
Global Consistency for Continuous Constraints
�

D. Haroud and B. Faltings

Swiss Federal Institute of Technology, Ecublens 1015-Lausanne, Switzerland

Abstract. This paper provides a technique for solving general constraint satisfac-
tion problems (CSPs) with continuous variables. Constraints are represented by
a hierarchical binary decomposition of the space of feasible values. We propose
algorithms for path- and higher degrees of consistency based on logical opera-
tions defined on this representation and demonstrate that the algorithms terminate
in polynomial time. We show that, in analogy to convex temporal problems and
discrete row-convex problems, convexity properties of the solution spaces can be
exploited to compute minimal and decomposable networks using path consistency
algorithms. Based on these properties, we also show that a certain class of non
binary CSPs can be solved using strong 5-consistency.

1 Introduction

In the general case, constraint satisfaction problems (CSPs) are NP-complete. Trying
to solve them by search algorithms, even if theoretically feasible, often results in pro-
hibitive computational cost. One approach to overcome this complexity consists of
pre-processing the initial problem using propagation algorithms. These algorithms es-
tablish various degrees of local consistency which narrow the initial feasible domain
of the variables, thus reducing the subsequent search effort. Traditional consistency
techniques and propagation algorithms — such as the Waltz propagation algorithm—
provide relatively poor results when applied to continuous CSPs: they ensure neither
completeness nor convergence in the general case (a good insight into the problems en-
countered can be found in [1]). However, Faltings [5] has shown that some undesirable
features of propagation algorithms with interval labels must be attributed to the inade-
quacy of the propagation rule and to a lack of precision in the solution space description.
He has also demonstrated that the problem with local propagation could be resolved
by using total constraints on pairs of variables. Lhomme [10] has identified similar
problems and proposed an interval propagation formalism based on bound propagation.

Van Beek’s work on temporal reasoning [14] using Helly’s theorem has shown the
importance of path-consistency for achieving globally consistent labellings. In certain
cases, path-consistency algorithms are difficult to implement in continuous domains
because they require intersection and composition operations on constraints. We propose
a constraint representation by recursive decomposition which allows implementation
of these operations. This allows us to apply Helly’s theorem to general continuous
constraint satisfaction problems. The results obtained for temporal CSPs could therefore
be extended to more general classes of continuous CSPs.
�

Published in: "Lecture notes in computer Science 874: Principles and Practice of Constraint
Programming", Alan Borning (ed.), Springer Verlag,1994

(b)
�

x

(a)
� Ix

y

2

Iy

x

y

xyr

Ix (1) Ix (2)

Iy

2

2
�

y< 4 − (x−6)

y> (x−5)

2
�

y< 4 − (x−6)

y > 1 /(x−5)

rxy

Fig. 1. Figure (a) illustrates a binary relation ����� given intensionally by the two inequalities	�

����������� and 	������������������ . � ��� determines the region � ��� and is both 	 - and � -convex:
the projection of � ��� respectively over the � and 	 axes yields single bounded intervals (resp. � �
and � �). In Figure (b), the relation ����� is given intensionally by the constraints 	�

!#"$���%�&��� �
and 	��'���&���(�&��� � . In this last case, the relation is only y-convex since its projection over the� -axis yields two distinct intervals � ��) and � � � .

In the following, a continuous CSP (CCSP), *,+.-/*1032 452 68797 , is defined as a set 0
of variables :<; 2 :>=�2@?�?�?A:CB taking their values respectively from a set 4 of continuous
domains 4D;�2 4E=�2�?�?@?�2 4FB and constrained by a set of relations 6G; 2�?@?�?12 6%H . A domain
is an interval of I . A relation is defined intensionally by a set of algebraic equalities
and inequalities (see figure 1). A relation 6%JLK is a total constraint: it takes into account
the whole set of algebraic constraints involving the variables M and N . Each variable has
a label defining the set of possible consistent values. The label O�P of a variable : is
represented as a set of intervals Q@RSPUTV;W-YXL:CHZJ[B\TV;<?@?�?1:]H_^�P`TV;bab2@?�?@?Lc .

2 Constraint and Label Representation

Constraints on continuous variables are most naturally represented by algebraic or tran-
scendental equations and inequalities. However, as Faltings [5] has shown, this leads to
incomplete local propagation when there are several simultaneous constraints between
the same variables. More importantly, making a network path-consistent requires com-
puting the intersection and union of constraints, operations which cannot be performed
on (in)equalities. It is therefore necessary to represent and manipulate the sets of feasible
value combinations explicitly.

