
Real Time Structured Analysis. It introduces a long established, but not
widely used, notation, N 2 charts, which provide an equivalent tabular encoding
for many software engineering notations. This style of presentation is used,
together with talking touch tablet, to provide an interactive means for blind
software engineers to access full system models.

1 Introduct ion

Many blind people work in the computer industry; the programming of computers is
very largely text based and there are many well established methods for blind people
to interact with text-based computer applications. However, there is very much more
to developing a piece of software than simply writing the computer program.
Software programs can be extremely complex and they are often used in safety-
critical applications, for example in the control of aeroplanes, where failure in the
software part of the system can have catastrophic effects. To control the complexity
of the software program and to fully analyse its function, software-based systems are
subjected to rigorous development methods. Such methods are termed Software
Engineering methods.

When complex software systems were first developed, development methods
consisted of a set of stages that resulted in a set of largely text-based documents.
However, the problem with such methods is that natural language is a rather
imprecise way of specifying definite concepts and that for complex systems these
documents grow to considerable size, thus maintaining internal consistency in such
documents is a formidable task. In the 1970s Software Engineering methods
developed, initially for complex information systems, which specified the
requirements and design of the system in, chiefly, graphical forms. The most
significant method to be developed (in terms its of usage within the software
industry) is Structured Analysis. This is used to capture system requirements and

322

carry out high level system design. Structured Analysis methods are widely used in a
number forms, e.g. Yourdon [9], Hatley-Pirbhai [3] and Ward-Mellor [8]. These
methods are broadly similar, and use notations to represent the developing system,
which are almost identical. Over the past few years a set of similar methods, the
Object-Oriented Software Engineering methods, have been developed (e.g. [2, 4, 7]);
these share common goals with the Structured Analysis methods and the graphical
notations to capture a system's requirements and to specify its design have strong
similarities.

These methods are supported by a variety of computer-based tools (Computer
Aided Software Engineering (CASE) Tools) supplied by a wide variety of vendors.
These tools support the capture of the graphical models and carry out consistency
checks to ensure that model is consistent with the set of rules specified by the
development method.

The adoption of Software Engineering methods and the use of CASE tools
presents a difficult problem for blind software engineers. The system analysis and
design information is encoded in a two-dimensional graphical form making it
extremely difficult for blind engineers to use standard methods of computer
interaction. Moreover, as the next section describes, the information is presented in
a hierarchical structure, the traversal of which is controlled by mouse-based 'point
and click' techniques. In this paper we propose a method by which blind software
engineers may access the information held in the graphical notations used in
software engineering and show how this information is encoded. The proposed
technique is currently under evaluation by the Technology for Disabled People Unit.

2 Software Engineering Notations

Initially we have chosen to restrict our work to the analysis phase of one of the
Structured Analysis methods. The method chosen is the widely used Hatley-Pirbhai
Real Time Structured Analysis method [3]. This method is used to analyse the
requirements of the software and to carry out the high level design of the system.
This particular method is chosen as it is popular and is supported by a number of
CASE tools. The notation it uses is very similar to that of the other Structured
Analysis methods and the technique presented in this paper is appropriate to the
others. It is thought that object-oriented methods may also be handled by this
technique, however they are somewhat different in detail to those described below.

The Hatley-Pirbhai Real Time Structured Analysis method is supported by a
graphical notation, known as data flow diagrams (DFDs), which are used to describe
the behaviour and the design of the system under development. A DFD presents a
view of part of the system by dividing it into a number of processes that communicate
with one another through data flows. A typical data flow diagram is shown in Fig. 1.

The circles (or "bubbles") on this diagram are processes; these take input data,
process it and create output data. Data is routed from process to process through the
directed arcs (the lines with arrows); these are named to describe the data that flows
between the processes. The vertical bar is used to indicate a control specification
associated with the DFD. Control information is routed into the control specification

323

through a set of directed arcs, which are represented by broken lines. These carry
control information; i.e. they transmit, to other processes, the current state of the
processes in the system. Control specifications are used to control the system by
generating new control flows and by enabling and disabling the processes on the
DFD, i.e. turning them off and on. Data stores are represented by parallel lines and
have a name associated with them. These store persistent data in the system and are
written to, and read from, by processes through unnamed data flows. Flows (both
control and data) that do not have both ends connected to processes are connected at
the immediately higher level in the hierarchy of DFDs.

O L e v e ~

--CH4 Level

Airflow
/

Gas
LJ/~its /

.

