
A Comparison of Two Approaches to Model-based
Knowledge Acquisition

Dieter Fensel (+) and Karsten Poeck (*)

(+) Institut für Angewandte Informatik und Formale Beschreibungsverfahren
University of KARLsruhe, 76128 Karlsruhe, Germany

phone: 49-721-6084754, fax: 49-721-693717
e-mail: fensel@aifb.uni-karlsruhe.de

(*) Lehrstuhl für Informatik VI
University of Würzburg, Allesgrundweg 12, 97218 Gerbrunn, Germany

phone: 49-931-70561 18, fax: 49-931-7056120
e-mail: poeck@informatik.uni-wuerzburg.de

Abstract. This paper discusses and compares two different approaches to
model-based knowledge acquisition. That is, we regard the Model-based
and Incremental Knowledge Engineering (MIKE) approach and the
Configurable Role-limiting Method approach (CRLM). MIKE is based
on the distinction of different phases in the software development process.
It uses the formal and operational knowledge specification language
KARL allowing a precise and unique description of a model of expertise
which is the outcome of the analysis phase. CRLM is based on the role-
limiting method approach. Role limiting shells are implementations of
strong problem-solving methods and substantially simplify knowledge
acquisition through guidance by predefined models of problem-solving
and by sophisticated graphical user interfaces. The main disadvantages,
namely inflexibility and brittleness, are to some degree overcome by the
CRLM where the shell’s problem-solving methods are split into smaller
parts, which can then be reconfigured allowing the integration of new
methods or other method combinations. Although these two approaches
are often discussed as contradictory, we, however, experienced that both
approaches complete each other very well. As an outcome of our
comparison, we outline topics of future research for both approaches.

Introduction
In the paper, we discuss and compare two different approaches tomodel-based
knowledge acquisition. Both approaches aremodel-based in the sense that they
explicitly distinguish different types of knowledge and usegeneric problem-solving
methods as the behaviour model of an expert system. Apart from their similarities, the
two approaches differ significantly in their underlying principles and points of interest.

Model-based and Incremental Knowledge Engineering (MIKE) [AFL+93] is strongly
influenced by the results of the KADS and CommonKADS projects [SWB93] and
works in the domain of software engineering and information system design (cf.
[AFS90]). It is based on the distinction of different phases like analysis, design, and
implementation, in the software development process. An important means of MIKE is

the formal and operational knowledge specification language KARL (cf. [FAL91],
[Fen93a], [AFS94]), which allows a precise and unequivocal description of a model of
expertise as the result of the analysis phase.

Configurable Role-limiting Method (CRLM) [PoG93] is based on the role-limiting
method approach (see [Mar88], [McD88]). Role-limiting shells are implementations of
strong problem-solving methods and substantially simplify knowledge acquisition
through guidance by the given model of problem-solving. These shells pre-define the
roles that knowledge can play during the problem-solving process and completely fix
the knowledge representation scheme for the method such that the expert only has to
instantiate given generic concepts. In most of these shells the expert is supported by a
sophisticated graphical user interface for knowledge acquisition. Their main
disadvantages, that is, their inflexibility and brittleness, are to some degree overcome by
the CRLM. In this approach, the problem-solving methods of the shell are split into
smaller parts, which can then be reconfigured allowing the integration of new methods
or new method combinations. The corresponding knowledge acquisition components
can be generated from a declarative description [Flo84]. CLRM tries to preserve the
advantages of RLMs such as strong knowledge acquisition support and rapid
prototyping, while extending their scope by being more adaptable and therefore less
brittle.

The two examined approaches also reflect the two current main streams of research in
knowledge acquisition. On the on hand, there are approaches like KADS and
CommonKADS which view the knowledge engineering process of a process of building
multiple models. On the other hand, approaches likePROTÉGÉ-II [PET+92] orKREST
[Ste93] aim much stronger at an immediate implementation of a knowledge-based
system. Although these different approaches are often discussed as contradictory, we
experienced that both approaches complement each other very well. As both approaches
emphasize different aspects in the development process of a knowledge-based system,
their combination adds to the power of the achieved results. It was already shown in
[FEM+93] how an implementation of the board-game method, that is, a role-limiting
method, can be combined with a semiformal and formal description by using KARL.
[PFL+94] shows a successful solution of the elevator-design problem (i.e., the
Sisyphus´93 problem) based on the fruitful combination of the two approaches. In fact,
the successful combination of both approaches by solving the elevator-design problem
encouraged us to compare both approaches in more detail and depth. The purpose of our
study is to get a better insight into the different assumptions implicitly underlying the
different approaches by contrasting the two approaches. Additionally, we try to
overcome some conceptual miss-matches because a term like knowledge base is
associated with different meanings by the two approaches. Finally, we will show how
both approaches fit together, that is, how both approaches can be improved by
overtaking results of the competitor.

We identified four dimensions for the comparison of both approaches. In each item we
make the different assumptions explicit which underlie the two approaches to model-
based knowledge acquisition. First, we ask how both approaches bridge the gap between
informal requirements and implemented systems which meets these requirements.
CRLM tries more or less to bridge this gap in one go whereas MIKE makes a walk of
several steps. Second, we discuss how both approaches view the difference of problem-
solving methods and domain knowledge. The Role-limiting method views problem
methods as fixed and implemented whereas MIKE views the problem-solving method
as part of the knowledge and aims at its declarative description. The CRLM approach

converges into the direction of MIKE but does still regard the problem-solving method
not as part of the knowledge base. Third, we ask to what degree both approaches try to
mechanize the knowledge engineering process. Whereas MIKE view the knowledge
engineer as a necessity CRLM aims on excluding him from the process by offering
powerful tool support. The final dimension of our comparison regards the different
concepts of reuse which underlie both approaches. In the conclusion, we answer the
question whether both approaches are contradictory or rather complementary. It is
shown how both approaches converge together starting from very contrary points.
Libraries of reusable mechanisms or problem-solving methods seem to unify both
approaches. In fact, they require the combination of both approaches.

