UMIACS-TR-94-122 November, 1994

CS-TR-3371
Experiences with Constraint-based Array Dependence
Analysis
William Pugh David Wonnacott
pugh@cs.umd.edu davew@cs.umd.edu

Institute for Advanced Computer Studies
Dept. of Computer Science Dept. of Computer Science

Univ. of Maryland, College Park, MD 20742

Array data dependence analysis provides important information
for optimization of scientific programs. Array dependence testing
can be viewed as constraint analysis, although traditionally general-
purpose constraint manipulation algorithms have been thought to
be too slow for dependence analysis. We have explored the use of
exact constraint analysis, based on Fourier’s method, for array data
dependence analysis. We have found these techniques can be used
without a great impact on total compile time. Furthermore, the use
of general-purpose algorithms has allowed us to address problems be-
yond traditional dependence analysis. In this paper, we summarize
some of the constraint manipulation techniques we use for depen-
dence analysis, and discuss some of the reasons for our performance
results.

This work is supported by an NSF PYI grant CCR-9157384 and
by a Packard Fellowship.

Experiences with Constraint-based Array
Dependence Analysis

William Pugh David Wonnacott

pugh@cs.umd.edu davew@cs.umd.edu

Department of Computer Science,
University of Maryland, College Park, MD 20742

Abstract. Array data dependence analysis provides important informa-
tion for optimization of scientific programs. Array dependence testing can
be viewed as constraint analysis, although traditionally general-purpose
constraint manipulation algorithms have been thought to be too slow for
dependence analysis. We have explored the use of exact constraint anal-
ysis, based on Fourier’s method, for array data dependence analysis. We
have found these techniques can be used without a great impact on total
compile time. Furthermore, the use of general-purpose algorithms has
allowed us to address problems beyond traditional dependence analysis.
In this paper, we summarize some of the constraint manipulation tech-
niques we use for dependence analysis, and discuss some of the reasons
for our performance results.

1 Introduction

When two memory accesses refer to the same address, and at least one of those
accesses 1s a write, we say there is a data dependence between the accesses.
In this case, we must be careful not to reorder the execution of the accesses
during optimization, if we are to preserve the semantics of the program being
optimized. We therefore need accurate array data dependence information to
determine the legality of many optimizations for programs that use arrays. Array
dependence testing can be viewed as constraint analysis. For example, in Figure
1, determining whether or not any array element i1s both written by A[i, j+1]
and read by A[100, j], is equivalent to testing for the existence of solutions to
the constraints shown on the right of the figure.

1 <iw < jw <n (write iteration in bounds)
1<i <jr<n (read iteration in bounds)
iw =n (first subscripts equal)

Jw—+1=jr (second subscripts equal)

for i =11ton
for j =1iton
Ali, j+11 = A[n, jl

Fig. 1. Dependence testing and associated constraints

Since integer programming is an NP-complete problem, ([GJ79]), production
compilers employ techniques that are guaranteed to be fast but give conservative
answers: they might report a possible solution when no solution exists. We have
explored the use of exact constraint analysis methods for array data dependence
analysis. We have gone beyond simply checking for satisfiability of conjunctions
of constraints to being able to manipulate arbitrary Presburger formulas. This
has allowed us to address problems beyond traditional dependence analysis.

In our previous papers [Pug92, PW93], we have presented timing results for
our system on a variety of benchmark programs, and argued that our techniques
are not prohibitively slow. In fact, using exact techniques to obtain standard
kinds of dependence information requires about 1% — 10% of the total time
required by simple workstation compilers that do no array data dependence
analysis of any kind.

Our techniques are based on an extension of Fourier variable elimination to
integers. Many other researchers in the constraints field [Duf74, LL92, Tmb93,
JMSY93] have stated that direct application of Fourier’s technique may be im-
practical because of the number of redundant constraints generated. We have
not experienced any significant problems with Fourier elimination generating re-
dundant constraints, even though we have not implemented methods suggested
[Duf74, Imb93, JMSY93] to control this problem. We believe that our exten-
sion of Fourier elimination to integers is much more efficient that described by
[Wil76].

In this paper, we summarize some of the constraint manipulation techniques
we use for dependence analysis, and discuss some of the reasons for our perfor-
mance results.

2 The Omega Test

The Omega test [Pug92] was originally developed to check if a set of linear con-
straints has an integer solution, and was initially used in array data dependence
testing. Since then, its capabilities and uses have grown substantially. In this
section, we describe the various capabilities of the Omega test.