Providing each variable with an interval label implicitly represents feasible regions
by enclosing rectangles or hypercubes. As shown in Figure 2, this is not powerful
enough for region intersection operations. To define a more precise and yet efficient
representation, we observe that most applications satisfy the following two assumptions:

– each variable takes its values in a bounded domain (bounded interval)
– there often exists a maximum precision with which results can be used.

x

y

R1

x

y

R2

x

y

I(R1,R2)
d

Fig. 2. The enclosing rectangle of an intersection of regions �Z) and � � is in general different
from the intersection of the enclosing rectangles of �) and � � .

Provided that these two assumptions are verified, a relation 6%PfebgLgLg P`h can be approx-
imated by carrying out a hierarchical binary decomposition of its solution space intoikj

-trees (quadtrees for binary relations,octrees for ternary ones etc ?@?�?)(see Figure 3). A
similar representation has recently been proposed by Tanimoto for representing spatial
constraints [13]. When a relation is determined by inequalities, it can be approximated
by a

ikj
-tree where each node represents a k-dimensional cubic sub-region of the original

domain (i.e. the domain over which the decomposition is carried out). A node has one
of three possible states:

– white: if the region it defines is completely legal

– gray: if the region is partially legal and partially illegal

– black: if the region is completely illegal

When a black or white node is identified, the recursive division stops. Each gray
k-dimensional cube is decomposed into

ikj
smaller ones whose sides are half as long.

Unless the boundaries of a region are parallel to the coordinates axes, infinitely many
levels of representation would be required to precisely represent a region. However,
since the minimum granularity is fixed, any gray node with a smaller size than the
minimum granularity can be declared black and the decomposition stops.

Equalities In the case of equality constraints, a strict application of the binary decompo-
sition into a

ikj
-tree as described would amount to pursuing the decomposition to infinity

since an infinite degree of precision is required to represent single point solutions. We
can avoid this problem by exploiting the fact that many practical applications require
a limited degree of precision and it is thus admissible to treat equalities with a certain
error range. Presently, our system translates strict equalities l<*b:<;�2�?@?�?1: j 7%-nm into a
weaker form, lo*,:o;`2�?@?�?1: j 7F-pm.qsrUt i , where r is the fixed maximum precision, as
defined for inequalities. This amounts to replacing each equality by two inequalities.

.........

.........

xy

y

x

R

Fig. 3. A binary relation 6%P@u can be approximated by carrying out a hierarchical binary
decomposition of its solution space into a quadtree

3 Consistency Algorithms Using vxw -Trees

Path consistency algorithms, such as PC-1 [12] and PC-2 [11] require the application
of the following update rule defined on constraints:

m�yJLK -zm�JLK_{
j| *,m�J jZ} m j K@7 (1)

This relaxation operation uses two binary operators (intersection and composition,
denoted respectively by { and }) and a unary one (projection, denoted by ~), which
can be defined on

ifj
-trees. Since all variables are decomposed within the same interval,

intersection is simply the logical intersection of the corresponding quadtrees and can
be carried out efficiently. Composition can be implemented by first extending the � -
dimensional constraints into ����� -dimensional space and then projecting back the result
into � -dimension, as shown in Figure 4. Given an ordering �%��M��1���������]�'�n� �[�\�@� ,
rules for determining the feasibility of a node obtained by one of these operators can be
expressed as follows:

i. � �f���f�k*,�>�`�\� ; {��>�`�\� = 7�-.�.�]:<*�� �f�[�f�k*,�>�`�\� ; 7#2��S�f�[�f�k*,�>�`�\� = 717
ii. � �f�[�f�k*b�>�`�\� ; } �>�`�\� = 7W-.�.��:o*��S�f�[�f�k*,�>�`�\� ; 7�2�� �f�[�f�k*b�>�`��� = 717
iii. �S�f�[�f�k*,~ P *,�>�`�\� ; 717�-.��M��x*�� �f�[�f�k*b�>�`��� J 717

where �>�`�\� J are the nodes having �>�`�\� ; as facet.

The operators required for path consistency algorithms (and their generalization for
higher degrees of consistency) can therefore be implemented as straightforward logical
rather than numerical operations.