CH4

~3-Evacuate

~mnp Fai ~Pump Erroz ~ --~

Opezator
Pump On -- -PUmp Status-

-Switch Pump-- ~>
W~ter Level

~Low Water /
Reading

Pump Contzol

High Water
Reading

/

Fig. 1. A Typical Hatley-Pirbhai Data Flow Diagram

DFDs are connected into a hierarchy to form a complete model that represents the
behaviour and design of the system. The hierarchical connections are formed by
process refinement. Each process represented in a DFD at one level of the hierarchy
can have its behaviour described by another DFD in the next layer of the hierarchy.
At the top of this hierarchy there is a DFD with single process on it, which is
connected by data flows to externals. These are elements at the boundary of the
system, which provide input stimuli and accept output responses. This is called the
context diagram because it sets the context for the system under development by
describing the interface between it and the outside world. The decomposition of a
system from context diagram is shown in Fig. 2. Processes are decomposed in this
way until they are identified as being primitive, i.e. they are deemed simple enough
not to warrant further decomposition. Their behaviour is described by a text
specification, called a process specification, written in a language similar to a
standard programming language. The control specifications are not decomposed in

324

the same way as the processes but have their behaviour described in a table or as a
state transition diagram. Control specifications can be handled by the techniques
proposed in this paper, however, due to space limitations these are not discussed
further here. All data and control flows are described by text entries in a list called
the Data Dictionary.

Primitive processes] All processes
behaviour described by text further refined
No further refinement

Fig. 2. The Hierarchical Structure of a Structured Anaiysis Model

When using a CASE tool, a sighted software engineer accesses the model of the
system by moving up and down through the hierarchy. This is generally supported
by the CASE tool in an interactive way, typically pointing to the process using a
mouse pointer and clicking the mouse button will show the internal decomposition of
the process, either as a DFD, or if primitive as a text specification. Data dictionary
information is also accessed through this point and click mechanism.

Allowing blind software engineers to interact with captured Structured Analysis
models requires: that the text be converted into a suitable media (here we use
speech); and that the DFDs are redrawn, so that the notation elements 1 (i.e.
processes, stores and control specifications) and f l o w s ~ can be easily located and
their associated text delivered. The notation used in the method proposed here is
based upon N 2 charts, which are described below.

t In this paper the term elements is used to refer, collectively, to processes, stores and control
specifications.
2 Flows is used here to refer collectively to data flows, control flows and the connections to
data stores.

325

3 N ~ Charts

N 2 There is an equivalent tabular form of any DFD; this is called an chart [5, 6].
These are not widely used in the software engineering industry, which generally

2
favours more graphically based notations. The N chart is a matrix with the element
names running down the major diagonal. Flows between two elements are shown in
the rectangles where the row and column of the connected elements intersect.
Entries in the same row as an element are the outgoing flows from that element;
entries in the same column are incoming data flows into the element. Flows that are
connected at a higher level are placed on the N 2 chart to connect with a special
element entry called the 'Upper Level'. The N 2 chart equivalent of Fig. 1 is
presented in Fig. 3.

i ~ i ~ , ~ Low Water rum On Pum Pump Status { ~ I ~ CH4 Level Reading 3hange Mode
~ Airflow High Water ~,hange Paran

Readine -eters

~ : ~ ! ~ OH4
.~.'-'.~-, ~*:~i~i~

i Evacuate ~iliti~iI::!ii
Pump Fail i~i ~ ~.%:.. : - ~

Water Level

~ i ~ { ! I ~ i Operator
~ i ~ i ~ Pump On

Switch Pump ~ I
Pump Error i~ ~ ."" ~

Reads from
Gas Limits

Writes to
Gas Umits

Fig. 3. N 2 chart equivalent of Fig. 1.

N 2 charts form the basis of the proposed method of access. Using a generic form of
these charts and a talking touch window an evaluation system has been developed
that allows a blind engineer to navigate through the full hierarchy of a Structured
Analysis model.

4 The Evaluation System

The evaluation system is shown in Fig. 4. It consists of a UNIX workstation, which
runs the Teamwork CASE tool and some custom software. A Touch Window and a
speech synthesiser are connected to the workstation by serial lines. The user
interacts with the system and interrogates the model by using the Touch Window.
Most user actions cause the custom software to interrogate the database of the CASE
tool by using a set of procedures provided in the Teamwork/ACCESS package [11].
In response to a user action, speech is generated that describes the selected portion of
the model.

326

Unix Workstation
Running CASE tool

Touch Window
with Tactile Overlay

Speech Synthesiser

Fig. 4. The Architecture of the Evaluation System

The touch window is overlaid with a tactile diagram [10] that has the layout of a
generic N 2 chart and a number of control areas to allow the user to move through the
hierarchy. Thus, a blind engineer can locate significant areas on the chart by tactile
means, select an area on the chart and have the associated text spoken to him/her.
This is a particular instance of using "Talking Tactile Maps", which are described in
[1]. The overlay is shown in Fig. 5.

@

10xl0 chart area control
column

Repeat last speech
q -

1
mira �9 Itm (move down hierarchy

t / from this process)

t
m I ~1~ (move up hierarcy frorr

| this chart)

/ ,~:~i~

Line

process to process flows
text-based
specifications

Fig. 5. Tactile Overlay for the Touch Window

The tactile overlay is divided into two parts; a generic 10xl0 N 2 chart, which takes
up most of the area, and a control column, which has a number of fields used by the
engineer to control access to the information.

