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Abstract. Thispaper providesatechniquefor solvinggeneral constraint satisfac-
tion problems (CSPs) with continuous variables. Constraints are represented by
a hierarchical binary decomposition of the space of feasible values. We propose
algorithms for path- and higher degrees of consistency based on logical opera-
tions defined on this representation and demonstrate that the algorithmsterminate
in polynomial time. We show that, in analogy to convex temporal problems and
discrete row-convex problems, convexity properties of the solution spaces can be
exploited to compute minimal and decomposabl e networksusing path consistency
algorithms. Based on these properties, we also show that a certain class of non
binary CSPs can be solved using strong 5-consistency.

1 Introduction

In the general case, constraint satisfaction problems (CSPs) are NP-complete. Trying
to solve them by search algorithms, even if theoretically feasible, often results in pro-
hibitive computational cost. One approach to overcome this complexity consists of
pre-processing the initial problem using propagation algorithms. These algorithms es-
tablish various degrees of local consistency which narrow the initial feasible domain
of the variables, thus reducing the subsequent search effort. Traditional consistency
techniques and propagation algorithms — such as the Waltz propagation algorithm—
provide relatively poor results when applied to continuous CSPs: they ensure neither
completeness nor convergence in the general case (agood insight into the problems en-
countered can befound in [1]). However, Faltings [5] has shown that some undesirable
features of propagation algorithms with interval labels must be attributed to the inade-
guacy of the propagation ruleand to alack of precision in the solution space description.
He has aso demonstrated that the problem with local propagation could be resolved
by using total constraints on pairs of variables. Lhomme [10] has identified similar
problems and proposed an interval propagation formalism based on bound propagation.

Van Beek’s work on temporal reasoning [14] using Helly’s theorem has shown the
importance of path-consistency for achieving globally consistent |abellings. In certain
cases, path-consistency algorithms are difficult to implement in continuous domains
becausethey requireintersection and composition operations on constraints. We propose
a constraint representation by recursive decomposition which allows implementation
of these operations. This allows us to apply Helly’s theorem to general continuous
constraint satisfaction problems. Theresults obtained for temporal CSPs could therefore
be extended to more general classes of continuous CSPs.
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Fig. 1. Figure (a) illustrates a binary relation R, given intensionally by the two inequalities
y> (z—5)?andy < 4 — (z —6)°. Ry, determinestheregionr,, and isboth y- and z-convex:
the projection of r;, respectively over the z and y axesyields single bounded intervals (resp. 1.
and I,,). In Figure (b), the relation R.,, is given intensionally by the constraintsy > 1/(z — 5)2
andy < 4 — (z — 6)2. Inthislast case, therelationis only y-convex since its projection over the
z-axisyields two distinct intervals 7,1 and 7.

In the following, a continuous CSP (CCSP),(P = (V, D, R)), isdefined asaset V
of variables z1, x5, . . .z, taking their values respectively from a set D of continuous
domains D1, Da, ..., D, and constrained by a set of relations R1, ..., R,,. A domain
isan interval of R. A relation is defined intensionally by a set of algebraic equalities
and inequalities (see figure 1). A relation R;; is atotal constraint: it takes into account
the whole set of algebraic constraintsinvolving the variables i and j. Each variable has
a label defining the set of possible consistent values. The label L, of avariable = is
represented as a set of intervals {1, 1 = [Zmin,1---Tmaz,1)s-- -}

2 Constraint and L abel Representation

Constraints on continuous variables are most naturally represented by algebraic or tran-
scendental equations and inequalities. However, as Faltings [5] has shown, thisleadsto
incomplete local propagation when there are several simultaneous constraints between
the same variables. More importantly, making a network path-consistent requires com-
puting the intersection and union of constraints, operations which cannot be performed
on (in)egualities. It istherefore necessary to represent and manipul ate the sets of feasible
value combinations explicitly.

Providing each variable with an interval label implicitly represents feasible regions
by enclosing rectangles or hypercubes. As shown in Figure 2, this is not powerful
enough for region intersection operations. To define a more precise and yet efficient
representation, we observe that most applications satisfy thefollowing two assumptions:

— each variable takes its values in a bounded domain (bounded interval)
— there often exists a maximum precision with which results can be used.
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Fig. 2. The enclosing rectangle of an intersection of regions R, and R isin general different
from the inter section of the enclosing rectangles of R, and R..

