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Abstract. Within the present paper we investigate case-based represen-
tability as well as case-based learnability of indexed families of uniformly
recursive languages. Since we are mainly interested in case-based lear-
ning with respect to an arbitrary fixed similarity measure, case-based
learnability of an indexed family requires its representability, first.

We show that every indexed family is case-based representable by po-
sitive and negative cases. If only positive cases are allowed the class of
representable families is comparatively small. Furthermore, we present
results that provide some bounds concerning the necessary size of case
bases.

We study, in detail, how the choice of a case selection strategy influences
the learning capabilities of a case-based learner. We define different case
selection strategies and compare their learning power to one another.
Furthermore, we elaborate the relations to Gold-style language learning
from positive and both positive and negative examples.

1 Introduction

Case-based reasoning is currently a booming subarea of artificial intelligence. In
case-based reasoning knowledge is represented by a collection of typical cases
in the case base and a similarity measure, instead of using any form of rules or
axioms, for example. It is widely accepted that this approach may be considered
as an reasonable model of how human experts structure their knowledge. Within
case-based reasoning, case-based learning as understood in [1] seems to be of
particular interest.

There are three possibilities to improve the knowledge representation in a
case-based learning system (cf. [5]). The system can

— store new cases in the case base or remove cases from the case base,
— change the measure of similarity,
— or change both the case base and the similarity measure.

* This work has been supported by the DEUTSCHE FORSCHUNGSGEMEINSCHAFT (DFG)
within the project IND-CBL.



In [7] a formalization of case-based learning in an Inductive Inference manner has
been introduced. As it turns out case-based learning algorithms are of remarkable
power, if effective classifiers should be learned, for instance. This power mainly
results from one source, namely the ability of the case-based learner to change
the underlying similarity measure within the learning task arbitrarily. Thereby,
all knowledge will be more or less directly encoded within the similarity measure,
no matter which cases have been stored in the case base. In order to overcome
such undesirable encoding tricks we investigate case-based learning under the
assumption that the underlying similarity measure cannot be changed during
the whole learning task.

On a first glance, this approach seems to be too restrictive. Nevertheless,
the results in [8] witness that also under this assumption interesting classes
of formal languages are case-based learnable. Since we are mainly interested in
investigating the problem of how the choice of a case selection strategy influences
the learning capabilities of case-based learners, the above assumption seems to
be particularly tailored.

In the sequel we confine ourselves to learning of indexed families of formal
languages. Because of the underlying assumption that a case-based learner is not
allowed to change its measure of similarity, case-based learnability of an indexed
family requires its representability, first. In Section 3 we show that every indexed
family is case-based representable by positive and negative cases. If positive
cases are allowed, only, the class of representable families is comparatively small.
Furthermore, the minimal size of case bases is discussed.

If we have a fixed measure of similarity the learning capability of a case-
based learning system depends on the strategy used to select the cases for the
case base, only. Section 4 discusses the influence of the following properties a
case selection strategy may or may not have:

Access to case history: Isthe case selection strategy allowed to store any case
that is already presented or has the strategy access to the last one, only?

Deleting cases from the case base: Is the case selection strategy allowed to
delete cases from the case base or does the case base grow monotonically?

The different case selection strategies define different types of case-based lear-
ning. We elaborate relations between these types of case-based learning and
relate them to Gold-style language learning from positive and both positive and
negative examples.

2 Preliminaries

The definitions of this section are adapted from the Inductive Inference literature
(cf. [2]). Our target objects are (formal) languages over a finite alphabet A. By
AT we denote the set of all non-empty strings over the alphabet A. Any subset
L of A%t is called a language. We set L = AT\ L.

By N ={1,2,...} we denote the set of all natural numbers. Let ¢ : Nx N —
N denote Cantor’s pairing function. We use Q[o,1] to denote the set of all rational



numbers between 0 and 1. We write B Cy;, €, if B is a finite subset of C.
Furthermore, by card(B) we denote the cardinality of set B.

