
1

2

3

4

5

6

5 10 15 20 25 30 35 40
S
p
e
e
d
u
p

Number of threads

KSR-1

Fig. 3. Speedup vs. nr. of processors on the KSR1.

4. T. Fogarty, Implementing the Genetic Algorithm on Transputer Based Parallel
Processing Systems, Parallel Problem Solving from Nature 1 (1991) 145{149

5. J.P. Cohoon, W.N. Martin, D.S. Richards, A Multi{population Genetic Algorithm
for Solving the K{Partition Problem on Hyper{cubes, Proc. 4th Intl. Conf on
Genetic Algorithms (1991) 244{248

6. R.J. Collins, D.R. Je�erson, Selection in Massively Parallel Genetic Algorithms,
Proc. 4th Intl. Conf. on Genetic Algorithms (1991) 249{256

7. P. Spiessens, B. Manderick, A Massively Parallel Genetic Algorithm, Proc. 4th
Intl. Conf. on Genetic Algorithms (1991) 279{285

8. C.C. Pettey, M.R. Leuze, A Theoretical Investigation of a Parallel Genetic Algo-
rithm, Proc. 3rd Intl. Conf. on Genetic Algorithms (1989) 398{405

9. R. Tanese, Distributed Genetic Algorithms, Proc. 3rd Intl. Conf. on Genetic Al-
gorithms (1989) 434{439

10. M.G.A. Verhoeven, E.H.L. Aarts, E. v. de Sluis, Parallel Local Search and the
Travelling Salesman Problem, Parallel Problem Solving from Nature 2 (1992) 543{
552

11. T. Maruyma, A. Konagaya, l. Konishi: An Asynchronous Fine{Grained Parallel
Genetic Algorithm, Parallel Problem Solving from Nature 2 (1992) 563{572

12. H. Tamaki, Y. Nishikawa: A Parallel Genetic Algorithm based on a Neighborhood
Model and Its Application to the Jobshop Scheduling, Parallel Problem Solving
from Nature 2 (1992) 573{582

13. H. M�uhlenbein, Parallel Genetic Algorithms, Population Genetics and Combina-
torial Optimization; J.D. Becker, I. Eisele, F.W. M�undemann (Eds.): Parallelism,
Learning, Evolution, Lect. Notes in Comp. Sci. 565, (Springer,Berlin, 1991) 398{
406

14. R. Hauser, H. Horner, R. M�anner, M. Makhaniok, Architectural Considerations
for NERV|a General Purpose Neural Network Simulation System; in J. D. Becker,
I. Eisele, F. W. M�undemann (Eds.): Parallelism, Learning, Evolution, Lect. Notes
in Comp. Sci. 565, (Springer, Berlin, 1991) 183{195

15. The VMEbus Speci�cation, Rev. C, VMEbus Int'l Trade Association (1987)
16. R.M. Stallman, Using and Porting GNU CC, Free Software Foundation (1992)
17. R. Schuhmacher (Ed.), One Year KSR1 at the Univerity of Mannheim: Results

and Experience, RUM 35/93, University of Mannheim (1993)
18. H. Kredel, Computeralgebra on a KSR1 Parallel Computer, in [17], 26{34

This article was processed using the LaTEX macro package with LLNCS style

does not assign a thread to a speci�c processor but reschedules them every time
they are runnable the situation may get even worse since they have to load their
working set from the memory again.

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9

S
p
e
e
d
u
p

Number of threads

SparcServer

Fig. 2. Speedup vs. nr. of processors on the SparcServer system.

KSR1. The KSR1 allows for more user control over processors. The system is
usually con�gured in a number of partitions with a given number of proces-
sors. The program can be run in one such partition and allocate all available
processors. The largest usable partition contained 20 processors. The run time
decreases as the number of threads is increased as long as we have less threads
than processors. Then we can see that the run time starts to increase again. It
seems the system overhead for scheduling the threads becomes signi�cantly large
at this point.