The Omega test is based on an extension of Fourier variable elimination
[DET3] to integer programming. Other researchers have suggested the use of
Fourier variable elimination for dependence analysis [WT92, MHL91b] but only
as a last resort after exact and fast, but incomplete, methods have failed to give
decisive answers. We proved [Pug92] that in cases where the fast but incomplete
methods of Lam et al. [MHL91b] apply, the Omega test is guaranteed to have
low-order polynomial time complexity.

2.1 Eliminating an Existentially Quantified Variable

The basic operation of the Omega test is the elimination of an existentially
quantified variable, also referred to as shadow-casting or projection. For exam-
ple, given a set of constraints P over z, y and z that define, for example, a

dodecahedron, the Omega test can compute the constraints on = and y that
define the shadow of the dodecahedron. Mathematically, these constraints are
equivalent to 3z s.t. P. But the Omega test is able to remove the existentially
quantified variables, and report the answer just in terms of the free variables (»
and y).

Over rational variables, projection of a convex region always gives a convex
result. Unfortunately, the same does not apply for integer variables. For example,
Jyst. 1 <y<4Az=2yhase =2, 2 =4,z =6 and x = 8§ as solutions.
Sometimes, the result is even more complicated. For example, the solutions for
z in:

Jo,jst. 1<i<8A1I<j<bAe=0604+9j—-7

are all numbers between 8 and 86 (inclusive) that have remainder 2 when divided
by 3, except for 11 and 83.

In general, the Omega test produces an answer in disjunctive normal form:
the union of a finite list of clauses. A clause may need to describe a non-convex
region. There are two methods for describing these regions:

Stride format The Omega test can produce clauses that consist of affine con-
straints over the free variables and stride constraints. A stride constraint c|e
is interpreted as “c evenly divides €¢”. In this form, the above solution could
be represented as:

r=8V (14<z<80A3|(x+1)) V =286

Projected format Alternatively, the Omega test can produce clauses that con-
sist of a set of linear constraints over a set of auxiliary variables and an affine
1-1 mapping from those variables to the free variables. Using this format,
the above solution could be represented as

=8V (Fast.5<a<2TAz=3a—-1) V 2 =86

These two representations are equivalent and there are simple and efficient
methods for converting between them.

Our Extension of Fourier Elimination to Integers If 3 < bz and az < «
(where @ and b are positive integers), then af < abz < ba. If 2 is a real variable,
dz s.t. af < abz < ba if and only if ¢ < ba. Fourier variable elimination
eliminates a variable z by combining together all pairs of upper and lower bounds
on z and adding the resulting constraints to those constraints that do not involve
z. This produces a set of constraints that has a solution if and only if there exists
a real value of z that satisfies the original set of constraints.

In [Pug92] and Figure 2 we show how to compute the “dark shadow” of a set
of constraints: a set of constraints that, if it has solutions, implies the existence
of an integer z such that the original set of constraints is satisfied. Of course,
not all solutions are contained in the dark shadow.

For example, consider the constraints:
Jyst. 0<3y—ae<7TAl<z—-2y<5h

Using Fourier variable elimination, we find that 3 < & < 27 if we allow y to take
on non-integer values. The dark shadow of these constraints is 5 < z < 25. In
fact, this equation has solutions for # = 3,5 < z < 27 and = = 29.

In [Pug92] and Figure 2 we give a method for generating an additional sets of
constraints that would contain any solutions not contained in the dark shadow.
These “splinters” still contain references to the eliminated variable, but also
contain an equality constraint (i.e., are flat). This equality constraint allows us
to eliminate the desired variable exactly. For the example given previously, the
splinters are:

Jyst.e=3yNn0<3y—z<TAl<z—-2y<5h

Jyst. a4+ 1=3yn0<3y—z<TALl<z—2y<5h
Jyst. e —b=2yAyst. 0<3y—a<TAl<z—-2y<5hH

Simplifying these produces clauses in projected form:

Jyst.e=3ynl<y<b
dyst.ze=3y—1A2<y<6
Jyst.e=2y+bAb<y<12

Eliminate z from C, the conjunction of a set of inequalities
R = False
C' = all constraints from C that do not involve »
c’'=C
for each lower bound on z: f < bz
for each upper bound on z: az < o
C'=C"Naf+(a—1)(b-1) < ba
% Misses af} < abz <ba < aff+ (a—1)(b—1)
%Misses6§bz<[3—|—£a—_1§EZ
let amax = max coefficient of z in upper bound on z
for i =0 to ((amax —1)(b — 1) — 1)/amax do
R=RVCAF+i=bz
% C' is the dark shadow
% R contains the splinters
% C' v (3 integer z s.t. R) = 3 integer z s.t. C

Fig. 2. Extension of Fourier variable elimination to integers

2.2 Verifying the Existence of Solutions

The Omega test also provides direct support for checking if integer solutions
exist to a set of linear constraints. It does this by treating all the variables as
existentially quantified and eliminating variables until it produces a problem
containing a single variable; such problems are easy to check for integer solu-
tions. The Omega test incorporates several extensions over a naive application
of variable elimination.

2.3 Removing Redundant Constraints

In the normal operation of the Omega test, we eliminate any constraint that
is made redundant by any other single constraint (e.g., + + y < 10 is made
redundant by x + y < 5). Upon request, we can use more aggressive techniques
to eliminate redundant constraints. We use fast but incomplete tests that can flag
a constraint as definitely redundant or definitely not redundant, and a backup
complete test. This capability is used when verifying implications and simplifying
formulas involving negation.

We also use these techniques to define a “gist” operator: informally, we say
(gist P given Q) is what is “interesting” about P, given that we already know
Q). More formally, we guarantee that ((gist P given Q) A@) = P AQ and try to
make the set of constraints produced by the gist operator as simple as possible.

2.4 Simplifying Formulas Involving Negation

There are two problems involved in simplifying formulas containing negated
conjuncts, such as

—“10<i+j,i—j<10 A =(2< 4,5 <8A2|i+))

Naively converting such formulas to disjunctive normal form generally leads to
an explosive growth in the size of the formula. In the worst-case, this cannot be
prevented. But we [PW93] have described methods that are effective in dealing
with these problems for the cases we encounter. One key idea to to recognize
that we can transform A A =B to A A —(gist B given A). Given several negated
clauses, we simplify them all this way before choose one to negate and distribute.

Secondly, previous techniques for negating non-convex constraints, based
on quasi-linear constraints [AI91], were discovered to be incomplete in certain
pathological cases [PW93]. We [PW93] describe a method that is exact and
complete for all cases.

2.5 Simplifying Arbitrary Presburger Formulas

Utilizing the capabilities described above, we can simplify and /or verify arbitrary

Presburger formulas. In general, this may be prohibitively expensive. There 1s a

220(n)

known lower bound of on the worst case nondeterministic time complexity,

O(n)
and a known upper bound of 22° on the deterministic time complexity, of

Presburger formula verification. However, we have found that we are able to
efficiently analyze many Presburger formulas that arise in practice.

For example, our current implementation requires 12 milliseconds on a Sun
Sparc IPX to simplify

1<i<2n A 1< <2nAi=1"
AT st 1< <2nA 1<y <n—1TAISTAY =122 =1")
AT st 1<V <2nA 1< <n—1AISIAY =1"A2)+1=1")

to
(l=i=1"<n)v(l<i=i"=2n)v(1<i=1"<2An=1)

Related Work

Other researchers have proposed extensions to Fourier variable elimination as a
decision method for array data dependence analysis [MHL91a, WT92, 1JT91].
Lam et al. [MHL91a] extend Fourier variable elimination to integers by comput-
ing a sample solution, using branch and bound techniques if needed. Michael
Wolfe and Chau-Wen Tseng [WT92] discuss how to recognize when Fourier vari-
able elimination may produce a conservative result, but do not give a method
to verify the existence of integer solutions. These methods are decision tests and
cannot return symbolic answers.

Corinne Ancourt and Francois Irigoin [AT91] describe the use of Fourier vari-
able elimination for quantified variable elimination. They use this to generate
loop bounds that scan convex polyhedra. They extend Fourier variable elimina-
tion to integers by introducing floor and ceiling operators. Although this makes
their elimination exact, 1t may not be possible to eliminate additional variables
from a set of constraints involving floor and ceiling operators. This limits their
ability to check for the existence of integer solutions and remove redundant con-
straints.