Provided that these two assumptions are verified, arelation R, .. , can beapprox-
imated by carrying out a hierarchical binary decomposition of its solution space into
2% -trees (quadtreesfor binary relations,octreesfor ternary onesetc. . . )(see Figure 3). A
similar representation has recently been proposed by Tanimoto for representing spatial
constraints [13]. When arelation is determined by inegualities, it can be approximated
by a2*-tree where each node represents ak-dimensional cubic sub-region of theoriginal
domain (i.e. the domain over which the decomposition is carried out). A node has one
of three possible states:

— white: if theregion it definesis completely legal
— gray: if theregion ispartially legal and partially illega
— black: if theregion is completely illegal

When a black or white node is identified, the recursive division stops. Each gray
k-dimensional cube is decomposed into 2% smaller ones whose sides are half as long.
Unless the boundaries of a region are parallel to the coordinates axes, infinitely many
levels of representation would be required to precisely represent a region. However,
since the minimum granularity is fixed, any gray node with a smaller size than the
minimum granularity can be declared black and the decomposition stops.

Equalities Inthecaseof equality constraints, astrict application of the binary decompo-
sitioninto a2*-tree as described woul d amount to pursuing the decomposition to infinity
since an infinite degree of precision is required to represent single point solutions. We
can avoid this problem by exploiting the fact that many practical applications require
alimited degree of precision and it is thus admissible to treat equalities with a certain
error range. Presently, our system trandates strict equalities f(z1,...2;) = C'intoa
weaker form, f(z1,...2x) = C £ ¢/2, where ¢ is the fixed maximum precision, as
defined for inequalities. This amounts to replacing each equality by two inequalities.
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Fig. 3. Abinaryrelation k., canbeapproximated by carrying out a hierarchical binary
decomposition of its solution space into a quadtree

3 Consistency Algorithms Using 2*-Trees

Path consistency algorithms, such as PC- 1 [12] and PC- 2 [11] require the application
of the following update rule defined on constraints:

k
Cij = Cyj & [[(Cix © Ciy) (1)

This relaxation operation uses two binary operators (intersection and composition,
denoted respectively by & and ®) and a unary one (projection, denoted by []), which
can be defined on 2% -trees. Sinceall variables are decomposed within the sameinterval,
intersection is simply the logical intersection of the corresponding quadtrees and can
be carried out efficiently. Composition can be implemented by first extending the &-
dimensional constraintsinto & + 1-dimensional space and then projecting back the result
into k-dimension, as shown in Figure 4. Given an ordering white < gray < black,
rules for determining the feasibility of anode obtained by one of these operators can be
expressed as follows:

i. color(nodey ® nodey) = Max(color(nodey), color(nodes))
ii. color(node; ® nodez) = Max(color(nodey), color(nodey))
iii. color([]" (node1)) = Min(color(node;))

where node; are the nodes having node, asfacet.

The operators required for path consistency algorithms (and their generalization for
higher degrees of consistency) can therefore be implemented as straightforward logical
rather than numerical operations.

At each relaxation step described by eq. 1 using operationson 2*-trees, theintervals
contained in the involved labels are constructed by an implicit binary search: each
successive relaxation step refines the interval bounds to an interval half the size of the
previous one until maximum granularity is reached. Consequently, the decomposition
into 2% -trees hasthe important advantage of ruling out infinite cycling of the propagation
algorithm as observed for the Waltz algorithm applied to continuous domains. While
the Waltz a gorithm performs slow and unstabl e fixed point iterations, the binary search
method using the 2* -tree decomposition guarantees stability and convergence.



Fig. 4. Information on a 3-dimensional node can be simply derived by composing its facets
(2-dimensional nodes), and vice versa, information on a 2-dimensional node can be obtained by
projecting the 3-dimensional node over one of its facets

N-ary CSPs In many realistic problems, the constraints are not binary, but n-ary. How-
ever, each n-ary constraint can be reduced to a set of ternary constraints without |oss of
information. An n-ary algebraic relation, C'(z1, ...z, ), can be transformed into a set
of ternary algebraic expressions by:

i. replacing iteratively in C' each sub-expression < z; operator
x; > by anew variable z,, 4,
ii. adding aternary equality constraint z,+1 =< x; operator z; >

The process stops when C' itself becomesternary. Thistransformation is only based on
symbolic manipulations and consequently, no information islost in the solution space
description. For example, the 5-ary CSPwith one constraint, (z — y)% + ﬁ%tl > 2,can
be transglated into a ternary one with three constraints: w? + (wa/u) > 2, wy = = — y,
we = z + t. Hence, addressing n-ary continuous CSPs amounts to giving the ternary
counterparts of the algorithms and representation used for solving binary continuous
CSPs.