There are two basic ways to present information about a language to a lear-
ner. We can present positive data only or positive and negative data. These
presentations are called texzt and informant, respectively. A texzt for a language
L is an infinite sequence ¢t = (s1,b1), (s2,b2), ... ((sj,b;) € A* x {+}) such that
{s;j | j € N} = L. t[k] is the initial sequence (s1,b1),(s2,b2), ... ,(sk, bx) of t. We
set tT[k] = {s; | 7 < k}. Let tezt(L) denote the set of all texts of L. An informant

for a language L is an infinite sequence i = (s1,b1), (s2,b2),... ((sj,b;) € AT x
{+,—1}) such that {s; | jE N, bj =+}=Land {s; | j €N, b; = —} = At\L.
i[k] is the initial sequence (s1,b1),(s2,b2), ..., (s, bx) of i. Furthermore, we set

itk ={s; | j <k, bj=+}and i"[k] ={s; | j <k, bj = —}. By informant(L)
we denote the set of all informants of L. Without loss of generality we assume
that t[k] (i[k]) is a natural number that represents the initial segment of the text
(resp. informant).

We restrict ourselves to investigate the learnability of indexed families of
recursive languages over A (cf. [2]). A sequence £ = Ly, Lo, ... is said to be an
indexed famaly if all L; are non-empty and there is a recursive function f such
that for all indices j and all strings w € AT holds

. 1 fwel;
f(J,'w)I{ !

0 otherwise

So given an indexed family £ the membership problem is uniformly decidable
for all languages in £ by a single function.
IF denotes the set of all indexed families.

The following definition is adapted from [2]. We use f(z) | to denote that a
function f is defined on input z.

Definition1. Let £ € IF.
Then we say L is learnable from text (vesp. learnable from informant)

iff
dM e P VL € L Vt € text(L) (resp. Vi € informant(L))

(1)Vn e N M(t[n]) | (resp. Yn € N M(i[n]) |),
(2) nh—rnolo M(t[n]) = a exists (resp. nan;O M (i[n]) = a exists),
(3) Ly =L.

LIM.TXT (LIM.INF) is the set of all indexed families that are learnable from
text (informant).

P denotes the set of the unary computable functions.



3 Case-Based Representability

This section summarizes the results obtained about case-based representability.
First we have to define the language that is described by a set of cases and a
similarity measure.? ¢ : At x AT — Q[o,17 is called a measure of similarity. X
denotes the set of all totally defined and computable similarity measures. Let
Y01} € X be the subset of all similarity measures that have the range {0, 1}.

We use the so called standard semantics Lg; (cf. [8]).

Definition2. Let CB Cyi, At x {+,—} and ¢ € ¥ a similarity measure.
Furthermore, let CB* := {s | (s,+) € CB}, CB™ := {s | (s,—) € CB}. Then
we say C'B and o describe the language Ly (CB,0) = Ly (CBY,CB™ o) :=
{w e At |Ic € CB* (o(c,w) >0AV € CB o(c,w) > o(c',w))}.

Definition3. Let £ € IF and o € Y.
Then, £ € REPR* (o) iff for every L € L there is a CB* Ctin L such that
Ly (CB*,0,0) = L. Moreover, £ € REPRi(U) iff for every L € L there are
CB* C4in L and CB™ Cy; L such that Ly (CBY,CB~,0) = L.
Let REPRY := |J, .y REPRY(0) and REPR* := | J, _;, REPR*(0).

So £L € REPRT (L ¢ REPRi) means that there is a o such that £ €
REPR*(0) (£ € REPR*(0)).

If we allow only positive cases to be stored in the case base, we have the
following lemma, which follows directly from Definition 2.

Lemma4. For any similarity measure o € X, there exists a measure o' € Xy 1)
such that REPR*(0) = REPR™ (o).

Applying the results of [8] we obtain:
Theorem 5. REPRT C IF

In [8] it is proved that the family of pattern languages are not representable
with positive cases.

