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A b s t r a c t .  Cryptographic protocols have usually been designed at an 
abstract level without concern for the cryptographic algorithms used in 
implementation. In this paper it is shown that the abstract protocol 
definition can have an important effect on the ability of an attacker to 
m o u n t  a successful attack on an implementation. In particular, it will be 
determined whether an adversary is able to generate corresponding pairs 
of plaintext and ciphertext to use as a lever in compromising secret keys. 
The ideas are illustrated by analysis of two well-known authentication 
systems which have been used in practice. They are Kerberos and Kryp- 
toKnight. It is shown that for the Kerberos protocol, an adversary can 
acquire at will an unlimited number of known plaintext-ciphertext pairs. 
Similarly, an adversary in the KryptoKnight system can acquire an un- 
limited number of data pairs which, by a less direct means, can be seen to 
be cryptanalytically equivalent to known plaintext-ciphertext pairs. We 
propose new protocols, using key derivation techniques, which achieve 
the same end goals as these others without this undesirable feature. 

1 I n t r o d u c t i o n  

In recent years great advances have been made in unders tanding how to de- 
sign cryptographic protocols for enti ty authent icat ion and secure message ex- 
change. Various techniques have been proposed (e.g., [19, 20, 12, 13, 10, 4]) and 
thereafter  security flaws or weaknesses were discovered. To repeatedly find and 
fix problems in the published authenticat ion mechanisms is an active research 
topic. Meanwhile, systems based on these mechanisms have been implemented;  
two well-known systems are Kerberos [17, 14] and KryptoKnight  [18]. Natu- 
rally, these implementat ions should also be frequently examined and debugged 
in accordance with discoveries of the problems in the underlying mechanisms. 

In applications of distributed computa t ion  which crucially require secure 
communicat ion,  ent i ty  authenticat ion establishes a secure channel between com- 
municat ion parties remotely si tuated in a hostile environment.  In the techniques 
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mentioned above, this task is achieved through the use of a trusted authentica- 
tion server and as a special case, the server itself can be one of the communica- 
tion parties. It is always assumed that  a secure channel already exists between a 
client principal and the server. Let this existing channel be referred to as a long- 
term channel, which is established through some expensive method in a higher 
level of the security hierarchy. It must be understood that  the security essence 
of a long-term channel is its low bandwidth: its usage must be limited only to 
establish other channels of higher bandwidth. In other words, authentication 
protocols are meant to use a secure long-term channel to transmit  or to agree 
a small amount of secrets (usually, a cryptographic key) which may serve as a 
new secure channel (called a session channe 0 along which information can be 
t ransmit ted with a smaller delay. Notice that a channel with a high bandwidth is 
vulnerable to temptations in terms of cryptanalysis; it therefore should a limited 
lifetime. Whenever needed, communication parties should run an authentication 
protocol to create a new session channel. 

It is thus clear that the reason for maintaining the low bandwidth of a long- 
te rm channel is in order to foil cryptanalysis passively and/or actively targeted 
on it. Only by taking this into account does the required and assumed long life- 
t ime of a long-term channel make sense. In public-key cryptographic techniques 
there is also a need for thoughtful use of a long-term channel. For instance, in the 
case of the lZSA algorithm [9.1], a long-term channel between a pair of principals 
can be identified with the private keys of each party; such a key is matched to the 
public key which is certified to the principal. This viewpoint should be consid- 
ered when the RSA algorithm is used to "bootstrap" a conventional encryption 
scheme. 

In this paper, we keep in mind the working principle of entity authentica- 
tion mechanisms discussed above while we investigate the existing techniques. 
We focus on two implemented systems, Kerberos (Section 2) and KryptoKnight 
(Section 3). These two systems will be shown to allow an adversary to acquire 
at will an unlimited number of known plaintext-ciphertext pairs. So viewed by 
the adversary, long-term channels of these systems are actually used at a very 
high bandwidth, even higher than that of any session channel. This is inconsis- 
tent with respect to the working principle of authentication mechanisms. Our 
investigation will result in some insight into how an authentication mechanism 
should be designed to fulfill the intended purpose of entity authentication. In 
Section 4, we will demonstrate our idea by presenting remedies for the problem, 
using an idea of "one-time" channel derivation, which achieves the same end 
goals as these others without the undesirable feature revealed. In addition we 
will see another good feature possessed in one of our remedy techniques: perfect 
forward secrecv [8], which means that  loss of a long-term key should not lead to 
loss of any session key which has been established by the lost key. We will also 
discuss the possibility of extending our techniques to conventional authentication 
protocols. Finally, Section 5 forms our conclusion. 

The remainder of this section is devoted to a brief overview of cryptanalysis 
threats that  we will be discussing throughout the paper. Further details may be 
found in various texts such as the recent book by Schneier [22]. 
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1.1 An Overview of Cryptanalysis Threats 

In conventional cryptography the sender and recipient of a message share a key, 
which is known to no other principals, that allows each of them to encrypt or 
decrypt messages. It is inevitable that  an attacker will be able to record and 
analyse a large amount of the encrypted ciphertext t ransmit ted between the two 
parties with the aim of extracting the plaintext or analysing the key used. The 
cryptographic algorithm employed should be designed so that this is not possible 
for an attacker using the resources anticipated. 