The N 2 chart encodes a DFD with the elements situated on the main diagonal of
the matrix. To enable the engineer to find these elements these boxes are textured
and are shown as being shaded in Fig.5. Depressing one of these boxes will cause

327

the system to speak the name of the element. For example, "Process name is:
Handle Gas Monitor.". The other boxes represent the connection, via flows, of the
elements. These boxes are not textured but the dividing areas between the boxes are
raised. Depressing one of these boxes will cause the name of any connecting flows to
be spoken; for example "Flow name is: Water Level.".

The control column has six fields. The first field (top right) has a horizontal
arrow imprinted on it; depressing this field will cause the last text string to be
repeated. This is a typical feature of talking tactile maps.

The second field is used to move down the hierarchy. Depressing an element
square and then this field will cause the system to move to the refinement of that
element. If the element is a process, this will cause either a new DFD to be
accessible by using the N 2 chart or give access to the text based process specification.
When entering an element refinement, the system speaks the name of the refined
element, indicates the its type, and gives parameters (such as number of elements on
a DFD or number of lines in a process specification). The second field is also used in
conjunction with the flow boxes to give access to the data dictionary entry for each
connected flow.

The third field is used to move up the hierarchy. Depressing this field will cause
the current N- chart to be replaced by its parent and the name, type and parameters
of the upper level diagram to be indicated.

The query field, indicated by a question mark, is used by the engineer to obtain
information about the connections to any given element. Depressing this field and
then an element square will cause the system to list all flows into and out of the
element. This facility saves the user from having to search in every field in the
matrix to determine the connectivity of an element and the topology of the whole
diagram.

The last two fields, indicated by an up arrow and a down arrow, are used when
reading textual specifications. Depressing these fields causes the next or previous
line of a text specification to be read. This is used when accessing process
specifications and data dictionary entries.

A 10 x 10 N 2 chart imposes a limitation on the complexity of DFDs that can be
accessed by the user. This limits the total number of processes, data stores and
control specifications on a DFD to 9 (the tenth entry is used for specifying
interconnections with the higher level diagram). In many cases this limit of 9 is
perfectly acceptable; many software engineering texts suggest that the number of
processes on a diagram should not exceed 7 for it to be readable. However, in
practical situations this limit of 9 will often be exceeded. When the 10 entries on the
N 2 chart are exceeded, the system supports enquires about the other processes, stores
and control specifications via the keyboard. If the number of additional elements is
not too great, it is hoped that the chart will still be readable The number of entries

2
in a given N chart is governed by the resolution of the Touch Window and the size

, 2
of the user s finger. Larger N matrices could be used if the user were to accept
smaller matrix entries.

328

5 Conclusions and Further Work

A practical evaluation system has been developed and this will be tested by a number
of blind software engineers.

Further work involves the somewhat more difficult problem of allowing blind
software engineers to create Structured Analysis models�9 Firstly these will be

�9 . 2

supported by the engineer creatmg a series of N charts using the Touch Window~
tactile overlay and the keyboard. This will create a representation wholly in N
charts. As noted above, these are not commonly used in the software engineering
industry and a method of creating standard, CASE tool readable DFDs, which
sighted users can read, will be investigated.

Acknowledgements

The authors would like to acknowledge the work of Andrew Brook who has
developed the prototype evaluation system as part of his undergraduate degree in
Software Engineering from the Department of Computation at UMIST. He has
contributed greatly to the ideas contained in this paper�9

This project has been carried out within the Technology for Disabled People Unit
at UMIST. The authors would like to acknowledge the grant funding for this unit by
both The Guide Dogs for the Blind Association and the UMIST Millennium Fund.

References

1. P. Blenkhorn, D.G. Evans: A System for Reading and Producing Talking
Tactile Maps and Diagrams. Ninth Annual International Conference,
Technology and Persons with Disabilities, Los Angeles, March (1994)

2. G. Booch: Object-Oriented Analysis and Design With Applications.
Benjamin/Cummings (1994)

3. D.J. Hatley, I.A. Pirbhai: Strategies for Real-Time System Specification.
Dorset House Publishing (1987)

4. I. Jacobson: Object-Oriented Software Engineering. ACM Press (1992)
5. R. Lano: A Technique for Software and Systems Design. North-Holland Press

(1979)
N 2 6. P. Loy, Y. Strapp: DFD's [sic] vs. charts. ACM Sigsoft Software

Engineering Notes, 18, A16-A17 (1989)
7. J. Rumbaugh et. al.: Object-Oriented Modelling and Design. Prentice-Hall

(1991)
8. P.T. Ward, S.J. Mellor: Structured Development for Real-Time Systems. 1, 2,

3, Yourdon Press (1985)
9. E. Yourdon: Modern Structured Analysis. Prentice-Hall (1989)
10. Tactual Graphics: Research and Resources. Aids and Appliances Review, The

Carroll Center for the Blind, 14 (1984)
11. Teamwork/ACCESS User Manual, Hewlett Packard (1989)

