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Abstract. We report on the results of a project which applied LOTOS
to safety-critical case studies, determined the verification needs of real
life applications, and developed tools for ASN.1 to LOTOS translation
and equational reasoning.

Verification Techniques for LOTOS [ISO:8807] was a collaborative project,
from 1989 to 1993, funded by the UK SERC/IED research program.! The project
involved four partners: British Telecom PLC, Rutherford Appleton Laboratory,
University of St Andrews (the lead partner) and University of Glasgow.

The aim of the project was to investigate the verification requirements of LO-
TOS specifications, and to determine the applicability of equational reasoning
and term rewriting to discharging those requirements. In this paper we sum-
marise some of the major achievements of the project.

The first section contains a summary of our results in five main areas. The
second section contains an overview of the case studies developed for the project
and the third section contains an overview of the some aspects of the verification
and validation requirements which were considered in the project. Software de-
velopment is discussed in the fourth section and in the final section we conclude
with some comments on collabaration within and outwith the project.

1 Summary of Results

1.1 Case studies

Major case studies were undertaken in safety-critical application areas in collab-
oration with researchers from end user organisations including:

— A medical information bus, in collaboration with Royal Free Hospital School
of Medicine.

A control device for a radiation machine, carried out in collaboration with
DEC/SRC Palo Alto.

— A secure login protocol in collaboration with a major UK defence contractor.
— GKS, graphical kernel system, in collaboration with numerous end-users.

These studies extended the use of LOTOS, commonly thought of as appropriate
only for specifying protocols, by showing how it could be used in a variety of
safety critical applications. They also showed the importance of formal specifi-
cations for uncovering errors. Further details are given in Section 2.
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1.2  Verification requirements

A clear understanding was obtained of the diverse verification requirements that
different applications of LOTOS may generate, gained from both theoretical
analysis and investigation of case studies. Further details are given in Section 3.

We concluded in particular that it is often the simplest of verification require-
ments, such as animation, prototyping or correct translation, that are the most
important to users, and that any methodology should give some guidance as to
what to do if the verification requirements are not satisfied. These conclusions
seem to be in line with those of Craigen et al [25].

1.3 Discharge of verification requirements

A clear understanding was obtained of the most appropriate way to use tools in
the discharge of these requirements. Further details are given in Section 3.2.

Again our results are in line with [25]: tools should be simple and provide au-
tomated support of common decision procedures, together with useful guidance
when proofs fail.

In particular the Larch Prover, LP [15], was used in the discharge of require-
ments in two of the main studies described above, and proved ideal for the rapid
development and debugging of proofs.

Our own MERILL system [16] incorporates experimental techniques devised
more specifically to discharge verification requirements.

1.4 The ASN.1 to LOTOS translator

The ASN.1 to LOTOS translator is a software tool for translating data type
specifications written in the language ASN.1 into LOTOS. The project was car-
ried out by Dr. M. Thomas at the University of Glasgow at the request of the
standards group at British Telecom.

This project proved to be a successful application area for formal meth-
ods: formalisation of ASN.1 revealed several inconsistencies and omissions from
the language design, and functional programming as a prototyping tool enabled
quick and effective communication between language designers, implementors,
and users. The translator is not only the first formally specified tool for ASN.1,
but it is also the first translator for the complete language.

Further details are given in Section 4.1.

1.5 The MERILL prover

MERILL is an equational reasoning theorem prover based on first order term-
rewriting. It is highly reconfigurable with an advanced user interface. It supports
order sorted logic, which allows the succinct representation of many complex
problems.

MERILL incorporates original work in the areas of termination, divergence,
order-sorted logic, and completion strategies.

A full description is given is Section 4.2.



2 Case studies

2.1 Medical Information Bus

The Medical Information Bus [3] is a proposed family of standards intended to
set forth specifications and guidelines for the definition of a Local Area Network
for the interconnection of computers and medical devices. In this case study
LOTOS was used to specify one of the protocols from the MIB and the Larch
Prover LP to carry out automated verification.