Our comparison of different approaches in knowledge engineering is not the first one.
An early attempt to survey and classify most approaches in knowledge acquisition was
given by [Boo88]. Methodologically close in spirit to this work are [KLV90],
[NPB+91], [Lin93], and [FeH94]. [KLV90] survey four approaches to model-based
knowledge acquisition and extract three common hypotheses which are now common
places in knowledge acquisition. [NPB+91] tries to give a complete classification on
knowledge acquisition and [Lin93] focuses on solutions of the Sisyphus-I problem.
[FeH94] discuss and compare eight formal knowledge specification languages. In this
paper we have chosen a different methodological point of view:

• First, we neither aim to give a representative survey on all existing knowledge
acquisition approaches nor to classify them. Instead, we chose two different
paradigms in knowledge engineering and prototypical approaches for each of
them. Therefore, we did not try to abstract and aggregate general features but
instead we tried to elicit differences and mutualities of both approach in detail.

• Second, we use a common case study to understand mutualities and differences of
both approaches in detail (like [Nwa93] does it for KADS and Generic Tasks). In
fact in [PFL+94] we modelled a Sisyphus-II solution by combining both
approaches. This case study, even not very often mentioned in the paper, was a rich
and powerful source for understanding, comparing and analysing both approaches.
In addition, it can be read as a very detailed and broad illustration of our more
generic conclusions in this paper.

Therefore, we did not try to get a representative classification by regarding several
approaches and aggregating them but we try to take a close view on two different
paradigm by choosing two prototypical instances as input for a detailed case study.1 Our
study continues [GaP92] who implicitly compared KADS and their role-limiting
method approach by describing how the later can be described using the further one.
This is the one of the few approaches which investigates how role-limiting methods can
be re-expressed in terms of the general methodological framework of KADS and
therefore bridging the dichotomy between methodological and tool-oriented
approaches. Compared to our study [GaP92] is much more focused as it asks how to
represent a role-limiting method in terms of the KADS model of expertise.

1 How to Bridge the Representation Gap
The development of an (software) artifact contains two main activities. First, the
problem to be solved by the artifact must beanalysed and specified.2 Second, the artifact

1. In social science, this distinction corresponds to the distinction of normative and interpretative
oriented techniques and methods (see [Fen92]).

which is to solve the given problem must bedesigned and implemented. Therefore most,
if not all, process models in software and knowledge engineering distinguish these two
activities in a project even though, in detail, their distinctions are treated in a different
way.3

MIKE clearly separates the analysis and the design/implementation of an expert system
during the project. The outcome of the analysis phase is a (formal) specification of the
task which is to be solved by the system and of the knowledge which is required to solve
the task effectively and efficiently (without symbol-level control, cf. [Sch92]). The
outcome of the implementation phase is a computational agent that solves the problem.
This is achieved by a kind of refinement step. The declarative description of a model of
expertise in KARL is refined by additional data structures and efficient algorithms
which compute the semantics of the model more efficiently [LaS94].

In CRLM, the analysis phase consists of two steps. First, the appropriate problem-
solving method and its knowledge representation formalism is selected. Second, the
predefined knowledge representation formalism of this problem-solving method guides
the acquisition of domain knowledge. Ideally, there is no further design/implementation
step in the project because the previous implementation of the problem-solving method
(which has been carried out independently of the current project) is reused. The result
of the analysis phase is a running system. Yet, it may be necessary to reconfigure a
selected method to a specific problem or to implement a new sub-method for a task only
partially covered by the selected method combination. While new sub-methods must be
explicitly coded, the corresponding knowledge acquisition components can be
automatically generated from a declarative description of the knowledge representations
and editors. This knowledgeacquisition tools allow domain experts after a training phase
to develop the knowledge base by themselves without further guidance by a knowledge
engineer [GPS93]. The experts may directly evaluate the knowledge base with test cases
without the need for a further precompilation step. While this model of direct knowledge
acquisition by domain experts is seen by some as the most important advantage of
CRLM, it is for others the cause of important drawbacks. On one hand:

• The quality of the knowledge base is greatly improved since no translation errors
occur between the knowledge engineer and the domain experts.

• The maintenance of the knowledge base can be done by the domain experts.

On the other hand:

• The expert has to enter the knowledge without further guidance by intermediate
models. He has to analyse and represent his knowledge at the same time.

• Due to the lack of intermediate models the executable knowledge base is the only
documentation of the expertise.

• The view of knowledge is obviously determined by the knowledge representation
formalism of the chosen shell although the expert only has to deal with the
corresponding graphical representations.

Whether the advantages of this process model outweigh the disadvantages cannot be
answered in general but depends on the circumstances of the actual project. But we
found that least for classification the experts are comfortable with it and develop

2. In the case of a knowledge-based system an integrated part of the analysis phase is the
modelling of the knowledge which is required to solve the task.
3. A survey of discussion in software engineering can be found in [ThD90].

knowledge bases with high competence, c.f. [ScS93].

The process model of MIKE is influenced by work in conventional software
engineering. In fact it is based on thespiral model of [Boe88] and different approaches
to prototyping of [Flo84]. Its main principles are:

• The entire development process is subdivided into several different phases. Each
phase is concerned with a specific aspect of the development process. This defines
a clear focus of interest for every activity and reduces its complexity. The four
main phases of the process model of MIKE are analysis, design, implementation,
and evaluation. Each phase is again split into several subphases.