On the other hand, it is possible to represent every indexed family if positive
and negative cases can be stored within the case base.

Next, we introduce the concept of representative cases for languages. Let
L C At we L, and ¢ € ¥. w is said to be a representative case for L w.r.t. o
provided that o(w,v) > 0 iff v € L. The notion of representative cases will be
used subsequently in order to simplify some of the proofs.

2 These definitions are adapted from [7].



Theorem 6. REPR* = IF

Proof. Let £ = Lqi,Ls,... be an indexed family. Instead of £ we use another
enumeration £ which mdudes the range of £. We set L= Ll,LQ, ... such that
for all j € N, L2] = L; and L2] 1 = AT. Furthermore, let w1, wa,... be the
lechographlcal enumeratlon of the strings over AY.

We define the following total recursive function 7 : N — N. Initially, we set
r(1) = 1. We proceed inductively. Let i > 1. We set r(i) = j, if j is the least
index satisfying w; € Ej and r(k) # j, for all k£ < 4.

Since for all j € N, Egj_l = A%, ris indeed total recursive. If r(i) = j, then
w; 1s a representative case for Ej. Moreover, we can easily conclude:

Claim 1: For every j € N, if Ej is infinite, then there is a & € N such that
r(k)=7j.

Now, we use r to define the desired similarity measure o. Let k, 7 € N.

1 if Wy = wj
o(wg,wj) = 1—m if r(k) =1, w; € L \ {wy}
0 otherwise

Claim 2: £ € REPR*(0).

Let j € N. First, suppose L; to be infinite. By Claim 1 there is an ¢ € N
such that r(7) = 2j. Note that LQJ = L;. Moreover, w; € L2] by construction.
Since w; is a representative case for LQJ, we obtain Ly ({w;},0,0) = sz =17I;.

It remains to handle the case that L; is finite. Now, let z € N such that w, is
the maximal element in L;. By Claim 1 there are infinitely many representative
cases for At. Hence, there is a k > z such that r(k) = 2m — 1 for some m € N.
By the choice of k, w, € L; L Furthermore, for all w € sz and all
v e At \ {w}, it holds o(wy, v) > U(w, )) . Thus, Lst(sz, {wr},0) = Lyj = L;.

Hence, the theorem is proved. a

As we have seen, every £ € REPR™ can be represented by a measure from
Y{0,1}- Recently, Billhardt (cf. [4]) has shown that this results remains valid, if
case bases containing both positive and negative cases are admissible. The un-
derlying idea is quite similar to that used in the definition of the representatives
in the last proof.

Lemma 7. For every indezed family L € REPRi, there exists a o € Yyg 1)
such that L € REPR:E(O').

Notice that Billhardt’s as well as our proof mainly exploit the fact that a case
base used in order to represent a language has not necessarily to be computable
itself. If we assume that the finiteness of L; is decidable for all j € N, then the
case bases are computable.

Furthermore, from a practical point of view it seems to be rather natural to
choose the corresponding case bases as small as possible. Applying the construc-
tion underlying the proof of Theorem 6, at least some finite languages will be



represented by putting all their elements into the corresponding case base. As
we will see, we can do better.

Theorem 8. Let L € IF. Then there ezists a 0 € ¥ such that for every L € L,
there are CBT C L and CB~ C L with card(CB*) = 1 and card(CB™) < 1
such that Ly;(CBY,CB™,0) = L.

Proof. We use a slightly modified version of the concept of representatives in-
troduced in the proof of Theorem 6. Let £ = L1, Lo, ... be an indexed family.

In order to obtain the desired result the following similarity measure is used.
Again, let (w;);en be the lexicographical enumeration of the strings over At.
Let jk€ Nand ve AT,

Case 1: wej ) € Lj.