However, resistance to such a cipherte~t only attack is not sufficient to guar- 
antee security. It may be anticipated that  the attacker will be able to obtain por- 
tions of ciphertext for which he also knows the corresponding plaintext. These are 
known as plaintext-ciphertext pairs. A known plaintext attack, which a t tempts  to 
find the shared key from a number of plaintext-ciphertext pairs, is considerably 
harder to defeat. An even sterner case is the chosen plaintext attack, in which 
the attacker is able to choose plaintext portions and see their encrypted ver- 
sions. Recent advances in cryptanalysis [3] have shown that  resilience to known 
and chosen plaintext attacks is not so easy to achieve as had been previously 
thought. It is particularly worth noticing that  authentication protocols which 
apply a challenge-response technique, if not carefully designed, can be abused 
to form a substantial amount of plaintext-ciphertext pairs. In Section 2 we will 
see that  the authentication system Kerberos, which implements the techniques 
of a category of published authentication protocols, allows an attacker to obtain 
an unlimited amount of plaintext-ciphertext pairs to be used to undermine the 
long-term channel between a server and a client. 

Another type of cryptographic function is a one-way hash function. Such a 
function has a one-way property which means that it is easy to compute hashed 
values in the direction from domain to range but computationally infeasible, 
given almost any hashed value, to find any input it could have come from. Typi- 
cally such functions map long strings onto much shorter ones. An attractive fea- 
ture due to the unequal sizes of domain and range is that plaintext-ciphertext 
pairs generated on the ~:hannel are of little use for an opponent. The idea of 
using one-way hash functions as the basis of cryptographic protocols appeared 
quite early in the literature, e.g., Evan et al. [9], Merkle [16] and Gong [10]. Sub- 
sequently the idea has been employed in the authentication and key exchange 
system KryptoKnight [18]. However, in Section 3 we will see that  owing to an 
undesirable design feature, an attacker can force the domain and the range of 
the one-way function implemented in the system to have the same size and at 
the same t ime obtain an unlimited amount of plaintext-ciphertext pairs. Nor- 
mal cryptanalysis techniques can then be applied to undermine the long-term 
channel. 

Having explained the threat scenario, it is attractive if we can guarantee that  
a long-term channel will never be used to provide plaintext-ciphertext pairs. 
Such a technique will be presented in this paper. 
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2 K e r b e r o s  

Kerberos is based on the Needham-Schroeder protocol, but makes use of times- 
tamps as nonces to remove the problem pointed out by Denning and Sacco [6]. 
In Kerberos, basic message exchanges between a network client A and an au- 
thentication server S have the following form: 

1. A --* S : request  
2. S -~ A : reply 

In this presentation, the line X --* Y : Z describes a message communication 
directed from principal X to principal Y; Z represents the transmitted message. 
Requests from clients are always sent in plalntext and replies from the server 
are organised messages called tickets. A ticket is a record that helps a client 
to authenticate a service. A slightly simplified form of ticket can be written as 
below (cf., gerberos version 5 [14]): 

t icket  = version-number, addresses, names, encrypted-part  

where the encrypted-part  is as below: 

encrypted-part  = {flag-bits, session-key, address, names, timestamps, 
lifetimes, host-addresses, authorization-data }gas 

The notation { M } K  denotes a ciphertext generated from a (symmetric) 
crypto-algorithm which uses M as input data and K as encryption key. In the 
above example, the key K A s  is the secret key shared between the client principal 
A and the server principal S; it is the basis of the long-term channel existing 
between these two principals. 

We see that in the encrypted part of a Kerberos ticket the messages axe non- 
secret data except for the session key. To an external adversary, the principal 
addresses and names are fully known, and timestamps and lifetimes have easily 
guessable formats. To an internal adversary, such as the third party principal, B, 
with whom A intends to share a session key by initiating an authentication run, 
all data in the encrypted part of a ticket are fully known. (In this paper, B is 
always viewed as a potential enemy.) We observe that the encryption algorithms 
used by Kerberos (they will be discussed below) treat these data as secrets. We 
regard such a treatment to be unwise. In so doing, each run of the protocol will 
generate plaintext-ciphertext pairs for an adversary to analyse the long-term 
secret key shared between the server and a client principal. We now explain why 
in the case of Kerberos, the effect of the cryptanalysis may not be ignored. 

In Kerberos, a request from a client principal to the server is sent in plalntext. 
Thus the adversary's action is not limited only to passive monitoring of the 
normal runs of the protocol on the network traffic, which can only allow him 
to obtain a trivially small amount of plaintext-ciphertext pairs. The opponent 
can in fact masquerade as A and send an unlimited number of plaintext requests 
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to S, who presumably is a node in the computer network and will prompt  the 
opponent by supplying tickets, i.e., plaintext-ciphertext pairs, onto the network. 