• As the original life cycle-oriented process models in software engineering rely on
unrealistic assumptions (e.g., the waterfall model), the process model of MIKE
regards these phases as incremental and cyclic. [Boe88] views this process as a
spiral where the entire functionality of the system is achieved by several iterations
of these different phases.

• An important aspect of each phase is the evaluation of the achieved results. The
main means of evaluation isprototyping. The outcome of every phase is an
operational description which can be evaluated by prototyping.

The process model of MIKE tries to integrate the advantages of well-structured process
models into incremental system development and prototyping. Looking in greater detail
at its process model, the largemodelling gapbetween informal descriptions of the
expertise that are gained from the expert by using knowledge-acquisition methods, and
the final realization of the expert system is bridged by several intermediate models.
Decomposing this gap into smaller ones reduces the complexity of the whole modelling
process since in every step particular aspects may be considered independently of other
aspects. Five different descriptions of a task and the required knowledge exist in MIKE
(see figure 1).

First, knowledge and task are described innatural-language documents. These
documents may result from interviews or observations, or can already exist as manuals
or books, etc. These documents can be structured and represented in a protocol model
which uses a hyper media representation. Second, these informal descriptions are
transformed into asemiformal representation called structure model. For building the
protocol model as well as the structure model the hypermedia tool MeMo-Kit
(Mediating Model Construction Kit) can be used [Neu93]. As a result, the knowledge
and the task are described along the lines of a model of expertise as defined in KADS
[SWB93]. The description of knowledge is structured in different layers by using
appropriate primitives, which are also associated with a suitable graphical
representation. The semantics of elementary knowledge pieces is still defined in natural-
language. Such a mediating representation has the following advantages: The
structuring process creating the mediating representation provides early feedback for the
knowledge engineer and the expert; the semiformal representation of the expertise
provides a useful basis for communicating with the expert; the contents of the model
may be exploited for the explanation facility of the final system; and the model
documents modelling decisions and thus may be used for the maintenance of the final
system.

The third type of description is accomplished by using KARL. Knowledge which is
represented informally or semiformally is formalized during theknowledge-
formalization step. The main benefits of formal descriptions of expertise, compared to
informal or semiformal representations, are the following: The vagueness and ambiguity

of natural-language descriptions can be avoided; the formalized problem-solving
method can be used to guide the collection of domain knowledge; the formal description
can help to get a clearer understanding of single problem-solving steps as well as of
complete problem-solving methods, it thus supports their reuse; and a formalized
specification can be mapped to an operational one. This allows prototyping or a
symbolic execution in order to evaluate the knowledge, thus supporting incremental
modelling.

Formalization results in a formal and operational description of the model of expertise.
Since a KARL specification is based on the structure of the KADS model of expertise
there is a smooth transition from an semiformal to a formal description. The KARL

Head of an expert

Expert system

Text documents

Design

1. Knowledge elicitation

2. Knowledge interpretation

4. Design activity

5. Implementation

Semiformal

Formal

3. Knowledge Formalization

abstract (); match (); refine ()

abstract (); match (); refine ()
Parε KnownParam ←
 Parε Param∧ ¬ dependencies(p: Par).

A parameter is inferred as a known
 parameter if it does not depend on an. ...

Fig. 1. The five steps of MIKE (1-5) and the one-step transition (1´) of CRLM.

model

model

1´

Design model model

model is constructed by refining the semiformal model of expertise, e.g., by augmenting
an informal description of an elementary inference step in the semiformal model by a
formal description. Formal descriptions should not replace informal ones but rather
define their meaning precisely and uniquely. Natural language is very useful to outline
the general idea of an inference since in a formal description one often cannot see the
wood for trees. One the other hand, it is very difficult if not impossible to define the
exact meaning of an inference in a precise and unique manner by natural language only.
KARL is a customization of first-order logic consisting of the two sublanguages L-
KARL that represents static knowledge and P-KARL that represents dynamic
knowledge. It has a declarative semantics [Fen93a] as well as an operational semantics
[Ang93]. L-KARL is based on Frame-logic [KLW93], which integrates object-
orientation into a declarative framework. P-KARL is based on dynamic logic [Koz90],
which integrates the representation of procedural knowledge into a declarative
framework. The modelling primitives of KARL reflect the structure of the model of
expertise of KADS (i.e., the separation of different layers and different modelling
primitives at each layer, e.g. inference actions and roles at the inference layer). As a
specification in KARL is based on the structure of the model of expertise, there is a
smooth transition from an informal to a formal description. Natural-language definitions
of the meaning of graphically specified elements of a model are supplemented by formal
definitions using KARL.

The fourth description level is defined by thedesign model. The model of expertise
finally includes all functional requirements posed on the desired system. For the
realization of the final system additional requirements have to be considered which are
still independent of the final implementation of the system. They are non-functional
requirements such as efficiency of the realization of the problem-solving method,
maintainability of the system, persistency of data etc. The design model enriches and
refines the model of expertise by taking these issues into account, e.g., by introducing
appropriate algorithms and data structures, it takes care for a suitable modularization of
the system, etc. Capturing such design decisions in the design model narrows the gap
between the model of expertise and the implementation of the final system. For instance,

Fig. 2. The process model in CRLM

the informal and formal but declarative description of an inference action is
supplemented by appropriate data structures and algorithms which support an efficient
computation (cf. [LaS94] for more details). The final description is achieved by
implementing the system in the given hardware and software environment.