At each relaxation step described by eq. 1 using operations on
ikj

-trees, the intervals
contained in the involved labels are constructed by an implicit binary search: each
successive relaxation step refines the interval bounds to an interval half the size of the
previous one until maximum granularity is reached. Consequently, the decomposition
into

ikj
-trees has the important advantage of ruling out infinite cycling of the propagation

algorithm as observed for the Waltz algorithm applied to continuous domains. While
the Waltz algorithm performs slow and unstable fixed point iterations, the binary search
method using the

ifj
-tree decomposition guarantees stability and convergence.

z

x

z
y

Fig. 4. Information on a 3-dimensional node can be simply derived by composing its facets
(2-dimensional nodes), and vice versa, information on a 2-dimensional node can be obtained by
projecting the 3-dimensional node over one of its facets

N-ary CSPs In many realistic problems, the constraints are not binary, but n-ary. How-
ever, each n-ary constraint can be reduced to a set of ternary constraints without loss of
information. An n-ary algebraic relation, m�*,:o; 2�?@?�?,:CB�7 , can be transformed into a set
of ternary algebraic expressions by:

i. replacing iteratively in m each sub-expression �z:]J operator
:kKG� by a new variable :CB��x;

ii. adding a ternary equality constraint :CB��x;Z-G��:CJ operator :kKF�
The process stops when m itself becomes ternary. This transformation is only based on
symbolic manipulations and consequently, no information is lost in the solution space
description. For example, the 5-ary CSP with one constraint, *,:����k7 = � �[¡ �>¢�£¤ � i

, can
be translated into a ternary one with three constraints: � =; � *,� = tk¥�7�� i

, � ; -�:��¦� ,
�_=F-¨§©�
� . Hence, addressing n-ary continuous CSPs amounts to giving the ternary
counterparts of the algorithms and representation used for solving binary continuous
CSPs.

Constructing
ikj

-tree representations A total binary constraint 6%P@u is given intension-
ally by a set of algebraic equations *bm%;<?@?�?�m_ª[7 . The quadtree approximation «�P�u of a
binary relation 6 P�u can be obtained as follows:

For each m�J�¬­*bm%;3?�?@?1m_ª[7 Do
1. build a quadtree representation « JP�u for the basic constraint m�J
2. «�P�u8- «�P�u_{�« JP�u

Constructing the quadtree representation of an individual algebraic constraint, re-
quires a procedure for determining the color of each sub-region (rectangle) created by
the recursive decomposition. Two cases have to be considered:

i. If the constraint curve determines a transverse segment within the considered
rectangle, testing for the rectangle color amounts to finding an intersection of its
boundaries with the curve (see Figure 5). This test requires iterative numerical
analysis in the general case.
ii. If not (i.e. the curve is closed within the considered rectangle), a pre-processing
phase must be carried out in order to split the curve into transverse segments. This
can be done for example by carrying out a binary search for determining a division
which intersects the constraint curve. (see Figure 5)).

Computing octrees for ternary relations can be carried out in a similar manner.

(1) (2)

(4)(3)

(1) (2)

(4)(3)

(i)
® (ii)

®

x

y

x

y

Fig. 5. In case (i), the constraint curve determines a transverse segment: if the boundaries of a
rectangle intersect the curve , the rectangle is gray (rectangle(1)). If not it suffices to test if one
vertex of the rectangle satisfies the constraint to know if it is white or black (rectangle (4)). In
case ii, a rectangle might be gray even if all of its vertices satisfy (or do not satisfy) the constraint
(rectangle(3)). A preliminary search must be carried out to determine the divisions where the
constraint curve is transverse.

4 Global Consistency in Constraint Networks

In a minimal network, all the constraints are as explicit as possible and any value of
the labels can be extended to a solution. In a decomposable network, the search for
a solution is backtrack-free (the search process can generally be carried out in linear
time). We show that certain convexity properties of the solution space make it possible
to compute minimal and decomposable networks in polynomial time for continuous
CSPs.

Encouraging results have been obtained for continuous CSPs in the domain of
temporal reasoning: Dechter, Meiri and Pearl [2] have shown that for simple temporal
problems (STP), where labels have to be convex intervals (i.e: disjunctive constraints
are not allowed), the minimal constraint network can be constructed in polynomial time
by ensuring path consistency. Similar results have been obtained by Van Beek [14] on
a subset of the Allen’s interval algebra excluding the binary relation ¯- . Recently,Van
Beek [15] has generalized the convexity property to the case of discrete CSPs: row-
convexity guarantees the minimality and the decomposability of a path-consistent con-
straint network.