Constructing 2¥-tree representations A total binary constraint R, is given intension-
aly by aset of algebraic equations (C4 . .. Cr). The quadtree approximation 7, of a
binary relation R, can be obtained as follows:

For each C; € (C:1...C)) Do ’
1. build aquadtree representation 77, for the basic constraint C;
2. Tpy =Tpy @ Tgy

Constructing the quadtree representation of an individual algebraic constraint, re-
quires a procedure for determining the color of each sub-region (rectangle) created by
the recursive decomposition. Two cases have to be considered:



i. If the constraint curve determines a transverse segment within the considered
rectangle, testing for the rectangle color amounts to finding an intersection of its
boundaries with the curve (see Figure 5). This test requires iterative numerical
analysisin the general case.

ii. If not (i.e. the curve is closed within the considered rectangle), a pre-processing
phase must be carried out in order to split the curve into transverse segments. This
can be done for example by carrying out a binary search for determining adivision
which intersects the constraint curve. (see Figure 5)).

Computing octrees for ternary relations can be carried out in a similar manner.
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Fig. 5. In case (i), the constraint curve determines a transverse segment: if the boundaries of a
rectangle intersect the curve , the rectangleis gray (rectangle(1)). If not it suffices to test if one
vertex of the rectangle satisfies the constraint to know if it is white or black (rectangle (4)). In
caseii, arectanglemight be gray even if all of its vertices satisfy (or do not satisfy) the constraint
(rectangle(3)). A preliminary search must be carried out to determine the divisions where the
constraint curveistransverse.

4 Global Consistency in Constraint Networks

In a minimal network, al the constraints are as explicit as possible and any value of
the labels can be extended to a solution. In a decomposable network, the search for
a solution is backtrack-free (the search process can generally be carried out in linear
time). We show that certain convexity properties of the solution space make it possible
to compute minimal and decomposable networks in polynomial time for continuous
CSPs.

Encouraging results have been obtained for continuous CSPs in the domain of
temporal reasoning: Dechter, Meiri and Pearl [2] have shown that for simple temporal
problems (STP), where labels have to be convex intervals (i.e: digunctive constraints
are not alowed), the minimal constraint network can be constructed in polynomial time
by ensuring path consistency. Similar results have been obtained by Van Beek [14] on
a subset of the Allen’s interval algebra excluding the binary relation #. Recently,Van
Beek [15] has generalized the convexity property to the case of discrete CSPs: row-
convexity guarantees the minimality and the decomposability of a path-consistent con-
straint network.



Although the convexity properties exploited in temporal and row-cornvex discrete
problems derive mainly from resultsin the continuous domain (see Helly’ stheorem for
convex sets [14]), no framework has been defined to exploit them in the case of genera
continuous CSPs. This is because the restriction imposed by the convexity condition
on algebraic continuous solution spaces is too strong. In this work, we show that the
axis-convexity property (a weaker condition) is sufficient for generalizing the results
obtained in simple temporal [2] and row-convex discrete [15] domains to continuous
CSPs.

Insimpletemporal problems(STPs) constraintstake theform of bounded differences
by < z; — z; < by where [b1b5] hasto be asingle interval. This condition amounts to
saying that each variable takes its value within a single interval (convex interval). Path
consistent STPs can be solved by backtrack-free search. The key observation isthat this
solution requiresthe convexity property only for eachindividual variabledomain. Hence,
generalizing to non-temporal continuous CSPs would amount to imposing convexity
conditions only on the projections of the solution space over the different axesinvolved
(the convexity condition isrequired only on projected intervals).

Consequently, to generalize the results obtained for STPs, it is sufficient that the
solution space verifies partial convexity properties (convex projections). The weaker
form of partial convexity that can be used is arcwise connectivity. A region Risarcwise
connected if for any pair of points x and y of R, there exists a path connecting x and y
whichisentirely within R. An arcwise connected region yields convex outer projections
over the axesinvolved. Convex outer projectionsaid in determining atighter consistent
approximation of the solution space but are not sufficient to guarantee that the resulting
bounds are minimal. This is due to the fact that even if the outer projection is convex,
this property is not necessarily preserved for a subprojection of the solution space. For
this reason, we define a new category of partial convexity called axis-convexity. This
property ismorerestrictivethan arcwise connectivity but guaranteesthe convexity of any
subprojection. We show in the next sections how this property can be used to determine
minimal approximations of the solution space in polynomial time complexity.