Cooper [CooT2] describes a complete algorithm for verifying and/or simplify-
ing Presburger formulas. His method for quantified variable elimination always
introduces disjunctions, even if the result is convex. We have not yet performed a
head-to-head comparison of the Omega test with Cooper’s algorithm. However,
we believe that the Omega test will prove better for quantified variable elimina-
tion when the result is convex and better for verification of a formula already
in digjunctive normal form. Cooper’s algorithm does not require formulas to be
transformed into disjunctive normal form and may be better for formulas that
would be expensive to put into disjunctive normal form (although our methods
for handling negation address this as well).

The SUP-INF method [Ble75, Sho77] is a semi-decision procedure. It some-
times detects solutions when only real solutions exist and it cannot be used for
symbolic quantified variable elimination.

H.P. Williams [Wil76] describes an extension of Fourier elimination to inte-
gers. His scheme leads to a much more explosive growth than our scheme. If the

only constraints involving an eliminated variable z are L < [z and uz < U, his
scheme produces lem(!, u) clauses, while ours produces

clauses. If there are p lower bounds L; < l;z and ¢ upper bounds u;z < Uj,
Williams’ method produces a formula that, when converted into disjunctive nor-

mal form, contains
H lem(l;, uy)

1<i<pAI<)<y

clauses, while the number of clauses produced by our scheme is

L[3 W—l)(max(un—l)l’ > Pmax(h)—l)(uj—l)l

5 max(u;) 5t max(l;)

For example, if the l;’s are {1,1,1,2,3,5} and the u;’s are {1,1,3,7}, Will-
iams’ method produces

23156852670000

clauses, while ours produces 12. It is almost certainly possible to improve Will-
1ams’ method while using the same approach as Williams, but we know of no
description of such an improvement.

Jean-Louis Lassez [LHM89, L192, HLL92] gives an alternative to Fourier
variable elimination for elimination of existentially quantified variables. How-
ever, his methods work over real variables, are optimized for dense constraints
(constraints with few zero coefficients) and are inefficient when the final problem
contains more than a few variables since they build a convex hull in the space
of variables remaining after all quantified variables have been eliminated.

3 Constraint Based Dependence Analysis

Array dependence testing can be viewed as constraint analysis. Simply testing
for the existence of a dependence (as in Figure 1) is equivalent to testing for
solutions to a set of constraints.

We can also use constraint manipulation to obtain information about the
possible differences in the values of the corresponding index variables at the
times of the two accesses (this information can be used to test for the legality of
some program transformations). To do so, we introduce variables corresponding
to these differences, and existentially quantify and eliminate all other variables.
Alternatively, we can choose to eliminate everything but the symbolic constants,
and thus determine the conditions under which the dependence exists ([PW92]).

Figure 3 shows a relatively complicated example of constraint-based depen-
dence analysis, from one of the NASA NAS benchmarks. Note that our tech-
niques for eliminating equalities let us reduce both the number of variables and
the number of constraints before resorting to Fourier elimination.

Program to be analyzed:

for j = 0 to 20 do

for i = max(-j,-10) to 0 do
for k = max(-j,-10)-1 to -1 do
for 1 =0 to 5 do

a(l,i,j) = ...a(l,k,i+j)...

Constraints before equality substitution:
A, tw, kw, lw, Ir, iy, kr, Ir s.1.

Ai:ir—iw/\Aj:jr_jw
Ak =kr —kuo NAl=1 — 1

ly =1 Niw = ke N jou = gr + 11

0<jw <20

Constraints after equality substitution:

A5, Ly s.t.
0<ly <5
0<y,<20
3A5 + 241 + Ak < j,
Ay <y <20+ 4y
245 4+ Ai <y
2A5 + 241+ Ak <10
1< Aj+ Ai+ Ak
1< Aj+ Ai <10
0<Aj<10
2A5 + A1 < 10
Al:=0

Constraints after eliminating {,, and j,:

—10, =jw < 1w <0

e — i, =10 — 1 < kw < —1 2A5 + A7 < 10
0<ly, <5 0< A5 <10

3A5 + 2Ai + Ak < 20

0<j, <20 QA5 + 2Ai + Ak < 10

=10, —jr <1, <0
— g =, =10 — i < kyp < —1
0<1, <5

1< Aj+ Ai+ Ak
1< Aj+ Ai <10
Al:=0

Fig. 3. Constraint-based dependence analysis

If we extend our constraint manipulation system to handle negated conjunc-
tions of linear constraints, we can include constraints that rule out the depen-
dences that are “killed” by other writes to the array, producing array data flow
information ([PW93]). The analysis tells us the source of the value read at any
particular point; standard array data dependence tests just tell us who had pre-
viously written to the memory location read at any particular point. We have
also found that our use of constraints to represent dependences is useful for other
forms of program analysis and transformation ([Pug91, PW94, KP93]).