When we compare these transitions with respect to the way in CRLM it becomes clear
that the expert has to do the first three transitions in one go by directly specifying the
domain knowledge in the graphical representation of the language of the chosen shell.
He has not to deal with design decisions and the details the language is implemented in,
since this is viewed as an fixed and given entity for him as described in the next section.
Given feedback by cases from end uses he may have to maintain the knowledge base
either by changing existing knowledge pieces or adding new ones. This process
becomes more complicated in the case that an appropriate shell is not available. Then
the knowledge engineer and the expert have to customize the best fitting shell for the
specific needs of the expert. It may even happen during knowledge maintenance that the
shell must be adapted to allow the formulation of other knowledge types. This double
spiral is shown in the figure 2.

2 Relationship of Domain Knowledge and Problem-Solving
Methods

An important common feature of both approaches isthe separation of domain
knowledge from generic (i.e., domain-independent) problem-solving knowledge. The
problem-solving knowledge controls the use of the domain knowledge for problem-
solving. Yet, the two approaches differ significantly in their way of separating and
combining both parts of an expert system.

CRLM clearly separates the problem-solving method from domain knowledge. The
problem-solving method, its terminology (i.e., the object and relation types it uses) and
the knowledge acquisition environment are an implemented andfixed building block
which is called anexpert-system shell. The domain knowledge, which consists of
instantiations of the generic object and relation types of the selected problem-solving
method, is acquired during the knowledge-acquisition step. The domain knowledge is
called theknowledge base of the expert system.The terminology is problem-solving-
method-specific, but not domain-specific. The predefined terminology allows the
development of reusable graphical knowledge-acquisition tools for the domain
knowledge ([GPS93], [PoG93]). This enables domain experts to enter their knowledge
without assistance, that is, without a translation step by a knowledge engineer, and to
maintain the knowledge base. The reuse of domain knowledge for different problem-
solving methods requires additional effort. Even a method specific knowledge base
consists of problem specification and problem-solving knowledge. The problem
specification can be reused for other methods, for example in classification the same set
of observables and diagnoses may be used for heuristic, case-based and set-covering
classification, but the terminology must eventually be mapped. The problem-solving
knowledge, e.g. set-covering relations, can only be reused when explicit knowledge
transformation procedures are applied as for example in [BGG+93]. These mappings or
transformations are significantly eased by the explicit knowledge representation of the
role limiting methods, where each knowledge entry is used in exactly in way that is at
least informally specified. MYCIN rules in contrast are nearly impossible to reuse since
they contain both diagnosis rating and dialogue guidance knowledge in the same place.

The model of expertise as the result of the analysis phase in MIKE clearly separates

three types of knowledge and represents them at three different layers (see figure 2). At
thedomain layer, the domain knowledge is represented independently of its application
for the problem-solving process. It consists of the terminology of a domain, a set of rules
and constraints which model regularities in this domain, and a set of facts which
represent factual knowledge. The inference layer is used to represent the inference steps
of a problem-solving method and their data dependencies, but also defines a problem-
solving-method-specific or task-specific terminology. Domain knowledge and domain
terminology are mapped onto the inference layer and its task-specific terminology via
view definitions. Thetask layer represents the control flow between the inference steps,
that is, it can be used to define sequences, choices, and iterations of inferences.None of
these layers is fixed. Due to the flexible mapping, a domain layer can in principle be
reused for different problem-solving methods [PiS94].4

Comparing both approaches with respect to the relationship of domain knowledge and
problem-solving method, three main distinctions can be identified (see figure 3):

• CRLM views the problem-solving method as a fixed entity which is not a part of
the knowledge base. MIKE views domain knowledge and the generic control
knowledge of the inference layer and task layer as part of the knowledge base.

• CRLM only offers a terminology that is specific to a problem-solving method. A
model of expertise in MIKE contains two terminologies, that is a domain-specific
terminology at the domain layer and a problem-solving-method-specific
terminology at the inference layer.

• The relationship of the domain knowledge and the problem-solving method is
expressed by the instantiation of a generic terminology in CRLM and by defining

4. The different knowledge types can be used to refine the process model of MIKE as their
elicitation and modelling define different activities of the development process. The inference and
task knowledge can be used as a guidance for modelling domain knowledge, for example (see for
more details [NeS92]).

Task knowledge

Inference knowledge

Mapping
knowledge

begin
abstract ()
match ()

end

temperature

symptoms
indicate

refine ()

Data

abstract

Abstract match Solution

refine

Solution

classdata

illness

Domain knowledge

Fig. 3. The model of expertise of heuristic classification in KARL.

a mapping via Horn clauses extended by stratified negation (cf. [Llo87], [Prz88])
in MIKE.

CRLM and MIKE are both methods of developingexpert systems.5 Therefore, it is not
without interest to ask how both methods view the difference between expert systems
and ordinary software programs. The question of how an approach characterizes an
expert system is not only of philosophical interest but it also brings up the problem of
the scope of its applicability. Both methods aim at supporting the development process
of expert systems, and not ofarbitrary systems. Therefore, if one wants to apply one of
these methods it must be made sure that one wants to build an expert system in the sense
of the selected method.

From the CRLM point of view, the following features are essential for an expert system
(despite the fact that the performed task is meant for an expert): transparency, flexibility,
user friendliness, and competence (cf. [Pup93]). To that end, the separation of an
inference component and domain knowledge is inevitable. The inference component is
not viewed as a part of the knowledge base. Domain knowledge (i.e., the knowledge
base) can be changed without affecting the inference component. The inference
component, that is, the dynamic or control knowledge, is viewed as fixed.