Then we set:

1 lf wc(jyk) =
o(wej ), v) =4 1= s VY E Li\Awe(j i}
c(j,i)+2 vEL;
Case 2: weijr) € Lj.
Now we set:
1 if We(j k) =V
a(wei ), v) = L= sgm v € Li \{wen)}
c(j,i)+2 vEL;

By definition, & belongs to Y. Moreover, for every j, k € N, the string w.(; r)
serves as a representative case for either L; or E Now, let j € N. In order to
show that every L; € £ can be represented with respect to o, we distinguish the
following cases.

— Case 1: L; = At.
We simply choose C'Bt = {w;} and CB~ = (). By definition, o(w;,v) > 0
for all v € A*. Thus, Ly (CBY,CB~,0) = A*.
— Case 2: L; # At.
We proceed as follows. Choose any two strings w,, w; satisfying w, € L;
and w; & Lj, respectively. Consider the string we;j . 42).
e Subcase 2.1: we(j .42) € Lj.
By definition w,(; .4y is a representative case for L;. Therefore, set
CB* = {w(j .45} and CB~ = {w:}. By definition of o we have for all
v E Lj, o(we(j 242y, v) > 0(w;,v) because c(j, z42) > 2 (cf. Case 1in the
definition of ). On the other hand, applying the same argument yields
O(We(j 242y, v) < o(wz,v) forallv € L;. Therefore, Ly;(CB*,CB~,0) =

L.



e Subcase 2.2: we(; .12 € L.
In contrast to Subcase 2.1, now We(j,242) SELVES as a representative case
for Lj. Consequently, let CB¥ = {w,} and CB~ = {Wwe(j 242} Finally,
Ly (CB*,CB~,0) = L; can be shown in a similar manner as above. We
omit the details.

By construction we have card(CB*) =1 and card(CB~) < 1 in each of the
discussed cases. This finishes the proof. a

Again, the corresponding case bases are not computable. Nevertheless, if we
can assume that “L; = A*” is decidable for all j € N, the case bases themselves
are computable as well.

4 Case-Based Learnability

Based on the representability results of the last section we now study case-based
learnability of indexed families.

Definition9. An indexed family £ is said to be case-based learnable from text
by the case selection strategy S : N — A+ x {+} iff
doe VL € LVt € text(L)

(1) Vn € N CB, = S(t[n]) |, and S(t[n]) C t*[n] x {+},
(2) CB= nh—»nolo C B, exists,

(3) Lyw(CB,o) = L.

Definition10. An indexed family £ is said to be case-based learnable from
informant by the case selection strategy S : N — At x {4+ -} iff
do e VL € L Vi € informant(L)

(1) ¥n € N OB, = S(i[a]) 1, and S(i[n]) € (i*[] x {+})U (" [n] x {~}),
(2) CB= nlirrgo C B, exists,

(3) La(CB,o)=L.

By our underlying assumption the learner is not allowed to change the mea-
sure of similarity during the learning process. Therefore, its learning capability
depends on the case selection strategy, only.

Let us first informally describe possible dimensions that characterize our case
selection strategies.

Access to case history: Is the case selection strategy allowed to store any case
that is already presented or has the strategy access to the last one, only?

Deleting cases from the case base: Is the case selection strategy allowed to
delete cases from the case base or does the case base grow monotonically?

With respect to these dimensions we can define types of case selection stra-
tegies. Let C'Bj be the case base constructed when a learner has seen an initial
sequence of length k.



Definition11. Let S be a case selection strategy. Then S is said to be of type®
MO-LC, MO-RA, DE-LC, and DE-RA respectively, iff the corresponding
condition holds for all k € N (CBg := 0).

MO-LC CBy,_1 CCBr, CCBr_1 U {(Sk,bk)}
MO-RA CBk_l gCBk g {(51,b1);~~~,(5k,bk)}
DE-LC CB, CCBr_1U {(Sk,bk)}

DE-RA CBk g {(517b1)7~~~;(5k;bk)}

We use these abbreviations as prefixes to CBL.TXT and CBL.INF. For
example, £ € DE-RA-CBL.TXT means that there is a case selection strategy
S € DE-RA such that £ can be learned by S in the sense of Definition 9.