One major drawback of the KSR1 is the large increase in access time for the
di�erent stages of the memory hierarchy. The �rst-level cache (256 kB) needs
two clock cycles, the 32 MByte local cache needs 20 clock cycles and an access
to a remote cache needs 140 clock cycles. This is nearly 2 orders of magnitude
and our application de�nitely does not �t into the �rst-level cache.

Several experience reports [17] about the KSR1 show, that one can achieve
a signi�cant speedup if the problem is carefully adapted to the machine speci�c
parameters. However our results are more in line with the report on the port of
an existing application [18] whose speedup usually did not exceed a factor of 5.

References

1. J.H. Holland, Adaption in Natural and Arti�cial Systems (The University of Michi-
gan Press, Ann Arbor, 1975)

2. D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learn-
ing, (Addison{Wesley, Reading, 1988)

3. M. Gorges{Schleuter, ASPARAGOS: An Asynchronous Parallel Genetic Optimiza-
tion Strategy, Proc. 3rd Intl. Conf. on Genetic Algorithms (1989) 422{427

For a C program the preferred method of parallelizing a task is to use the
POSIX threads library (Pthreads). The functionality is essentially the same as
with the Solaris threads library. Therefore the main GA program will be exactly
the same, only the threads init() and threads sync() routines had to be adapted.

8 Results

The �gures show the speedups which can be achieved by the di�erent systems
depending on the number of processors or threads used.

NERV. For the NERV system the programmer has complete control of the
system and can decide how many processors he wants to use. The overhead
is only marginal, since the necessary functions are directly supported by the
hardware. If the number of processors is increased the communication time stays
constant. The common bus however sets an upper limit to the extensibility of the
sytem|it is not reasonable to consider a system with more than 40 processors in
a VME{crate. The speedup is linear although below the theoretical maximum.

1

2

3

4

5

6

1 2 3 4 5 6 7

S
p
e
e
d
u
p

Number of processors

NERV

Fig. 1. Speedup vs. nr. of processors on the NERV system.

SparcServer. The SparcServer and the KSR1 are both very similar in that
they provide a global shared memory and allow parallelization via a threads
package. However, on the Sparc machine the user has no control over the pro-
cessor resources. He can not specify on how many processors his program will
run but must leave this decision to the operating system. The results show that
the speedup is only in the order of two for an eight processor system. The sys-
tem was in multiuser mode although no other computing intensive task was
running during the measurements. It is di�cult to give a speci�c reason for this
behaviour. The working set of the program is quite large since several hundred
net lists must referenced in each �tness evaluation. Therefore the local cache of
each processor will usually not su�ce to hold all relevant data. If the scheduler

This is all communication which will occur. All other values are fetched from
local memory. A broadcast facility is the most e�cient way to implement this
since it does not depend on the number of processors. If we increase the number
of processing elements we will decrease the time needed for each step while the
communication overhead will stay constant.

6 SparcServer

The SparcServer 2000 is a commercially available shared memory system with
up to 16 processors which supports symmetric multiprocessing. All processors
have access to a global shared memory. The system runs the Solaris operating
system which is responsible for load-balancing.

The normal way to take advantage of the multiple processors in the system is
to use the threads-library. For synchronizing access to critical regions there are a
number of mechanisms like mutex and condition variables. The thread library is
very similar to the POSIX threads interface, although not completely identical.

The same arguments we used for the NERV{system apply here as well. Most
parts of the algorithm can be parallelized ideally, but we need a synchronization
after each major step. As long as we follow the same programming style as in the
NERV{system it is unnecessary to lock data structures on a lower level, since
there are no concurrent writes by di�erent threads into the same memory area.

The implementation strategy is therefore to start N worker threads where
each one is working on part of the population. The main thread is only respon-
sible for initialization and controlling the synchronization of the other threads.

The synchronization has been implemented on top of the threads library.
The GA routine uses only two functions, thread init() and thread sync(). The
initialization routine is called once at the beginning of the program. It starts
the worker threads and initializes the global mutex and condition variables. The
number of worker threads can be given as a program argument. This allows us
to vary the maximal number of processors.