In MIKE, the problem-solving method is regarded as a part of the knowledge which
consists of the three parts already mentioned: domain knowledge, inference knowledge,

5. To some extent, this is not true for MIKE. In [FAL+93] it is shown how KARL can be used to
formalize and operationalize techniques of structured analysis, which is a commonly used
approach in software engineering. Therefore, the specification of knowledge-based components
can naturally be embedded into the specification of an entire system containing also conventional
parts.

task knowledge

inference knowledge

domain knowledge

mapping

terminology

rules and constraints

facts

problem-solving method +

generic terms =
inference steps

roles

task-spec. terminology

knowledge base

instantiation

Shell

object and relation types

instances of objects and
relation types

MIKE CRLM

Fig. 4. Relationship of domain knowledge and problem-solving methods in MIKE and
CRLM.

and task knowledge. None of these parts is regarded as fixed, and the dynamic or control
knowledge which is represented at the inference layer and task layer is part of the
knowledge base. Yet, every knowledge type is clearly separated and can be manipulated
independently of the others. An expert system is mainly characterized by the kind of task
it solves. An expert system is a computer program which solves a task requiring a high
amount of knowledge and intellectual capability when a human solves the task,and this
knowledge is necessary for solving the task, that is, the problem cannot be efficiently
solved by a simple complete search through the variety of possible solutions.

While in CRLM an expert system is mainly characterized by the features of the system
and its realization, in MIKE it is mainly characterized by the features of the task it
solves. This is also reflected in the different degrees of emphasis on the individual life-
cycle phases (specification versus design/implementation) in the different approaches.

3 Degree of Mechanization
The view of theknowledge engineer´s the probably defines one of the most significant
differences between both approaches.

In MIKE, the knowledge engineer is the essential medium whose task is to bridge the
assumed deep and wide gap between the human expertise and the expert system. The
knowledge engineer has to create the model of expertise in cooperation with the expert.
The expertise which exists as skills or hidden and implicit knowledge must be
transformed into an explicit and formal model. As neither this model exists before the
knowledge-acquisition process, nor are the experts very apt at retrospectively
developing a model of their own expertise, the development of the model of expertise is
mainly the task of the knowledge engineer.

Role-limiting methods provide shells which should enable experts to write expert
systems on their own. Therefore, it is assumed that a knowledge engineer is only
required during the initial problem analysis when he or she must decide whether there
is an appropriate shell for the given task and, if so, which one should be chosen. In
CRLM, the role of the knowledge engineer is enlarged to some extent. As an application
may not perfectly fit a given shell, or a complex task may require the combination of
several shells, the knowledge engineer must configure the appropriate shell. Therefore,
he or she must elicit knowledge about the task and the appropriate problem-solving
method. The appropriate method is therefore no longer regarded as a fixed precondition
for the knowledge acquisition process, but, to some extent it also constitutes a part of its
result.

A benefit of the CRLM approach is thetool support it offers for knowledge acquisition
and knowledge evaluation. As the problem-solving method and its terminology are
fixed, the expert only has to instantiate given generic structures. Tools with graphical
interfaces can be defined and implemented in order to support this powerful means of
knowledge acquisition. Evaluation is supported by the running prototype of the system
and by additional tools that use the fixed structure and semantics of the knowledge base
imposed by the problem-solving method.

The main means of MIKE are the hypermedia tool MeMo-Kit [Neu93] and the formal
and operational language KARL. MeMo-Kit supports the process of building a
semiformal model by different customized editors and a library of informally described
reusable problem-solving methods. KARL allows a precise and unique description of
the knowledge and its evaluation by prototyping. For this purpose, an interpreter and

debugger for KARL was developed which is integrated into the MeMo-Kit
environment.

4 Reuse By Use of Specification Languages
Both approaches aim at thereuse of knowledge and software. [Kru92] compares eight
different types of software reuse. One of them is based onvery-high level languages
(VHLL) like KARL which is used by MIKE. VHLL define a higher conceptual level
than high-level programming languages like C or Modula by abstracting from efficiency
and other implementation details, while having the same or even more expressive
power. In comparison to assembler even in a high-level language a considerable reuse
rate can be achieved by grouping a set of low-level statements into a single high-level
statement. This kind of reuse is extended by VHLLs where it is possible to quickly write
powerful (though inefficient) programs. Due to their generality, they can be applied to
a broad range of tasks. KARL is neither task-specific nor domain-specific, that is, in
principle it should be possible to specify arbitrary tasks and domains in KARL. A
significant restriction is the fact that KARL cannot be used to specify real-time
problems.

MIKE and CRLM both usespecification languages which abstract from the
implementation, but differ significantly in the level of abstraction of these languages and
by the way their semantics is defined. CRLM usesproblem-solving-method-specific
representation languages. Every problem-solving method is combined with a specific
representation language that allows the expert to specify knowledge in terms of his or
her task without referring to a general-purpose representation formalism. As already
mentioned, given a complete graphical interface, this allows non-programmers to
program (i.e., to enable them to develop and maintain the knowledge base without
assistance). In contrast to KARL, these languages do not have a declarative semantics.
Their semantics is only defined by their interpreter, that is, by the shell using the
language. An implementation of a problem-solving method together with its specific
representation formalism and knowledge acquisition tools can be applied for problems
in different domains. [Kru92] classifies this approach asapplication generators,where
an application-specific (task-specific or better problem-solving-method-specific in our
terms) languages is provided that allow users to think in terms of their application (i.e.,
task). Comparing both concepts of software reuse, two comments can be made:

• On the one hand, task-specific languages are easier to learn because of their limited
range of applicability and there higher conceptual level than that of general-
purpose languages. Users can think in terms of their task instead of learning a very
general language.

• On the other hand, the limited range of task-specific languages restricts the
expressiveness of the language constructs. Different tasks or the combination of
several problem solvers require the effort of developing and learning different
languages.