Although the convexity properties exploited in temporal and row-convex discrete
problems derive mainly from results in the continuous domain (see Helly’s theorem for
convex sets [14]), no framework has been defined to exploit them in the case of general
continuous CSPs. This is because the restriction imposed by the convexity condition
on algebraic continuous solution spaces is too strong. In this work, we show that the
axis-convexity property (a weaker condition) is sufficient for generalizing the results
obtained in simple temporal [2] and row-convex discrete [15] domains to continuous
CSPs.

In simple temporal problems (STPs) constraints take the form of bounded differences
� ; �°: J ��: K �±� = where XL� ; � = a has to be a single interval. This condition amounts to
saying that each variable takes its value within a single interval (convex interval). Path
consistent STPs can be solved by backtrack-free search. The key observation is that this
solution requires the convexity property only for each individual variable domain. Hence,
generalizing to non-temporal continuous CSPs would amount to imposing convexity
conditions only on the projections of the solution space over the different axes involved
(the convexity condition is required only on projected intervals).

Consequently, to generalize the results obtained for STPs, it is sufficient that the
solution space verifies partial convexity properties (convex projections). The weaker
form of partial convexity that can be used is arcwise connectivity. A region R is arcwise
connected if for any pair of points x and y of R, there exists a path connecting x and y
which is entirely within R. An arcwise connected region yields convex outer projections
over the axes involved. Convex outer projections aid in determining a tighter consistent
approximation of the solution space but are not sufficient to guarantee that the resulting
bounds are minimal. This is due to the fact that even if the outer projection is convex,
this property is not necessarily preserved for a subprojection of the solution space. For
this reason, we define a new category of partial convexity called axis-convexity. This
property is more restrictive than arcwise connectivity but guarantees the convexity of any
subprojection. We show in the next sections how this property can be used to determine
minimal approximations of the solution space in polynomial time complexity.

Definition 1 : Axis-Convex Region
Let � be a region defined by a set of algebraic or transcendental constraints on �
variables : ; ?�?@?1: B . � is said to be : j -convex in the domain 4 P h if, for any two points² ; and ² = in � such that the segment ² ; ² = is orthogonal to : j , ² ; ² = is entirely contained
in � .

The axis-convexity requirement is clearly weaker than convexity: a k-ary relation,
defined on a set of k variables 0n-n:<;S2@?�?@?�2 : j and determining a convex region has
convex projections for each variable : J of 0 for any value of : J . However, the converse
is not true, a region may have convex projections for each involved variable : without
being convex.

4.1 Convex binary CCSPs

Let us first describe how convexity properties can be exploited in the case of binary
constraints. The case of n-ary constraints will be dealt with later on. We define:

Definition 2 : Axis-Convex Relation
A binary relation 6%Pk³´T P�µ is : j -convex (where �¶¬sQUMA21N\c) if it determines a : j -convex
region in the domain 4 P h .

Definition 3 : x-Intersection
The : J -intersection of two bi-dimensional regions, � ;Pk³·T Pf¸ and � =Pk³´T Pk¹ , is the intersection
of their projection over the :CJ axis.

Definition 4 : Convex constraint network
A constraint network representing a CCSP (V,D,R) is convex if for all relation 6 P ³ T P µ M��<6 ,
6�: J 2 : K is : j -convex for each � in QUMA21N\c .

Continuous constraint satisfaction problems (CCSPs) having convex constraint net-
work representations are the generalized counterparts of simple temporal problems
(STP) as defined in [2]. Note finally that CCSPs including disjunctive or non-linear
constraints may admit no convex constraint network representation since these types of
constraints often create splits in the solution space.

Now we are in position to extend the theorems of Van Beek (theorem 1 and 4 of [15])
to the case of CCSPs. We first have to extend the lemma on which his proofs are based.
This can be done as follows:

Lemma 1 Let F be a finite collection of x-convex regions in 6 = . If F is such that every
pair of regions has a non null x-intersection, then the x-intersection of all these regions
is not null (i.e: there exists at least one value º for : so that each region � PUT u contains a
point *bº\2 � J 7 , where � J is a possible value for �)

Proof. This lemma is a direct application of Helly’s theorem to the case of R = .
We can generalize the results given in [15] as follows:

Theorem 1 Let » be a path consistent binary constraint network. If the network is
convex, it is also minimal and decomposable. If it is not convex, a consistent instantiation
can be found without backtracking if there exists an ordering of the variables : ; 2�?�?@?1: B
such that each relation of »¼6%Pk³·T P@µ , �%½
NE½zM , is :CJ -convex.