4 Experiences

One of the main drawbacks of Fourier’s method of variable elimination is the huge
number of constraints that can be generated by repeated elimination, many of
which could be redundant. Other researchers have found that Fourier’s technique
may be prohibitively expensive [HLL92, Imb93] for some sets of constraints, and
have proposed either alternative methods for projection [HLL92] or methods to
avoid generating so many redundant constraints [Imb93].

We have found Fourier’s method to be efficient, and do not experience sub-
stantial increases in the number of constraints. Our empirical studies have shown
that Fourier’s method can be used in dependence analysis without a significant
impact on total compile time [Pug92, PW93]. The average time required for
memory-based analysis (as in Figure 1) was well under 1 millisecond per pair of
references, and the average time for array data flow analysis a few milliseconds.
These time trials were measured on a set of benchmarks that includes some
of the NASA NAS kernels and some code from the Perfect Club Benchmarks
([B+89]).

We believe this speed is the result of several attributes of the sets of con-
straints we produce for dependence analysis. First, loop bounds and array sub-
scripts are often either constant or a function of a single variable. If all loop
bounds and array subscripts have this form, all of our constraints will involve only
one or two variables. Variable elimination is much less expensive within this re-
stricted domain (known as LI(2)), even if we use the general algorithm. The num-
ber of constraints generated is bounded by a sub-exponential (though more than
polynomial) function, rather than the 27/2 of the general case [Cha93, Nel78].

Second, our constraints contain many unit coefficients. When the non-zero
coefficients in a sparse set of constraints are all &1, projection ends up pro-
ducing many parallel constraints, which can then be eliminated by our simple
test for redundant constraints. Variable elimination in a LI(2) problem with
unit coefficients preserves unit coefficients (after dividing through by the Gep of
the coefficients). Under such situations, there cannot be more than O(n?) non-
parallel constraints over n variables, and our method needs no more then O(n?)
time to eliminate as many variables as desired [Pug92].

Finally, our constraint sets contain numerous equality constraints. Since we
use these constraints to eliminate variables without resorting to projection, they
help to keep down the size of the constraint sets that we must manipulate with
Fourier’s technique.

4.1 Empirical Studies of Dependence Analysis Constraints

We instrumented our system to analyze the types of constraints we deal with
during dependence analysis. For each application of the Omega test, we analyzed
the constraints that remained (a) after our initial removal of equality constraints
and (b) after we had either eliminated all but two variables or run out of quan-
tified variables to eliminate. In doing this analysis, we computed real shadows,
as opposed to integer shadows (because the integer shadow may not be a simple
conjunct). However, we still performed a number of other operations to rule out
non-integer solutions (such as normalizing 2z + 4y > 3 to « + 2y > 2).

When analyzing a set of constraints, we counted the number of variables,
and counted (separately) the number of constraints that involved 1, 2 or 3+
variables. We then eliminated all redundant constraints, and recounted.

We performed these tests over our dataflow benchmark set [PW93], which
includes some of the NASA NAS kernels and some code from the Perfect Club

of constraints involving

Averages|when # vars kind 1 var 2 vars 3+ vars| total
initial 5.6 as given 2.9 3.3 14| 7.6

nonredundant| 2.0 2.1 0.9/ 5.0

final 2.4 as generated 1.8 0.5 0.1 24

nonredundant| 1.2 0.3 0.07| 1.6

a worst-case # of constraints involving
(but noncontrived) when # vars kind 1 var 2 vars 3+ vars| total
example|initial 5 as given 6 5 4] 15
encountered nonredundant 4 2 3 9
in benchmarks|final 3 as generated 2 3 3 8
nonredundant 1 2 2 5

Fig. 4. Characteristics of constraint sets used in dependence analysis

Benchmarks ([B*89]). In total, we considered 1144 sets of constraints, and ob-
tained the results shown in Figure 4.

Note that our methods always check for parallel constraints and eliminate
the redundant one immediately (e.g., given +y < 5 and x4+ y < 10, the second
is eliminated). This can be done in constant time per constraint (through the
use of a hash table).