Conclusion: Contradiction or Complement?
Finally, we discuss some experiences concerning the combination of MIKE with
CRLM. To some extent, both approaches are complementary and supplement each other
very well. [FEM+93] already report on a fruitful combination of a role-limiting method
approach and MIKE. In its current stage, MIKE offers significant tool support for the
early phases in knowledge engineering. The hyper model can be used to semiformally

describe a model of expertise and this description can be further refined and
operationalized by the specification language KARL. Language and tool support for the
design phase is under way. Currently, there is no support for the implementation of a
final system. The inverse holds for the CRLM approach which only supplies powerful
shells which eliminate or drastically reduce the implementation effort, but provides less
support for the early knowledge acquisition phases. By combining both approaches, a
description of a system and of the used knowledge at different complementary levels can
be achieved: First, the knowledge is described at theconceptual level in a semiformal
manner by the different layers and primitives of a model of expertise. Second, the
knowledge is described at theformal levelto define a precise and unique meaning. This
formal description makes it possible to exactly define the knowledge-based systems
without referring to implementational aspects. Third, the knowledge is described at the
implementational level by a running system. The domain knowledge can comfortably be
acquired and efficiently be executed by the shell. Since the implemented problem solver
operates directly on a representation corresponding to the problem solving method
explanation and maintainability capabilities are significantly improved.

Speaking as a cynic, both approaches fit together and supplement each other because of
the incompleteness of their current development state. On the other hand, both
approaches seem to converge regarding the kind ofreuse they aim to support in the near
future. The original RLM reused monolithic task-specific shells. An implementation of
a problem-solving method together with its task specific representation formalism and
knowledge acquisition tools could be applied for problems in different domains. CRLM
extend this as also smaller parts of problem solving methods (mechanisms) can be
reused, and new methods can be configured from the mechanisms. The knowledge
acquisition tools can be generated from a declarative description of the knowledge
representation and the views acquired in the knowledge editors. The library of CRLM
currently contain mechanisms for heuristic ([PuG92], [GPS93]) case-based [PuG91]
and set-covering classification [Pup93], methods for assignment (propose-and-
exchange [PoP92]) and for simple configuration (propose-and-revise [PFL+94]).

In MIKE, reuse is enabled by the very-high level language KARL which makes it
possible to quickly write powerful (though inefficient) specifications of problem-
solving methods and domain knowledge. A further kind of reuse in MIKE is subject of
ongoing work. Different problem-solving methods like theboard-game method
[FEM+93], cover-and-differentiate [Ang93], propose-and-exchange[LFA93] together
with their generic terminology have been specified in KARL. These collection of
problem-solving methods will be continually extended, and the formal semantics of
these models will be investigated in order to support the selection, modification, and
combination of these methods based on formal goal descriptions of a given task (cf.
[Fen93b]). A library of semiformally specified problem-solving methods which
supplements these formal descriptions is described in [Neu94].

The library of semiformal, formal and operational problem-solving methods indicates
that MIKE and CRLM are convergent. The main difference concerns the representation
of the reusable blocks, e.g. the problem-solving methods, and their descriptions. CRLM
provides an informal textual description and an efficient implementation of such a block
in a programming language. MIKE provides a semiformal description and a formal (and
operational) description, but no implemented building blocks. The formal semantics of
it can be used to derive properties of it (e.g., pre and post conditions which can be used
to guide the selection process). There is a clear need in the CRLM approach to use some
kind of precise and unique description formalisms for its implemented mechanisms in

order to support their selection and combination.

A clear distinction between the both approaches arises by the different ways to view
domain knowledge: KARL (MIKE) uses a domain-specific and a problem-solving-
method-specific terminology. The user can work in terms of his domain or of the applied
problem-solving method. In CRLM, only a problem-solving-method-specific
terminology is provided and the implemented system does not use the domain-specific
terminology. Domain knowledge is assumed to be only factual knowledge. This
restriction is necessary to define powerful generic knowledge acquisition tools. A first
step to enrich the role-limiting method approach was done byPROTÉGÉ [Mus89]
which allows the derivation of domain-specific acquisition tools, but requires structural
equivalence of domain and task knowledge. Work on thePROTÉGÉ-II framework
[PET+92] tries to define more flexible mappings between problem-solving methods and
domain ontologies which again narrows the gap between both approaches.

Acknowledgement
We thank Jürgen Angele and Dieter Landes who participated on our Sisyphus-II case
study, Gabi Rudnick for partial correction of our manuscript, and two anonymous
referees for helpful comments.

References
[AFL+93] J. Angele, D. Fensel, D. Landes, S. Neubert, and R. Studer: Model-Based and

Incremental Knowledge Engineering: The MIKE Approach. In J. Cuena (ed.),
Knowledge Oriented Software Design, IFIP Transactions A-27, Elsevier,
Amsterdam, 1993.

[AFS90] J. Angele, D. Fensel, and R. Studer: Applying Software Engineering Methods and
Techniques to Knowledge Engineering. In D. Ehrenberg et al. (eds.),
Wissensbasierte Systeme in der Betriebswirtschaft, Reihe betriebliche Informations-
und Kommunikationssysteme, no 15, Erich Schmidt Verlag, Berlin, 1990.

[AFS94] J. Angele, D. Fensel, and R. Studer: The Model of Expertise in KARL. In
Proceedings of the 2nd World Congress on Expert Systems, Lisbon/Estoril,
Portugal, January 10-14, 1994.

[Ang93] J. Angele: Operationalisierung des Modells der Expertise mit KARL
(Operationalization of a Model of Expertise with KARL), Ph. D. thesis, University
of Karlsruhe, 1993 (in German).