Definition 1 : Axis-Convex Region

Let » be a region defined by a set of algebraic or transcendental constraints on n
variables z; . ..z,. r issaid to be z;-convex in the domain D,,, if, for any two points
¢1 and ¢ in r such that the segment ¢, q- isorthogonal to zy, q1¢- isentirely contained
inr.

The axis-convexity requirement is clearly weaker than convexity: a k-ary relation,
defined on a set of k variables V' = z4, ..., z; and determining a convex region has
convex projectionsfor each variable z; of V' for any value of ;. However, the converse
is not true, a region may have convex projections for each involved variable = without
being convex.

4.1 Convex binary CCSPs

Let us first describe how convexity properties can be exploited in the case of binary
constraints. The case of n-ary constraintswill be dealt with later on. We define:



Definition 2 : Axis-Convex Relation
Abinary relation R, ., is xj-convex (where k € {i, j}) if it determines a x-convex
region in the domain Dy, .

Definition 3 : x-Intersection
The z;-intersection of two bi-dimensional regions, r;““ and r%m , isthe intersection
of their projection over the z; axis.

Definition 4 : Convex constraint network
Aconstraint network representinga CCSP (V,D,R) isconvexif for all relation R,
Rz;, x; isxy-convex for each k in {4, j}.

ank,

i

Continuous constraint satisfaction problems (CCSPs) having convex constraint net-
work representations are the generalized counterparts of simple temporal problems
(STP) as defined in [2]. Note finally that CCSPs including disjunctive or non-linear
constraints may admit no convex constraint network representation since these types of
constraints often create splitsin the solution space.

Now we arein position to extend thetheorems of Van Beek (theorem 1 and 4 of [15])
to the case of CCSPs. We first have to extend the lemma on which his proofs are based.
This can be done as follows:

Lemmal Let F bea finite collection of x-convex regions in R2. If F is such that every
pair of regions has a non null x-inter section, then the x-intersection of all these regions
isnot null (i.e: there exists at least one value v for « so that each region =, contains a
point (v, y;), where y; isa possible value for y)

Proof. Thislemmais adirect application of Helly’stheorem to the case of R2.
We can generalize the results given in [15] asfollows:

Theorem 1 Let NV be a path consistent binary constraint network. If the network is
convex, itisalso minimal and decomposable. If it isnot convex, a consistent instantiation
can be found without backtracking if there exists an ordering of the variables z4, . . . 2,
such that each relation of N R, ., 1 < j < i, iSx;-CONnvex.

Proof. Analogous to the ones given in [15] (and based on the generalization of the
backtrack-free instantiation algorithm proposed in this work).

4.2 Convex n-ary CCSPs

As stated before, generalizing to n-ary CCSPs the results described before for binary
CCSPs amounts to giving the ternary counterpart of theorem 1.

Global consistency for ternary CCSPs The x-convexity property generalizes straight-
forwardly to the case of non binary CCSPs. In the case of ternary constraints, the
generalization of lemma 1 can be used to prove the decomposability of the constraint
network only if each pair of ternary relations has a non null x-intersection. Two ternary
relations R;, ;, » and R;, ;, » have a non null k-intersection when each subset of five



variables(iy, i3, j1, ja2, k) areconsistently labelled. Inthe particul ar case whereeach pair
of ternary constraints hastwo variablesin common,(i.e: i; = i3 oOr j; Or j2), the number
of variablesthat must be consistently labelled reduces to four and strong 4-consi stency
guarantees that the network is decomposable. Hence, theorem 1 generalizes to ternary
congtraints as follows:

Theorem 2 A ternary constraint network which is convex and strongly 5-consistent is
minimal and decomposable. Furthermore, in the particular case where each pair of
relations share two variables, strong 4-consistency is enough to ensure that a convex
ternary constraint network is minimal and decomposable.

Since the trandlation of an n-ary network into a ternary one is done at the cost of
increasing the number of variables, the practicality of 5-consistency for n-ary CCSPsis
still an open question. This result is mainly intended to provide a theoretical bound for
solving certain classes of n-ary CCSPsin a complexity better than exponential.