The essential activities which are captured in this case study are the ser-
vices which an LLC entity must provide to higher layer users, together with how
these services are implemented using the services provided by lower layer proto-
col entities. Thus two specifications are presented and the verification problem
is that of demonstrating that these separate viewpoints are consistent. This is
done automatically in LP by reasoning with a set of axioms for observational
congruence. Since the MIB 1s not formally specified, one contribution of the work
1s formalisation of these standards and this inevitably involved resolving ambi-
guities in the natural language descriptions. The work was carried out jointly by
researchers at St Andrews and the Royal Free Hospital School of Medicine.

2.2 Login protocol

A common problem in the verification of any system is to prove a desired rela-
tionship holds between a given specification and implementation, i.e. when the
implementation has not been derived from the specification directly. This case
study [8] considers just such a problem, where the specification, implementation
and verification requirements where given at the start. The problem is inter-
preted here as a login protocol (since the real end-user application is confiden-
tial). The specification, implementation and verification requirement have first
to be written in LOTOS as the original problem statement has some informal
features.

An initial attempt at proving equivalence between the specification and the
implementation failed because key information is missing from the specification.
The information is added in a modular way (as a constraint), so that the original
specification is unaltered, and eventually the verification requirement is proven
to be satisfied. Some of the proofs are automated using the RRL rewriting system
tool. The work was a collaboration between University of Glasgow and a major
defence contractor.

2.3 Radiotherapy machine

The high-level behaviour of a linear accelerator machine, used for radiotherapy,
is specified in LOTOS. Some important safety properties concerning radiation
overdoses are formalised (by grammars) and then property testing, trace analy-
sis, temporal logic, and other reasoning techniques are used to develop a correct
design. Much of the property testing is carried out using the LOTOS symbolic



transformation tool LOLA, although some of the proofs have still to be fin-
ished by hand. This case study [19] is motivated by the overdosing accidents
involving the Therac-25 linear accelerator (a computer controlled radiotherapy
machine involved in several accidental fatal overdoses in the U.S.A. and Canada
in the late 1980s). Various high level aspects of that machine’s behaviour such
as the interaction with the user are explored. This case study represents a new
application area for LOTOS: design for safety-critical systems.

2.4 Incorrectness of Software from the Therac-25

This work [20] involves the attempted verification of a particular piece of as-
sembler pseudocode concerning data entry and machine initialisation for the
above-mentioned Therac-25 linear accelerator. The code is taken from a pub-
lished technical account of some features of the (faulty) machine which has also
been part of a legal submission in the court cases following the accidents in-
volving this machine. The code is formally specified ( reverse engineered) as
an equational specification and some correctness properties are defined for the
pseudocode. The equational reasoning theorem prover LP is then used to try and
verify the code against its specification. One important proof fails, but in such
a way as to indicate how the behaviour of the pseudocode causes the failure.
This leads to a modification of the code, and ultimately, correctness proofs for
the modified code. This work is the first known formalisation of any aspect of
the Therac-25 code or design and it is also a good demonstration of how formal
methods can be used reveal errors. The work was carried out while the author
was a visiting researcher at DEC/SRC Palo Alto.

2.5 GKS - graphical kernel system

The complexity of interactive graphics functionality requires compact and pre-
cise description techniques for their design and to study their properties. The
graphical kernel system, GKS, was first published as an ISO/TEC standard in
1985 and is now going undergoing revision, as GKS-R. Since GKS-R combines
both process and data views of computer graphics, this is a good application
area for LOTOS. Accordingly, in this case study LOTOS is used to specify the
input and output graphics functionality of a considerable subset of GKS-R [6, 7].

2.6 Pass the parcel

This small case study [22] considers specifying a children’s game: pass the parcel,
in LOTOS. A published LOTOS specification of the game (Bustard et al [2])
1s studied and found to be insufficiently detailed to specify the full behaviour
implied by the informal description. A further, amended specification is proposed
and tested using LOLA.



2.7 Conclusions

Our main conclusions are:

1. LOTOS is commonly thought of as a language for specifying protocols. We
showed 1t could be used in new application domains, such as graphics stan-
dards and high integrity systems such as the radiotherapy machine case
study.

2. We were using real end-user applications and not applications developed for
this project.

3. We were able to show the importance of developing and understanding a
specification for:

— identifying and resolving ambiguities in English specifications, e.g. the
login case study,

— identifying errors or omissions in published formal specifications, e.g. the
pass the parcel game case study,

— identifying errors in a specification with respect to an implementation,
e.g. the login case study,

— giving the first formal description of a known faulty high integrity system
and using it to find some of the faults, e.g. the radiotherapy machine case
study.