7 KSR1

The KSR1 from Kendall Systems Research has some features which distinguish it
from the more convential shared memory systems like the SparcServer. Although
it looks like a global shared memory system from the programmer's point of
view, there is no main memory in the usual sense at all. Instead each processor
has a large cache memory of 32 MByte which is backed by mass storage and
kept consistent by a cache coherence protocol. The interconnection network is
invisible to the programmer, although the latency of memory updates may vary
if two distant nodes have to communicate.

Each processor in the system is running an OSF/1 kernel, providing the
usual Unix services. The machine can be split in several partitions with a certain
number of processors dedicated to a certain program.

Crossover. As already mentioned we decided to generate the next generation
by looping over all individuals of the new population and either copying an
individual from the old one or create a new one by crossover from two parents.
Again each processor will be responsible for a part of the population:

for (i = "first individual"; i <= "last individual"; i++) {

offspring = &newPopulation[i];

parent1 = select();

parent2 = random_select();

if (random(CROSSOVER_PROB) < CROSSOVER_PROB) {

k = random(CHROM_LENGTH);

for(j = 0; j < k; j++)

offspring[j] = parent1[j];

for(j = k; j < CHROM_LENGTH; j++)

offspring[j] = parent2[j];

} else /* copy individual */

for(j = 0; j < CHROM_LENGTH; j++)

offspring[j] = parent1[j];

}

synchronize();

After this step P �L elements will have been broadcasted (assuming that we
encode e.g. each bit in a separate character) and each processing element will
have a complete copy of the new population.

Mutation. The mutation operator is parallelized in the same fashion as the
other operators. Again each processor handles P

N
chromosomes and broadcasts

the results.

for(i = "first individual"; i <= "last individual"; i++) {

individual = &newPopulation[i];

for(j = 0; j < CHROM_LENGTH; j++)

if (random(MUTATE_PROB) < MUTATE_PROB)

individual[j] = !individual[j];

}

synchronize();

The broadcast of a bit changed by mutation is done by the assignment to
individual[j]. Note that the right hand side of this assignment will only access
local memory since it is a read access.

5.3 Discussion of NERV implementation

The program will transfer P �tness values (from step 1) and P � L bits for the
new population (from step 2) over the common bus. In addition it must transfer
the bits which are changed during mutation which may vary in each generation.

other processors. A read from this region will simply return the data in the local
memory. For software written in C or C++ a programmer might take advantage
of this property in the following way:

A pointer - either to a global variable or dynamically allocated - can be
modi�ed in such a way that it points into the broadcast region by a special
function called mk global(). Whenever this pointer is dereferenced by a write
access an implicit broadcast happens. A read access will return the local data.

Note however that there is no explicit synchronization between the proces-
sors. If two processors update the same element, the last one will win.

A second extension on the VMEbus includes a hardware synchronization of
all processing elements. The programmer calls a procedure synchronize() which
will only return after all processors have reached the synchronization point.

5.2 Implementation of the Parallel Genetic Algorithm.

The previous sections suggest the following setup for the algorithm on the NERV
system:

The same program is loaded onto each processor. Every processor has a
copy of all individuals in his local memory. The current population and the
population of the next generation are accessed by two pointers which have been
prepared so that they both point into the broadcast region. The same holds for an
array which contains the �tness values of all individuals. After each generation
the two population pointers are simply exchanged. Let N be the number of
processing elements in the system. The general strategy will be to distribute
the computational load equally among all processing elements by assigning P

N

individuals to each processor.

The parallelization of each GA operator is now straightforward.

Fitness evaluation. Each processor evaluates the �tness of the individuals it
has been assigned. The �tness values are simply written into the mentioned array
which will automatically initiate a broadcast. Since each processor is responsible
for another set of individuals no overlap will occur.

int fitness_values[POP_SIZE];

int *fitness;

fitness = mk_global(fitness_values);

for (i = "first individual"; i <= "last individual", i++)

fitness[i] = eval(i);

synchronize();

Note that the evaluation function uses only the local copy of the population.
The access to �tness[i] is the (implicit) broadcast.