[BGG+93] S. Bamberger, U. Gappa, K. Goos, and K. Poeck: Teilautomatische
Wissenstransformation zur Unterstützung der Wissensakquisition (Semiautomatic
Knowledge Transformation Supporting Knowledge Acquisition). InProceedings of
the 2. Deutsche Tagung Expertensysteme (XPS-93), Hamburg, February 17-19,
1993 (in German).

[Boe88] B.W. Boehm: A Spiral Model of Software Development and Enhancement,IEEE
Computer,May 1988.

[Boo88] J. H. Boose: A Research Framework For Knowledge Acquisition Techniques and
Tools. InProceedings of the 2nd European Knowledge Acquisition for Knowledge-
Based Systems Workshop (EKAW-88), St. Augustin/Bonn, 1988.

[FAL91] D. Fensel, J. Angele, and D. Landes: KARL: A Knowledge Acquisition and
Representation Language. InProceedings of the 11th International Conference on
Expert Systems and their Applications, vol.1, General Conference Tools,
Techniques and Methods, 27-31 May, Avignon, 1991.

[FAL+93] D. Fensel, J. Angele, D. Landes, and R. Studer: Giving Structured Analysis
Techniques a Formal and Operational Semantics with KARL. InProceedings of
Requirements Engineering ´93 - Prototyping -,Bonn, April 25 - 27, 1993, H.
Züllighoven (ed.), Teubner Verlag, Stuttgart, 1993.

[FeH94] D. Fensel and F. van Harmelen: A Comparison of Languages which Operationalize
and Formalize KADS Models of Expertise. InThe Knowledge Engineering Review,
vol 9, no 2, June 1994.

[FEM+93] D. Fensel, H. Eriksson, M. A. Musen, and R. Studer: Description and Formalization
of Problem-Solving Methods for Reusability: A Case Study. InComplement
Proceedings of the 7th European Knowledge Acquisition Workshop (EKAW´93),
Toulouse, France, September 6-10, 1993.

[Fen92] D. Fensel: Knowledge Acquisition and the Interpretative Paradigm. In F.
Schmalhofer et al. (eds.),Contemporary Knowledge Egineering and Cognition,
First Joint Workshop, Kaiserslautern, Germany, February 21-22, 1991, Lecture
Notes in Artificial Intelligence, no 622, Springer-Verlag, Berlin, Juli 1992.

[Fen93a] D. Fensel:The Knowledge Acquisition and Representation Language KARL, Ph D.
thesis, University of Karlsruhe, 1993.

[Fen93b] D. Fensel: Reuse of Problem-Solving methods in Knowledge Engineering. In
Proceedings of the 6th Annual Workshop on Software Reuse (WISR´6), Owego, New
York, November 1-4, 1993.

[FGS93] D. Fensel, U. Gappa, and S. Schewe: Applying a Machine Learning Algorithm in a
Knowledge Acquisition Scenario. InProceedings of the IJCAI´93 Workshop
Knowledge Acquisition and Machine Learning, Chambery, France, August 28th -
September 3rd, 1993.

[Flo84] C. Floyd: A Systematic Look at Prototyping. In R. Budde et al. (eds.),Approaches
to Prototyping, Springer-Verlag, Berlin, 1984.

[GaP92] U. Gappa and K. Poeck: Common Ground and Differences of the KADS and Strong-
Problem-Solving-Shell Approach. InProceedings of the 6th European Knowledge
Acquisition for Knowledge-Based Systems Workshop (EKAW-92), May 18-22,
Heidelberg/Kaiserslautern, 1992, Lecture Notes in Artificial Intelligence, no 599,
Springer-Verlag, Berlin, 1992.

[GaP94] U. Gappa and K. Poeck: An Architecture for Reusing Role-limiting Mechanisms
and Knowledge Acquisition Modules, submitted, 1994.

[GPS93] U. Gappa, F. Puppe, F., and S. Schewe: Graphical Knowledge Acquisition for
Medical Diagnostic Expert Systems. InArtificial Intelligence in Medicine, Special
Issue Knowledge Acquisition, vol 5, 1993.

[KLV90] W. Karbach, M. Linster, and A. Voss: Models, Methods, Roles, and Tasks: Many
Labels—One Idea. InKnowledge Acquisition, vol 2, no 4, 1990.

[KLW93] M. Kifer, G. Lausen, and J. Wu: Logical Foundations of Object-Oriented and
Frame-Based Languages. In Technical Report 93/06, Department of Computer
Science, SUNY at Stony Brook, NY, April 1993. To appear inJournal of ACM.

[Koz90] D. Kozen: Logics of Programs. In J. v. Leeuwen (ed.),Handbook of Theoretical
Computer Science, Elsevier, Amsterdam, 1990.

[Kru92] C. W. Krueger: Software Reuse, ACM Computing Surveys, vol 24, no 2, June 1992.
[LaS94] D. Landes and R. Studer: The Design Process in MIKE. InProceedings of the 8th

Banff Knowledge Acquisition for Knowledge-Based System Workshop (KAW´94),
Banff, Canada, Januar 30th - February 4th, 1994.

[LFA93] D. Landes, D. Fensel, and J. Angele: Formalizing and Operationalizing a Design
Task with KARL. In J. Treur and T. Wetter (eds.),Formal Specification of Complex
Reasoning Systems, Ellis Horwood, Chichester, 1993.

[Lin93] M. Linster: A review of Sisyphis 91 & 92: Models of Problem-Solving Knowledge.
In Proceedings of the 7th European Knowledge Acquisition Workshop (EKAW´93),
Toulouse, France, September 6-10, Lecture Notes in Artificial Intelligenc, no 723,
Springer-Verlag, Berlin, 1993.