4. We found, particularly in the review case studies, a strong role for formal
methods in uncovering errors, rather than for verifying correctness per se.
Further, the way in which the errors were revealed informed us as to how
to make corrections, e.g. in the radiotherapy machine and the Therac-25
software case studies. This role seemed to be independent of the actual formal
methods used.

5. We uncovered the influence of the specification and implementation style on
the verification requirements, e.g. in the login case study.

3 Verification and validation requirements for LOTOS

A main objective was to investigate the verification and validation requirements
for LOTOS, and what tool support was necessary to discharge them.

We characterise validation as the convincing demonstration of conjectures
which may involve application of tests, simulation, and exploration of a model.
Verification is the formal, rigorous proof of properties of the specification, or
specifications under inspection. Essentially, both involve analysis, where valida-
tion may be regarded as non-exhaustive and verification just a special case of
validation.

Our attention has been focused on 6 main aspects.

Translation Correct translation between ASN.1 and LOTOS was identified
both by British Telecom and within the MIB project. The translator is described
in 4.1.



Animation and prototyping One of the chief ways of identifying errors is
through testing and experimentation using prototyping and animation tools.
Whilst non-exhaustive testing cannot prove a general case, testing can increase
confidence that a good model has been constructed, that a conjecture might be
a theorem, and also to reveal errors. A testing method particular to LOTOS
i1s property testing. Property testing is a form of state reachability analysis in
which one quantifies over a class of states, expressed as a LOTOS process. So,
whilst it is a form of testing, it is a much more abstract and powerful technique
than testing by simulation.

Experimentation was implicit in all of the case studies, but 1t was most ex-
tensively carried out and the benefits felt in the login and radiotherapy machine
case studies (particularly property testing in the latter), and in the course of the
work on the ASN.1 to LOTOS translator.

Equivalences and satisfaction Equivalence and satisfaction requirements
have traditionally been seen as the main focus of verification for LOTOS; i.e.
proving that a particular relation holds between two specifications such as an
observational congruence, or testing congruence. This approach is particularly
useful when one specification is to be regarded as the implementation or abstrac-
tion of another.

A good deal of effort has to be put into understanding the difficult theory
underpinning the various equivalences and into determining how they relate to
the actual verification requirements for a particular system. These issues are
considerably more complex for LOTOS because of the interconnections between
the data type and process parts. The particular difficulties of relating specifi-
cations with different data/process boundaries had not previously been given
much attention, although an identified problem in the LOTOS community,

Criteria for choosing between the equivalences with respect to the specific
needs of LOTOS are given in [9] and applied in the login case study.

Alternative formalisms Alternative formulations of verification requirements
were identified in the login case study, particularly the need to express and prove
temporal properties. Moreover, whilst some temporal properties can be expressed
within the LOTOS framework, it may be more natural to express a specification
constraint or a verification requirement in a temporal logic. Preliminary inves-
tigations into this area are given in the radiotherapy machine case study and in

[9].

Specification style LOTOS specifications can be written in a variety of styles,
e.g. monolithic, resource oriented and constraint oriented. The chosen style (pos-
sibly a mixture for different components of a system) may influence a final imple-
mentation, or at least the ease with which 1t is constructed. We have shown that
it also affects the verification process, particularly with respect to modularity
and extensibility, as demonstrated in the login case study.



Errors Verification and validation are as much concerned with successful demon-
stration of conjecture and theorem as with lack of success. It 1s easy to fail to

prove a desired correctness property and this poses difficult questions: how long

do we persevere to gain an acceptable demonstration, what is the measure of

acceptability, and when should we give up? These key questions were raised

(and, to some extent, answered) in the review case studies. It is clear from these

studies that experience of the verification process and extensive testing are a

prerequisite to answering these questions.

3.1 Conclusions

1. The simplest kinds of verification/validation requirements: correct transla-
tion, prototyping and animation, seemed to be the easiest to achieve and the
most important to users.

2. Equivalence/satisfaction and temporal verification requirements are neces-
sary for a more complete approach but they are much harder to understand
and to automate.

3. It 18 very important to understand why and how the verification process
fails; is 1t because the property does not hold, or because there is insufficient
theory to demonstrate 1t?