4 The Problem

In the following we present some results of such a parallelization on a number
of di�erent multiprocessor systems. We will show that only a small number of
properties are required to get an e�cient parallel program which implements the
standard GA. The systems are all of the MIMD type but range from a special
purpose system (NERV) to global shared memory systems (SparcServer, KSR1).

We implemented the same program on all machines. Instead of using some
kind of toy problem we decided to use a real application as a benchmark. The
task of the GA is to optimize the placement of logic cells in a �eld programmable
gate array (Xilinx). The input is a design �le, which is usually created by an
external program, as well as a library of user{de�ned parts and information
about the speci�c chip layout and package. From this input the program creates
an internal list of the required logic cells and their connections.

Our test design used 276 logic blocks out of 320 possible on a Xilinx 3090
and 121 I/O blocks. The number of internal connections is in the order of several
thousands. Since the chromosomes represent positions for each logic or I/O block,
the chromosome length is given by the sum of these two numbers.

The program is completely CPU{bound until it writes the �nal output �le.
The big advantage of having a real application is that it does not have the usual
problems of benchmarks, like being so small that they �t in the cache of the
processor or concentrating the whole computational task in a few lines like in
a matrix multiplication. Furthermore we have a simple criterion for comparing
the implementations: how fast is the program speeded up by using multiple
processors. Since the user may wait for the result of the placement program,
measuring the real time to do the task seems to be the most reasonable solution.

5 The NERV multiprocessor system

5.1 The Hardware.

The NERV multiprocessor [14] is a system which has been originally designed
for the e�cient simulation of neural networks. It is based on a standard VMEbus
system [15] which has been extended to support several special functions. Each
processing element consists of a MC68020 processor with static local memory
(currently 512 kB) and each VME board contains several processor boards. Usu-
ally the system is run in a SPMD (Singe Program Multiple Data) style mode,
which means that the same program is downloaded to each processing element,
while the data to be processed are distributed among the boards.

The following extensions to the VMEbus have been implemented in the
NERV system:

A broadcast facility which is not part of the standard VME protocol. It
allows each processor to access the memory of all other processor boards with a
single write cycle. From the programmer's point of view there exists a region in
his address space, where a write access will initiate an implicit broadcast to all

Mutation The mutation operation can be applied to each bit of each individual
independently. Besides from the bit value the only information needed is the
global parameter PM .

3.2 Parallelization

It should be noted that it is usually not possible to gain a larger speedup for
steps 1) and 2) because of data dependencies between the di�erent steps of the
algorithm. This can be seen e.g. for step 2: If the crossover operation selects one
of the parents it does this according to its relative �tness. However this can only
be done if the �tness values of all other individuals are already computed so that
the mean value is available.

In the following we will point out what kind of data each processing element
must access to perform the di�erent steps of the algorithm.

Fitness evaluation. Each processing element must have access only to those
individuals whose �tness it will compute. In the optimal case (number of pro-
cessing elements = number of individuals) this is one individual. However the
result of this computation is needed by all other processing elements since it is
used for computing the mean value of all function evaluations needed in step 2.

Crossover. Each processing element which creates a new individual must have
access to all other individuals since each one may be selected as a parent. To
make this selection the procedure needs all �tness values from step 1.

Mutation. As in step 1 each processing element needs only the individual(s)
it deals with. As mentioned above the parallelization could be even more �ne
grained as in steps 1 and 2, in which case each processing element would need
only one bit of each individual. This could usually only be achieved by a SIMD
style machine.

Many implementors of parallel genetic algorithms have decided to change the
standard algorithm in several ways.

The most popular approach is the partitioning of the population into several
subpopulations [5,9] or introducing a topology, so that individuals can only in-
teract with nearby chromosomes in their neighborhood [3,6,10,12,13]. All these
methods obviously reduce the coupling between di�erent processing elements.