Proof. Analogous to the ones given in [15] (and based on the generalization of the
backtrack-free instantiation algorithm proposed in this work).

4.2 Convex n-ary CCSPs

As stated before, generalizing to n-ary CCSPs the results described before for binary
CCSPs amounts to giving the ternary counterpart of theorem 1.

Global consistency for ternary CCSPs The x-convexity property generalizes straight-
forwardly to the case of non binary CCSPs. In the case of ternary constraints, the
generalization of lemma 1 can be used to prove the decomposability of the constraint
network only if each pair of ternary relations has a non null x-intersection. Two ternary
relations 6%J�e,T KSe�T j and 6%J¿¾1T K�¾1T j have a non null k-intersection when each subset of five

variables *bMb;`2 M�=U21N`; 29N@=�2#�C7 are consistently labelled. In the particular case where each pair
of ternary constraints has two variables in common,(i.e: MA;�- M�= or N`; or N@=), the number
of variables that must be consistently labelled reduces to four and strong 4-consistency
guarantees that the network is decomposable. Hence, theorem 1 generalizes to ternary
constraints as follows:

Theorem 2 A ternary constraint network which is convex and strongly 5-consistent is
minimal and decomposable. Furthermore, in the particular case where each pair of
relations share two variables, strong 4-consistency is enough to ensure that a convex
ternary constraint network is minimal and decomposable.

Since the translation of an n-ary network into a ternary one is done at the cost of
increasing the number of variables, the practicality of 5-consistency for n-ary CCSPs is
still an open question. This result is mainly intended to provide a theoretical bound for
solving certain classes of n-ary CCSPs in a complexity better than exponential.

4.3 Non-convex CCSPs

A general CCSP may admit no convex constraint network representation. Moreover,
even if the initial problem is convex, consistency algorithms may not preserve this
property since intersecting two non convex — even if axis-convex— regions may result
in an arbitrary number of distinct sub-regions. We can distinguish three classes of
CCSPs:

i. CCSPs where all the relations determine convex regions
ii. CCSP where each relation determining a non arcwise connected

solution space is constituted by a set of convex regions.
iii. CCSPs where there exist non convex regions

In case i, since the intersection of two convex regions is necessarily convex (and hence
axis-convex), consistency algorithms will preserve the convexity of the constraint net-
work representation. Hence, problems of this first category can be solved, with no further
search, using partial consistency algorithms (as stated in theorems 1 and 2). In case
ii, the problem can be decomposed into convex sub-problems (one for each possible
combination of convex sub-region), for which each sub-problem is of type i. A solution
to the whole problem can be determined by solving each sub-problem individually and
then combining their solutions. Even if the complexity is, in this case, exponential in
the number of disjoint convex sub-regions, the computational effort can be bounded
a priori since consistency algorithms cannot create new case splits in the individual
sub-problems. In the last case, the splitting problem (similar to the one described in [9])
may occur and the complexity is difficult to estimate. In the best case, the consistency
algorithm may create a convex constraint network from a set of non-convex relations.
In the worst case however, the intersection of each pair of non convex regions may
result in an unbounded number of disjoint new sub-regions which can in turn split
again. Practical solutions (such as stopping the splitting process when the maximum
precision is reached) can be used to bound the combinatorial explosion, but in general
the complexity remains exponential for CCSPs of type iii.

5 Complexity of Consistency Algorithms

The complexity of the intersection, composition and projection operators on
ikj

-trees
can be roughly estimated in terms of the number of nodes generated by each operation.À * i j�Á�Â9Ã9Ä 7 (where Å is the maximum domain size and r the tightest interval size accepted
for variables) gives a rough approximation of the complexity. This measure assumes that,
in the worst case, a

ifj
-tree resulting from a given operation is complete. A more realistic

measure can be done in terms of the number of gray nodes generated, since the recursive
quartering stops as soon as a node color is set to white or black. We can show that this
measure is a function of the boundary size of the solution space. Furthermore,

ifj
-tree

structures are by nature well-adapted to parallel processing. Parallel implementation of
the intersection, composition and projection are likely to be very efficient.