Strategies of type MO-RA and DE-RA, respectively, may store multiple
cases in a single learning step. If we demand that strategies of both types store
at most a single case in every learning step their learning capabilities will not
change.

Because many existing systems simply collect all presented cases, we model
this approach, too. A case selection strategy S is said to be of type? CA, if
CBy = {(sj,b;) | j <k} forall ke N.

It is possible that a CA-CBL.TXT-strategy leads to a case base of infinite
size, for instance, if the language that is described by a text is infinite. So we
have to define what it means that such a strategy learns successfully.

Definition12. Let £ be an indexed family. We say £ € CA-CBL.TXT iff
do e X VL € LVt € text(L)

(1) Vn € N OB, =t*[n] x {+},
(2) 3j €N Lyt(CBy,0) = L for all k > j.

CA-CBL.INF is defined analogously.

We say £ € CA-CBL.TXT if for all texts of L, (Ls:(CBp, 7)), ¢ converges
semantically. This is somehow comparable to the notion of convergence underly-
ing the identification type BC in Inductive Inference of recursive functions [3].
All other case-based learning types demand that the sequence (CBj)nen itself
has to converge.

4.1 Learning from Text

In this section we study case-based language learning from positive cases. The
first theorem shows that representability and learnability are incomparable.
7 denotes set incomparability.

Theorem 13. LIM.TXT # REPR*

3 MO stands for “monotonically”, DE for “delete”, RA for “random access® and LC
for “last case”
* CA stands for “collect all”



To prove that there are representable classes that cannot be learned from text
look at the indexed family £ with L; := {a}¥ and for j > 1, L; := {a* | 1 <
k < j}. L is representable but is not learnable from text. On the other hand the
family of all pattern languages is learnable but not representable (cf. [8]).

Theorem 14. LIM.TXT N REPR*' = DE-RA-CBL.TXT

Proof. For “C” let £L = L1, Lo, ... be any indexed family with £ € LIM.TXTnN
REPR™. In order to show £ € DE-RA-CBL.TXT, we try to simulate a lear-
ning strategy M which LIM.TXT-identifies £. To do so, we have to interleave
two limiting processes.

Let o € ¥ such that £ € REPR™* (¢). Moreover, assume any effective enu-
meration (Fy)ren of all finite subsets of At Since ¢ € ¥ and membership is
uniformly decidable in £, we may conclude:

Claim: There exists a total recursive function f : N x N — N such that for
all j € N:

(1) Vz f(j,z) 1,
(2) limg_o = a exists,

(3) Fq CLjand Ly(Fa,0,0)=1L;j.

Thus, on input j f may be used to compute in the limit a finite case base
for L;.

On the other hand, assume any M € P which LIM.TXT-identifies £. Now
let L €L, t=(s1,+),(s2,4),... be any text for L, and ¢ € N. The desired
case-based learner S will be defined as follows:

— Compute j, = M(t[z]).
— Compute z; = f(js, ).
— If F,, Ct*[z], then set CB} = F,_. Otherwise, set CB} = {s1}.

Finally, taking into consideration that M infers L on text ¢ it follows by the
claim above that S converges to a correct case base for L. By definition S is
indeed a case selection strategy of type DE-RA. a

Theorem 15.

(1) MO-LC-CBL.TXT C DE-LC-CBL.TXT
(2) DE-LC-CBL.TXT C DE-RA-CBL.TXT
(3) DE-RA-CBL.TXT C LIM.TXT

Proof. We only prove Assertion (1). The remaining part can be handled in a
similar manner.

By definition MO-LC-CBL.TXT C DE-LC-CBL.TXT. Let L; = {a}*,
Ly = {a,b} and for all j > 2, L; = {a’~1}. We show that £ = (L;);en witnesses
the desired separation.