Although some authors report improvements in the performance of their
algorithm and the method can be justi�ed by biological reasons, we consider it as
a drawback that not the original standard GA could be e�ciently implemented.
The reason is that a genetic algorithm is often a computational intensive task.
It often depends critically on the given parameters used for the simulation (e.g.
PM and PC). There are some theoretical results about how to choose these
parameters or the representation of a given problem, but most of them deal
with the standard GA only. Even then one often has to try several possibilities
to adjust the parameters optimally.

hi /
fi
�f

(1)

where fi is the �tness of individual i and �f the average over all �tness values.

Crossover The crossover operator takes two individuals from the population
and combines them to a new one. The most general form is uniform crossover
from which the so called one{point crossover and two{point crossover can be
derived. First two individuals are selected, the �rst one according to its �tness
and the second one by random. Then a crossover mask Mi, i = 1; . . . ; L, where
L is the length of the chromosome, is generated randomly. A new individual is
generated which takes its value at position i from the �rst individual if Mi = 1
and from the second one if Mi = 0. The crossover operator is applied with
probability PC .

Mutation Each bit of an individual is changed (e.g. inverted) with probability
PM .

All three steps above are iterated for a given number of generations (or until
one can no longer expect a better solution).

3 Parallel Genetic Algorithms

It has long been noted that genetic algorithms are well suited for parallel ex-
ecution. Parallel implementations of GAs exist for a variety of multiprocessor
systems, including MIMD machines with global shared memory [11] and mes-
sage passing systems like transputers [3,4] and hypercubes [8] as well as SIMD
architectures [6,7] like the Connection Machine.

3.1 Dependencies

It is easy to see that the following steps in the algorithm can be trivially paral-
lelized:

Evaluation of �tness function The �tness of each individual can be com-
puted independently from all others. This gives us a linear speedup with the
number of processing elements.

Crossover. If we choose to generate each individual of the next generation by
applying the crossover operator, we can do this operation in parallel for each new
individual. The alternative would be to apply crossover and to put the resulting
individual in the existing population where it replaces e.g. a bad solution.

Implementation of Standard Genetic Algorithm
on MIMD machines ?

R. Hauser1, R. M�anner2

1 CERN, Geneva, Switzerland
email: rhauser@cernvm.cern.ch

2 Lehrstuhl f�ur Informatik V, Universit�at Mannheim, Germany
email: maenner@mp-sun1.informatik.uni-mannheim.de

Abstract. Genetic Algorithms (GAs) have been implemented on a num-
ber of multiprocessor machines. In many cases the GA has been adapted
to the hardware structure of the system. This paper describes the imple-
mentation of a standard genetic algorithm on several MIMD multipro-
cessor systems. It discusses the data dependencies of the di�erent parts
of the algorithm and the changes necessary to adapt the serial version to
the parallel versions. Timing measurements and speedups are given for
a common problem implemented on all machines.

1 Introduction

In this paper we describe the implementation of a standard Genetic Algorithm
[1,2] on a number of di�erent multiprocessor machines. After the discussion
of the data dependencies in a straight forward implementation of a GA, the
parallelization strategy on each machine is discussed and speedup measurements
are presented. No attempt is made to optimize the algorithm for each speci�c
architecture, instead we tried to stay as closely as possible to the original and
parallelize in a way which seems natural for an application programmer on such
a machine. This includes the use of standard libraries like Pthreads if available
and e.g. recommended by the vendor as the preferred method of parallelization.

2 Genetic Algorithms

In this section we shortly outline the GA we have implemented on the di�erent
machines.

Selection The �tness of each individual in the population is evaluated. The
�tness of each individual relative to the mean value of all other individuals gives
the probability with which this individual is reproduced in the next generation.
Therefore the frequency hi of an individual in the next generation is given by

? This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) under
grant Ma 1150/8{1.

REIHE INFORMATIK
8/95

Implementation of Standard Genetic

Algorithm on MIMD machines

R. Hauser, R. M�anner
Universit�at Mannheim
Seminargeb�aude A5
D-68131 Mannheim