Quite surprisingly, in none of the 1144 cases did the number of constraints
increase as variables were eliminated (even though we did no elimination of
non-parallel redundant constraints).

4.2 Empirical Studies of Random Constraints

To better understand the reasons for our good fortune in avoiding an explosion
of constraints, we also studied the behavior of Fourier elimination on sets of
random constraints. Figure 5 shows the results of these studies.

In each experiment, we fixed the number of constraints and variables, added
one random non-zero to each constraint. When then projected the constraints
onto the first two variables, and recorded the maximum number of constraints
encountered during the elimination. We then added an additional nonzero coef-
ficient to the original set of constraints, and repeated the projection. We con-
tinued doing this until the problem had no non-zeros left. Each line represents
the median of 5-21 experiments. The key gives the elimination method used. All
experiments shown here had 15 constraints on 5 variables, like the worst-case
example from Figure 4.

The top graph compares the effectiveness of Fourier’s method and the tech-
niques described by Imbert on sets of constraints in which the non-zero coeffi-
cients had random integer values between -10 and 410. Our implementation of
Tmbert’s method [Imb93] of redundant constraint detection uses Theorem 10 of

Max. No. of Constraints During Elimination

Max. No. of Constraints During Elimination

10000

1000

100

10

10000 ¢

1000

100

10

Fig. 5. Variable Elimination: 15 Constraints on 5 Variables

Fourier
Imbert

Random Coefficients

2

4

6

8

10

12

14

Avg. No. of Initial Constraints Involving Each Variable

Fourier
Imbert
Parallel

Unit Coefficients

2

4

6

8

10

12

14

Avg. No. of Initial Constraints Involving Each Variable

[Tmb93] to determine that some constraints are redundant. However, we do not
use the more expensive comparison or matrical tests.

Imbert’s method is clearly important for problems of this size when the initial
number of constraints per variable is above 7. When the initial density is below
5, even Fourier’s original technique does not result in an increase in the number
of constraints. However, our “worst-case” problem had an average of just under
6 initial constraints per variable, and we saw no increase in the number of con-
straints. Clearly the sparsity and size of the constraint sets were not sufficient
to explain our results.

We therefore re-ran the tests on sets of constraints in which all the non-zero
coefficients were £1, and included our techniques for detecting parallel redundant
constraints. The results of this second set of tests are shown in the bottom graph
of Figure 5. Note that the both our techniques and Imbert’s do not produce an
increase in the number of constraints when the initial number of constraints per
variable is below 7. We therefore attribute our observations in Section 4.1 to a
combination of constraint set size and sparsity and the high frequency of unit
coefficients.

5 Conclusions

Other researchers [HLL92, Imb93] have been quite leary of applying Fourier
variable elimination to sets of dense constraints. Qur experience has lead us to
believe that Fourier’s method is quite efficient when applied to sparse constraints.
Furthermore, we believe that sparse constraints arise in many applications.

We have extended our work beyond Fourier variable elimination: first to han-
dling variable elimination for integer variables, and then to simplifying arbitrary
Presburger formulas. We hope these extensions may be of interest to a broader
community.

6 Availability

Technical reports about the Omega test and an implementation of the Omega
test are available via anonymous ftp from ftp.cs.umd.edu:pub/omega or the
world wide web http://www.cs.umd.edu/projects/omega.

References

[AT91] Corinne Ancourt and Frangois Irigoin. Scanning polyhedra with DO loops.
In Proc. of the 3rd ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pages 39-50, April 1991.

[Bt89] M. Berry et al. The PERFECT Club benchmarks: Effective performance
evaluation of supercomputers. International Journal of Supercomputing Ap-
plications, 3(3):5-40, March 1989.

[BleT5]

[Cha93]

[Coo72]

[DE73]
[Duf74]

[GIT79]

[HLL92]

[1JT91]

[Tmb93]

W. W. Bledsoe. A new method for proving certain presburger formulas. In
Advance Papers, 4th Int. Joint Conference on Artif. Intell., Tibilisi, Georgia,
U.S.8.R, 1975.

Vijay Chandru. Variable elimination in linear constraints. The Computer
Journal, 36(5):463-472, 1993.

D. C. Cooper. Theorem proving in arithmetic with multiplication. In
B. Meltzer and D. Michie, editors, Machine Intelligence 7, pages 91-99.
American Elsevier, New York, 1972.