3.2 Tool support

We used three kinds of tool: the ASN.1 translator, equational reasoning provers
and process algebra manipulation tools.

Equational reasoning tools such as LP [15], RRL [27] and MERILL (Sec-
tion 4.2) performed well on animation and prototyping and non-correctness and
errors.

We experimented with them for equivalence and satisfaction proofs as well.
Proving equivalence is after all the traditional domain of equational reason-
ing, but modelling the equivalences we needed proved problematic and required
elaborate induction proofs even in a simplified model. Therefore we used more
specialised tools such as PAM [28], the Process Algebra Manipulator, and LOLA
[29], a LOTOS symbolic simulation tool.

4 Software development

Two major pieces of software development were carried out under the project:
the development of the ASN.1/LOTOS translator and the further development
of the MERILL equational reasoning prover.

4.1 The ASN.1/LOTOS translator

The ASN.1 to LOTOS translator [21] is a software tool for translating data
type specifications written in the language ASN.1 into LOTOS. Since ASN.1 is



a well established language (with an ISO/CCITT standard) in the field of data
communications, there is a need to translate the significant body of protocol
specifications already written using ASN.1, and, further, to allow engineers to
continue developing the data types for protocols using ASN.1. These types can
then be translated and integrated with LOTOS process descriptions.

The translator was formally specified by giving a rigorous semantics defining
the relationship between the two languages. The semantics evolved through four
distinct versions since 1989, each of which was implemented by a translator
prototype.

The semantics was the first formal semantics for ASN.1, and since it was
the first, the prototypes were an essential aid to communicating the full con-
sequences of the chosen semantics. The prototypes were written in a functional
programming language (Miranda) with good algebraic types and so the relation-
ship between the formal semantics and the implementation (i.e. the prototype
translator) was a very clear and simple one. Thus, changes to the semantics
were quickly and correctly implemented. Furthermore, feedback from engineers
and ASN.1 language designers using a prototype could be easily reflected in the
semantics.

This type of project proved to be a successful application area for formal
methods: formalisation of the language revealed several inconsistencies and omis-
sions from the language design, and functional programming as a prototyping
tool enabled quick and effective communication between language designers, im-
plementors, and users.

The translator is not only the first formally specified tool for ASN.1, but also
the first translator for the complete language.

4.2 The MERILL prover

As mentioned above the MERILL system [16, 17] was chosen as our experimental
inference engine. The starting point for this new system was the ERIL system
designed and implemented in Prolog by Jeremy Dick between 1982 and 1989
[4]. Tt has been developed under this project by Brian Matthews and the first
stage of development was the redesign of this system and re-implementation in
Standard ML. This new system provided not only an order of magnitude increase
in efficiency but a much cleaner design upon which to build extra functionality
essential to the application area. This system now represents one of the most
advanced systems of its type currently available.

It is highly reconfigurable with an advanced user interface. This gives it a
considerable advantage when experimenting with new reasoning or search strate-
gies: the user can easily experiment rather than be tied to the limited built in
possibilities of older systems.

It supports order sorted logic, which allows the succinct representation of
many complex problems. However this is not just syntactic sugar; it also supports
reasoning techniques for order sorted rewriting and completion.

Further techniques developed under the project included new techniques for
proving termination [12, 14], for handling divergent sets of rewrite rules [23, 24],



and for dynamic typing [17].

5 End-User Collaboration

An important part of the project was collaboration with end-users through
the case studies mentioned above, in particular Royal Free Hospital School
of Medicine British Telecom, Institute of Radiation Oncology, Western Infir-
mary, Glasgow, Department of Aerospace Engineering, University of Glasgow,
DEC/SRC Palo Alto/Massachusetts Institute of Technology. Many individu-
als also contributed: Juan Bicarregui, Adam Cichon, Dave Cohen, David Duce,
Carron Kirkwood, Mike Lai, Brian Matthews, Kathy Norrie, Chris Reade, Brian
Ritchie, Elizabeth Scott, Mike Spivey and Phil Watson.

To obtain the MERILL system contact Brian Matthews: bmm@inf .rl.ac.uk.

The full project report may be obtained from Prof U Martin at the Depart-
ment of Computer Science, University of St Andrews.
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