Claim 1: £ ¢ MO-LC-CBL.TXT

Suppose the converse, i.e., L € MO-LC-CBL.TXT. Let o denote the un-
derlying similarity measure. Obviously, for every k > 1, the string a* has to



serve as a representative case for the singleton language {a*} € £. Furthermo-
re, L1 = {a}T has to be representable w.r.t. o, too. Consequently, the string
a has to be the only representative case for L; w.r.t. . Now, suppose S is a
MO-LC-CBL.TXT-strategy for £. Assume that, initially, (a,+) is presented
in a text for Ly and Lo, respectively. Now, it is easy to verify that S, when
putting (a,+) into the case base, definitely fails to learn Ly because S is not
allowed to delete (a,+) subsequently. On the other hand, if (a,4) will not be
included in the case base, S fails to learn L on its text ¢t = (a,+),(a?, +),. ..
because o(a*,a) = 0 for all k > 2. Thus, S is fooled, a contradiction.

Claim 2: £ € DE-LC-CBL.TXT.

Recall that a DE-LC-CBL.TXT-strategy S is allowed to delete cases from
its actual case base. Obviously, S can be easily defined provided that the under-
lying similarity measure o fulfills the following requirements:

— a is representative for L w.r.t. o,
— b is representative for Ly w.r.t. o,
— for all k > 1, a® is representative for Ly41 w.r.t. o.

We omit the details. O

Theorem 16.

(1) CA-CBL.TXT C MO-LC-CBL.TXT

(2) MO-LC-CBL.TXT C MO-RA-CBL.TXT
(3) MO-RA-CBL.TXT C DE-RA-CBL.TXT

Proof. Again we present only the proof of the first Assertion. First, we show
CA-CBL.TXT C MO-LC-CBL.TXT. As we will see, this is the most in-
teresting part of the proof. Let £ be an indexed family of languages over the
alphabet A that is learnable by a CA-CBL.TXT-strategy using o. In order to
show £ € MO-LC-CBL.TXT we define a different similarity measure ¢. This
will be done in two steps.

Without loss of generality we assume o € Yo 1}. Moreover, assume for all
w € A%, o(w,w) = 1. Furthermore, let wy,ws, ... be an effective enumeration
of all strings in A*.

— Step 1: For all j, k € N, we set 6(w;, wy) = o(w;, wg), if j < k. Otherwise, set
o(w;j,wy) = 0. It is easy to verify that £ is learnable by a CA-CBL.TXT-
strategy S using &.

— Step 2: The definition of ¢ is based on ¢. Let j, k € IN. Then we set
&(wj,wy) = 1, if there are indices j1 < j» < ... < j such that j; = j,
Jn = k as well as o(wj,,,wj,,,) = 1 for all m < n — 1. Otherwise, set
5’('wj s 'wk) = &(’w]', 'wk).

Now, we may conclude:
e Observation A: Let j € N, and B C Lj. Then Ly(B,0,6) C
Lst(B,(b,a') g Lj.
To see this, assume any v € Ly (B,0,5) which does not belong to L;.
By definition there has to be a w € B such that &(w,v) = 1. Hence,



there are strings w = $1,...,8, = v such that 1 = &(s1,82) = -+ =
6(sn—1,v). Since £L € CA-CBL.TXT by S wr.t. 6, w € L; together
with &(w, s2) = 1 directly implies s, € L;. By iterating thls argument
we obtain s, = v € L;. This contradicts our assumption that v ¢ L;.

e Observation B: Let j € N, B C L;j, and w € A*. Then, w € Ly(B,0,5)
implies Ls(B,0,6) = Lye(BU{w}, 0, 7).
This observation can be proved in a similar manner.

Now, we are ready to define a strategy 7' witnessing £ € MO-LC-CBL
w.rt. 5. Let L € £ and let t = (s1,4),(82,4),... be any text for L. Initially,
set CB; = (s1,4+). Let k € N.