G.B. Dantzig and B.C. Eaves. Fourier-Motzkin elimination and its dual.
Journal of Combinatorial Theory (A), 14:288-297, 1973.

R. J. Duffin. On fourier’s analysis of linear inequality systems. Mathematical
Programming Study, pages T1-95, 1974.

Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W.H. Freemand and Company,
1979.

Tien Huynh, Catherine Lassez, and Jean-Louis Lassez. Practical issues on
the projection of polyhedral sets. Annals of mathematics and artificial in-
telligence, November 1992.

Frangois Irigoin, Pierre Jouvelot, and Rémi Triolet. Semantical interproce-
dural parallelization: An overview of the pips project. In Proc. of the 1991
International Conference on Supercomputing, pages 244-253, June 1991.
Jean-Louis Imbert. Fourier’s elimination: Which to choose? In PCPP 93,
1993.

[IMSY93] J. Jaffar, M. J. Maher, P. J. Stuckey, and R. H. C. Yap. Projecting CLP(R)

[KP93]

[LHMS9]

[LL92]

constraints. New Generation Computing, 11(3/4):449-469, 1993.

Wayne Kelly and William Pugh. A framework for unifying reordering trans-
formations. Technical Report CS-TR-3193, Dept. of Computer Science, Uni-
versity of Maryland, College Park, April 1993.

Jean-Louis Lassez, Tien Huynh, and Ken McAloon. Simplification and elim-
ination of redundant linear arithmetic constraints. In Proceedings of the
North American Conference on Logic Programming, pages 37-51, 1989.
Catherine Lassez and Jean-Louis Lassez. Quantifier elimination for con-
junctions of linear constraints via a convex hull algorithm. In Bruce Don-
ald, Deepak Kapur, and Joseph Mundy, editors, Symbolic and Numerical
Computation for Artificial Intelligence. Academic Press, 1992.

[MHL91a] D. E. Maydan, J. L. Hennessy, and M. S. Lam. Effectiveness of data depen-

dence analysis. In Proceedings of the NSF-NCRD Workshop on Advanced
Compilation Techniques for Novel Architectures, 1991.

[MHL91b] D. E. Maydan, J. L. Hennessy, and M. S. Lam. Efficient and exact data

[Nel78]

[Pug9l]

[Pug92]

dependence analysis. In ACM SIGPLAN’91 Conference on Programming
Language Design and Implementation, pages 1-14, June 1991.

C. G. Nelson. An o(n'°?™) algorithm for the two-variable-per-constraint lin-
ear programming satisfiablility problem. Technical Report AIM-319, Stan-
ford University, Department of Computer Science, 1978.

William Pugh. Uniform techniques for loop optimization. In 1991 Inter-
national Conference on Supercomputing, pages 341-352, Cologne, Germany,
June 1991.

William Pugh. The Omega test: a fast and practical integer programming
algorithm for dependence analysis. Communications of the ACM, 8:102-114,
August 1992.

[PW92]

[PW93]

[PW94]

[ShoTT7]
[Wil76]

[WT92]

William Pugh and David Wonnacott. Going beyond integer programming
with the Omega test to eliminate false data dependences. Technical Report
CS-TR-3191, Dept. of Computer Science, University of Maryland, College
Park, December 1992. An earlier version of this paper appeared at the
SIGPLAN PLDI’92 conference.

William Pugh and David Wonnacott. An exact method for analysis of value-
based array data dependences. In Lecture Notes in Computer Science 768:
Staxth Annual Workshop on Programming Languages and Compilers for Par-
allel Computing, Portland, OR, August 1993. Springer-Verlag.

William Pugh and David Wonnacott. Static analysis of upper and lower
bounds on dependences and parallelism. ACM Transactions on Program-
ming Languages and Systems, 14(3):1248-1278, July 1994.

Robert E. Shostak. On the sup-inf method for proving presburger formulas.
Journal of the ACM, 24(4):529-543, October 1977.

H.P. Williams. Fourier-Motzkin elimination extension to integer program-
ming problems. Journal of Combinatorial Theory (A), 21:118-123, 1976.
M. J. Wolfe and C. Tseng. The Power test for data dependence. [FEF
Transactions on Parallel and Distributed Systems, 3(5):591-601, September
1992.

This article was processed using the IANTRpX macro package with LLNCS style