Convex Binary CCSPs The algorithm PC-2 can be implemented using eq. 1 by way of
therevise function. According to the definitions of { and } for

ikj
-trees, the relaxation

operation described by eq. 1 is monotonic. Moreover, since the region decomposition
into

ikj
-trees discretizes the solution space, the fact that PC-1 (and hence PC-2)

terminates and computes a path-consistent network using the relaxation operation m yJ K -
m�JLKÆ{ ~ j *,m�J j3} m j K`7 can be shown in a manner similar to the case for discrete-domain
CSPs (see [12]). The worst case running time of PC-2 occurs when each revision step
suppresses only one node from the considered relation (i.e. the node becomes black),
hence:

Theorem 3 PC-2 computes the path consistent network representation of binary CC-
SPs, *9032 452#6�7 , in

À * i � = Á�Â1Ã9Ä £ �>Ç@7 where Å is the largest interval size in 4 and r the
tightest interval size accepted for variables of 0 .

According to theorem 1, when the path consistent network computed by PC-2 is convex,
it is also minimal and decomposable. Similarly, we can demonstrate that strong 5-
consistency can be ensured for a ternary CCSP in

À * i � Ç Á�Â9Ã1Ä £ �<ÈS7 .
Non convex CCSPs During the construction and propagation of

ifj
-trees, the case in

which a single region is split into several can be reliably detected. At this point the
algorithm branches and explores both regions separately (a new CCSP is generated).
The pathological case where an infinite number of sub-regions are generated is avoided in
practice, since regions smaller than the maximum precision are not explored. However,
the worst case complexity is clearly exponential.

6 Conclusion

In this paper we present a generalization of the results obtained for convex temporal
problems and discrete row-convex problems to more general classes of continuous CSPs
(convex CCSPs). The main contributions is to show that partial convexity properties of
continuous solutions spaces can be exploited to compute solutions to CCSPs in polyno-
mial time. A recursive decomposition scheme is proposed that solves the problem of rep-
resenting total constraints for path consistency algorithms. The

ikj
-tree decomposition

amounts to performing the stable binary-search method which guarantees convergence
according to numerical analysis results. The cycling problems, generally posed by fixed
point iteration methods (such as those observed by Davis for the Waltz algorithm [1])
are consequently avoided. Finally, we show that solving non-convex CCSPs remains
inherently costly, but decomposition methods can be proposed and might be of practical
interest for many particular applications.

7 Acknowledgments

We thank the Swiss National Science Foundation for sponsoring this research under
contract No.5003-034269

References

1. Davis E. : “Constraint propagation with interval labels”, Artificial Intelligence 32 (1987)
2. Dechter R., Meiri I., Pearl J. : “Temporal constraint networks”, Artificial Intelligence 49(1-3)

(1990)
3. Dechter R.: “From local to global consistency”, Proceedings of the 8th Canadian Conference

on AI (1990)
4. Deville Y., Van Hetenryck P.: “An efficient arc consistency algorithm for a class of CSP

problems”, Proceedings of the 12th International Joint Conference on AI (1991)
5. Faltings B.: “Arc consistency for continuous variables”, Artificial Intelligence 65 (2) (1994)
6. Freuder E.C.: “Synthesizing constraint expressions”, Comm. ACM 21 (1978)
7. Freuder E.C.: “A sufficient condition for backtrack-free search”, J. ACM 29 (1982)
8. Freuder E.C.: “A sufficient condition for backtrack-bounded search”, J. ACM 32 (1985)
9. Hyvönen E.: “Constraint reasoning based on interval arithmetic: the tolerance propagation

approach”, Artificial Intelligence 58(1-3) (1992)
10. Lhomme O.: “Consistency techniques for numeric CSPs”, Proceedings of the 13th Interna-

tional Joint Conference on AI (1993)
11. Mackworth A.: “Consistency in networks of relations”, Artificial Intelligence 8 (1977)
12. Montanari U.: “Networks of constraints: fundamental properties and applications to picture

processing”, Inform. Scie. 7 (1974)
13. Tanimoto T.: “A constraint decomposition method for spatio-temporal configurations prob-

lems”, Proceedings of the the 11th National Conference on AI (1993)
14. Van Beek P.: “Approximation algorithms for temporal reasoning”, Proceedings of the 11th

International Joint Conference on AI (1989)
15. Van Beek P.: “On the minimality and decomposability of constraint networks”, Proceedings

of the 10th National Conference on AI (1992)

This article was processed using the LATEX macro package with LLNCS style