— If 41 & Ls:(CBg, &), then set CBgpy1 = CBr U{(sk+1,+)}
— Otherwise, set C'Biy1 = CBy,

Since S learns L from ¢t by simply collecting all cases, there is an z €
N such that Lg(t*[z],0,6) = L;. By Observations A and B it follows
Li = Ly(tt[2],0,6) C Lu(t*[z],0,5) = Lu(CBy,5) C Lj. Consequently,

L(CBg,6) = Lj. By the definition of T' we have OBy = C'Bgy, for all r € N.

Thus, T works as required.

Finally, we show MO-LC-CBL.TXT \ CA-CBL.TXT # 0.

Let L := {a® | k € N}, and for k € N, Lj := {a3% a3**!}. Let £ be an
enumeration of L and all L. As we will see, £ witnesses the separation.

Claim 1: £ ¢ CA-CBL.TXT

Suppose there is a k € N such that ¢(a3*, w) > 0 for infinitely many w € A*.
Then Lj cannot be learned by a CA-CBL.TXT-strategy for the following
reason. If the text t = (a®*,+),(a®**+! +), (a®**+1,+),... is presented, then
card(Ls(t*[j],0,0)) = oo for all j € N. But the language described by the
text ¢ is finite.

Suppose there is no k& € N such that o(a®,w) > 0 for infinitely many
w € AT, Then L is not representable by finitely many cases. Therefore, £ ¢
CA-CBL.TXT is proved.

Claim 2: £ € MO-LC-CBL.TXT

We need a similarity measure that fulfills the following requirements. Each
a®® is a representative for L and each a3**! is a representative for L. Such a
measure exists, because the set of representatives for the languages are pairwise
disjoint. The corresponding MO-LC-CBL.TXT-strategy waits for a ¢3**! and
the second a3, respectively, and stores it in the case base. a

Theorem17. MO-RA-CBL.TXT # DE-LC-CBL.TXT

Proof. MO-RA-CBL.TXT \ DE-LC-CBL.TXT # 0: Let L; := {a}* and
Lj :={a,a’} forall j > 2. Let £ = (L;)jen. Using similar ideas as in the proof of
Theorem 15 one can show that £ € MO-RA-CBL.TXT\DE-LC-CBL.TXT.

DE-LC-CBL.TXT \ MO-RA-CBL.TXT # (): Let £ be an enumeration
of L1 = {a}*, Ly = (L1 U {b*}) \{a*} for k > 1, Ly = {a*} for k > 1. Then
L € DE-LC-CBL.TXT \ MO-RA-CBL.TXT. O
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Fig. 1. Relationship between the learning types

These theorems show that both random access to the already presented cases
and the ability to delete cases from the actual case base increase the learning
power of a case-based learning system. But neither subsumes the other.

Figure 1 illustrates the relationships between all types of case-based learning
from text. A path from type T} to type T5 indicates that 7T} is a proper subset
of T2 .

4.2 Learning from Informant

Learning from informant is more powerful than learning from text. It is known
that every indexed family is learnable from informant. The main result of this
section is that every indexed family is case-based learnable with an appropriate
fixed measure.

Theorem 18. IF = LIM.INF = DE-RA-CBL.INF

Proof. TF = LIML.INF follows from [6]. LIM.INF = DE-RA-CBL.INF can
be shown using the same idea as in the proof of Theorem 14. a

If we consider case-based learning from informant the relations between the
case-based learning types change. If the case selection strategy is either allowed
to store any case from the informant or to drop cases from the case base, every
indexed family is learnable.

Theorem 19.
(1) MO-RA-CBL.INF = IF
(2) DE-LC-CBL.INF =1IF



Proof. 1t suffices to show ITF C MO-RA-CBL.INF as well as ITF C
DE-LC-CBL.INF. The main idea is to define the target case selection strate-
gies w.r.t. the similarity measure o introduced in the proof of Theorem 8. We
omit the details. ad

From the last theorem we can easy conclude that the learning capability will
not increase if we combine both free access to the case history and the ability to
delete cases from the case base.