4.3 Non-convex CCSPs

A general CCSP may admit no convex constraint network representation. Moreover,
even if the initial problem is convex, consistency algorithms may not preserve this
property sinceintersecting two non convex — even if axis-convex— regions may result
in an arbitrary number of distinct sub-regions. We can distinguish three classes of
CCSPs:

i. CCSPswhere all the relations determine convex regions

ii. CCSP where each relation determining a non arcwise connected
solution space is constituted by a set of convex regions.

iii. CCSPswhere there exist non convex regions

In casei, since the intersection of two convex regionsis necessarily convex (and hence
axis-convex), consistency algorithms will preserve the convexity of the constraint net-
work representation. Hence, problemsof thisfirst category can be solved, with no further
search, using partial consistency algorithms (as stated in theorems 1 and 2). In case
ii, the problem can be decomposed into convex sub-problems (one for each possible
combination of convex sub-region), for which each sub-problemisof typei. A solution
to the whole problem can be determined by solving each sub-problem individually and
then combining their solutions. Even if the complexity is, in this case, exponential in
the number of digoint convex sub-regions, the computational effort can be bounded
a priori since consistency algorithms cannot create new case splits in the individual
sub-problems. In thelast case, the splitting problem (similar to the one described in [9])
may occur and the complexity is difficult to estimate. In the best case, the consistency
algorithm may create a convex constraint network from a set of non-convex relations.
In the worst case however, the intersection of each pair of non convex regions may
result in an unbounded number of disoint new sub-regions which can in turn split
again. Practical solutions (such as stopping the splitting process when the maximum
precision is reached) can be used to bound the combinatorial explosion, but in general
the complexity remains exponential for CCSPs of typeiii.



5 Complexity of Consistency Algorithms

The complexity of the intersection, composition and projection operators on 2*-trees
can be roughly estimated in terms of the number of nodes generated by each operation.
O(2F*s/¢) (where s isthe maximum domain sizeand ¢ thetightest interval size accepted
for variables) givesarough approximation of thecomplexity. Thismeasureassumesthat,
intheworst case, a2* -tree resulting from agiven operationis complete. A moreredistic
measure can be donein terms of the number of gray nodes generated, since therecursive
guartering stops as soon as a node color is set to white or black. We can show that this
measure is a function of the boundary size of the solution space. Furthermore, 2*-tree
structures are by nature well-adapted to parallel processing. Parallel implementation of
the intersection, composition and projection are likely to be very efficient.

Convex Binary CCSPs The algorithm PC-2 can be implemented using eg. 1 by way of
ther evi se function. According tothedefinitionsof @ and ® for 2*-trees, therel axation
operation described by eg. 1 is monotonic. Moreover, since the region decomposition
into 2*-trees discretizes the solution space, the fact that PC- 1 (and hence PC- 2)
terminates and computes a path-consistent network using therelaxation operation C; =

Ci; ® Hk (Cix ® Ct;) can be shown in amanner similar to the case for discrete-domain
CSPs (see [12]). Theworst case running time of PC- 2 occurs when each revision step
suppresses only one node from the considered relation (i.e. the node becomes black),
hence:

Theorem 3 PC-2 computes the path consistent network representation of binary CC-
SPs, (V, D, R), in O(2(3*/2)n3) where s is the largest interval size in D and ¢ the
tightest interval size accepted for variablesof V.

According to theorem 1, when the path consistent network computed by PC-2 is convex,
it is also minimal and decomposable. Similarly, we can demonstrate that strong 5-
consistency can be ensured for aternary CCSPin O(2(3*s/¢)n%).

Non convex CCSPs During the construction and propagation of 2*-trees, the case in
which a single region is split into several can be reliably detected. At this point the
algorithm branches and explores both regions separately (a new CCSP is generated).
Thepathological casewherean infinite number of sub-regionsaregeneratedisavoidedin
practice, since regions smaller than the maximum precision are not explored. However,
the worst case complexity is clearly exponential.

6 Conclusion

In this paper we present a generalization of the results obtained for convex temporal
problems and discrete row-convex problemsto more general classes of continuous CSPs
(convex CCSPs). The main contributionsis to show that partial convexity properties of
conti nuous sol utions spaces can be exploited to compute solutions to CCSPsin polyno-
mial time. A recursive decomposition schemeis proposed that solvesthe problem of rep-
resenting total constraints for path consistency algorithms. The 2*-tree decomposition



amounts to performing the stable binary-search method which guarantees convergence
according to numerical analysisresults. The cycling problems, generally posed by fixed
point iteration methods (such as those observed by Davis for the Waltz algorithm [1])
are consequently avoided. Finally, we show that solving non-convex CCSPs remains
inherently costly, but decomposition methods can be proposed and might be of practical
interest for many particular applications.
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