[Llo87] J.W. Lloyd: Foundations of Logic Programming, 2nd Editon, Springer-Verlag,
Berlin, 1987.

[Mar88] S. Marcus (ed.): Automating Knowledge Acquisition for Experts Systems, Kluwer,
Boston, 1988.

[McD88] J. McDermott: Premilary Steps Towards a Taxonomy of Problem Solving Methods.

In [Mar88].
[Mus89] M. A. Musen: Automated Generation of Model-Based Knowledge-Acquisition

Tools, Morgan Kaufmann Publisher, San Mateo, CA, 1989.
[NeS92] S. Neubert and R. Studer: The KEEP Model. InProceedings of the 6th European

Knowledge Acquisition for Knowledge-Based Systems Workshop (EKAW-92), May
18-22, Heidelberg/Kaiserslautern, 1992, T. Wetter et al. (eds.), Current
Developments in Knowledge Acquisition, Lecture Notes in Artificial Intelligence, no
599, Springer-Verlag, Berlin, 1992, pp. 230-249.

[Neu93] S. Neubert: Model Construction in MIKE (Model-Based and Incremental
Knowledge Engineering). In Knowledge Acquisition for Knowledge Based Systems,
Proceedings of the 7th European Knowledge Acquisition Workshop (EKAW´93),
Toulouse, France, September 6-10, Lecture Notes in Artificial Intelligenc, no 723,
Springer-Verlag, Berlin, 1993.

[Neu94] S, Neubert: Modellkonstruktion in MIKE - Methoden und Werkzeuge (Model
Construction in MIKE - Methods and Tools), Ph.D thesis, University of Karlsruhe,
1994 (in German).

[NPB+91] H. S. Nwana, R. C. Paton, T. J. M. Bench-Capon, and M. J. R. Shave: Facilitating
the Development of Knowledge Based Systems. InAI Communication (AICOM),
vol 4, no 2/3, 1991.

[Nwa93] H. S. Nwana: Using KADS and Generic Tasks to Model a Timetabling Problem. In
Complement Proceedings of the 7th European Knowledge Acquisition Workshop
(EKAW´93), Toulouse, France, September 6-10, 1993.

[PFL+94] Karsten Poeck, Dieter Fensel, Dieter Landes, and Jürgen Angele: Combining KARL
and Configurable Role Limiting Methods for Configuring Elevator Systems. In
Proceedings of the 8th Banff Knowledge Acquisition for Knowledge-Based System
Workshop (KAW´94), vol 3, Banff, Canada, Januar 30th - February 4th, 1994.

[PET+92] A. R. Puerta, J. W. Egar, S. W. Tu, and M. A. Musen: A Multiple-Method
Knowledge-Acquisition Shell For The Automatic Generation Of Knowledge-
Acquisition Tools,Knowledge Acquisition, vol 4, no 2, 1992.

[PiS94] T. Pirlein and R. Studer: An Environment for Reusing Ontologies within a
Knowledge Engineering Approach. In N. Guarino et al. (eds.),Formal Ontology in
Conceptual Analysis and Knowledge Representation,Kluwer, Boston, to appear
1994.

[PoG93] K. Poeck and U. Gappa: Making Role-limiting Shells More Flexible. In Knowledge
Acquisition for Knowledge Based Systems, Proceedings of the 7th European
Knowledge Acquisition Workshop (EKAW´93), Toulouse, France, September 6-10,
Lecture Notes in Artificial Intelligence, Springer, 1993.

[PoP92] K. Poeck and F. Puppe: COKE: Efficient solving of complex assignment problems
with the propose-and-exchange method. InProceedings of the 5th International
Conference on Tools with Artificial Intelligence, Arlington, Virginia, USA,
November 10-13, 1992.

[Prz88] T. C. Przymusinski: On the Declarative Semantics of Deductive Databases and
Logic Programs. In J. Minker (ed.),Foundations of Deductive Databases and Logic
Programming, Morgan Kaufmann Publisher, Los Altos, CA, 1988.

[PuG91] F. Puppe and K. Goos: Improving Case-based Classification with Expert
Knowledge. InProceedings of the 15th German Workshop on Artificial Intelligence
(GWAI-91), Bonn, September 16-20, 1991.

[PuG92] F. Puppe and U. Gappa: Towards Knowledge Acquisition by Experts. InIndustrial
and Engineering Applications of Artificial Intelligence and Expert Systems,
Proceedings of the 5th International Conference IEA/AIE-92, Paderborn, June 9-12,
1992.

[Pup93] F. Puppe:Systematic Introduction to Expert Systems: Knowledge Representation
and Problem-Solving Methods, Springer-Verlag, Berlin, 1993.

[Sch92] G. Schreiber:Pragmatics of the Knowledge Level, Ph D. Thesis, University of
Amsterdam, 1992.

[ScS93] S. Schewe and M. A. Schreiber: Stepwise development of a clinical expert system

in rheumatology, InThe Clinical Investigator, 1993.
[Ste93] L. Steels: The Componential Framework and its Role in Reusability. In J.-M. David

et als (eds.),Second generation expert systems, Springer, Berlin, 1993
[SWB93] G. Schreiber, B. Wielinga, and J. Breuker (eds.):KADS. A Principled Approach to

Knowledge-Based System Development, Knowledge-Based Systems, vol 11,
Academic Press, London, 1993.

[ThD90] R. H. Thayer and M. Dorfman (eds.):System and Software Requierements
Engineering, IEEE Computer Society Press, Los Alamitos, California, 1990.