Corollary 20. DE-RA-CBL.INF = IF
Theorem 21. MO-LC-CBL.INF C IF

Proof. Let A = {a} be an alphabet. £ is an indexed family that contains AT,
all finite languages and At \ {a*} for all ¥ € N. Then £ ¢ MO-LC-CBL.INF.

Suppose to the contrary that there is a strategy S and a similarity measure
o such that £ € MO-LC-CBL.INF by S w.r.t. 0. Because S learns At there
has to be an informant ¢ for AT and an z € N such that for all w € AT,
S(i[z]) = S(i[z], (w,+)) = CB, C it[z] x {+} and Ly(CB;,0) = At. Let
L =it[z].

Now, taking into account that S has to learn L, in particular, when fed
any informant i that has i[z] as prefix, we can conclude: There are distinct
w,v € L such that for all u € OB}, o(u,v) < o(w,v). Otherwise, S would
fail to learn L when fed i because for all y > z, C'B, C S(i[y]) and, therefore,
v € Lgt(S(i[y]), o), but v € L

Now, choose w,v € L such that for all u € CB*, o(u,w) < o(v, w). Finally,
consider S when fed the initial segment i[z], (w,+), (v, —). We distinguish two
cases.

— Let S(i[z], (w,+), (v,—)) = CB,. Then S fails to learn L = {a}* \ {v} on
each of its informants that have the prefix i[z], (w,+), (v, —) and contain the
case (v, —) exactly once.

— Now, let S(i[z], (w, +), (v,—)) = CBzU{(v, —)}. Obviously, this implies that
S fails to learn L = L U {w} on every extension of i[z], (w,+), (v, —) which
yields an informant for L containing the case (w,+) exactly once.

Hence, in each of the above cases S can be easily fooled, a contradiction. O
Theorem 22. CA-CBL.INF \ MO-LC-CBL.INF # ()

Proof. Let £ be the family of all finite and co-finite languages. We show that
there exists a o € X such that £ € CA-CBL.INF w.r.t. 0. Let m,n € N.

1 ifm=mn
o(a™,a")=¢1-L m<n

0 otherwise



By definition for all m € N, it holds Ly ({a™},0,0) = {a” | n > m} as well
as Ls(0,{a™}, o) = 0. Furthermore, assume any sets B,C' C {a}* such that
BNC =0 and BUC = {a" | n < m}. Then, Ly ({a™}UB,C,0) = BU{a" | n >
m} as well as Ly (B,{a™} UC,o) = B. Finally, taking both properties of o
into consideration it is easy to verify that the family of all finite and co-finite
languages is learnable by a case-selection strategy which simply collects all cases.

It remains to prove that £ is not in MO-LC-CBL.INF. This follows directly
from Theorem 21 where we have already shown that a proper subfamily of £
does not belong to MO-LC-CBL.INF. This completes the proof. a

While the learning power of CA-CBL.TXT is very limited CA-CBL.INF
contains remarkably rich indexed families like that used in the proof above.

5 Conclusion

Within the present paper we studied different types of case-based learning of
indexed families from positive data and both positive and negative data. Follo-
wing the approach in [8], we considered case-based learning with respect to an
arbitrary fixed similarity measure. Thereby, we focused our attention on the pro-
blem of how the underlying case selection strategies influence the capabilities of
case-based learners. In order to answer this question a couple of new results con-
cerning case-based representability of indexed families have been achieved. As it
turns out, the choice of the case selection strategy is of particular importance, if
case-based learning from text is investigated. If both positive and negative data
are provided, even quite simple case selection strategies are sufficient in order to
exhaust the full power of case-based learning.

From our point of view, further investigations concerning case-based learning
of indexed families should be oriented in the following way. On the one hand, it
seems to be rather natural to give up the assumption that a case-based learner
is allowed to use the whole history of the learning task in order to determine
its next hypothesis. This may lead to the notion iteratively working case-based
learning strategies (cf. [7]). On the other hand, when formalizing case-based
learning one has to take into consideration that in existing systems a case-based
learner has the freedom to change the underlying similarity measure during the
learning task, too.
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