In the encrypted part  of a ticket, known data follow a session key which varies 
in every ticket returned from the server. Thus in the case of using a chained 
encryption algorithm (in Kerberos V5, the encryption algorithm used is cipher 
block chaining (CBC), see Section 6.3 of [14]), the constant known plaintexts 
will be "garbled" by the feedback of the previous ciphertext output.  We now 
look at how such a garbling will help the adversary to obtain a large amount of 
plaintext-ciphertext pairs. The output of a block cipher using CBC mode is a 
sequence of n-bit cipher blocks which are chained together in that  each cipher 
block is dependent not only on the current input plaintext block, but also on 
the previous output cipher block. Let P1, P 2 , " ' ,  P,,~ be plaintext blocks to be 
input to CBC algorithm and C1, C2,. .  �9 C,~ be ciphertext blocks output  from 
the algorithm. Then the encryption procedure to generate a block of ciphertext 
is as below: 

o~ = eg(P~ �9 0~-I) 

where eK() denotes an encryption algorithm keyed by K and @ denotes the 
addition, bitwise modulo 2. So P~ �9 Ci-1 and Ci form a plaintext-ciphertext 
pair. Now let P1 be the session key which varies in every ticket returned from 
the server. Then it is easy to see that C1, C~, .. .  vary in every ticket. The 
consequence of this garbling is: simply repeating a constant request, the opponent 
will be guaranteed to obtain varied plaintext-ciphertext pairs with which he can 
build a dictionary. Notice that the correct use of CBC requires each encryption 
calculation be initialised by a new "initial vector" (IV); these varied IV's can 
also play the role of the session keys. 

It seems there is a simple cure for the problem that  we have revealed: the 
server should record the requests from clients; if numerous requests from a prin- 
cipal are. detected within a short period of time, the service should be denied. 
However, this then allows a denial of service attack with which a malicious person 
can cheat the server to stop serving innocent clients. A denial of service at tack 
of this kind can only be prevented if such an attack as the above is allowed. 

From our analysis so far it is apparent that the Kerberos authentication sys- 
tem can be abused by an opponent to obtain an arbitrary amount of plaintext- 
ciphertext pairs. It is not hard to imagine that  by performing the attack in a 
short period of time, the amount of pairs gathered by the opponent can exceed 
the quantity of ciphertexts of a session. This forms rather a strange situation: 
a session key which generates a smaller amount of ciphertext-only data is stipu- 
lated to have a short lifetime while a key which can generate a larger amount of 
plaintext-ciphertext pairs is, on the contrary, to be used in a much longer period 
of time. Considering that  cryptographic keys in modern encryption algorithms 
(such as DES) have a fixed format, it cannot be that  some keys are uncondition- 
ally stronger than others. The stipulated difference in lifetimes of the keys is due 
to the consideration of different types of data to be encrypted. Unfortunately, 
in the case of Kerberos, this reasonable stipulation turns out to be a dangerous 
practice. 
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3 K r y p t o K n i g h t  

KryptoKnight is an authentication system developed by Molva et al. [18]. Its 
technical basis is similar to that of a protocol that Gong devised [10]. In the 
treatment of non-secret data, KryptoKnight is extremely different from Kerberos 
where a substantial amount of non-secret data are encrypted against access. In 
KryptoKnight, non-secret data are sent in plaintext. The integrity of these data 
is protected by using the one-way property of a cryptographic transformation. 
Such a treatment shows a better  understanding of authentication mechanisms, 
i.e., the required property of cryptographic services for authentication is one- 
way transformation, rather than secret concealment. In the previous section we 
have seen that to conceal non-secret data against access is not a good practice. 
Authentication applying the one-way property has many other advantages over 
applying the secret-concealment property [15]. 

In the message exchange for key distribution, KryptoKnight uses the image 
of a one-way transformation, namely, a mechanism called a message authentica- 
tion code (MAC), as a key to conceal a distributed session key in the fashion of 
the one-time pad. Below is such an exchange where a client principal A requires 
the authentication server S to generate and send to her a session key K to be 
shared with a third party B. 

1. A --~ S : A,B,  NA 
2. S ~ A : Ns ,NA ,B ,T ,  MACK~s(NA @ B, Ns,NA | S,T) @ K 

In the above messages, NA is a nonce chosen by A for verifying the timeliness 
of the message replied from the server, Ns is the nonce generated by the server 
and T is a lifetime stating the expiration time of the distributed session key 
K. The one-way transformation is denoted by MACKAs(.); it is keyed by the 
long-term key KAs shared between A and S. Notice that because of the one-way 
property of the MAC mechanism, the long string of plaintext input and the short 
string of the MAC (64 bits, see [18]) in message line 2 do not form useful pairs 
for an adversary. Furthermore, the MAC is concealed by the session key so it is 
not available to an external adversary on the network. Therefore, the attacking 
scenario that applies to Kerberos does not apply to KryptoKnight. 

However, this clever design does not stop an internal opponent who has a 
long-term channel with the server. Assume that B is such a person. The message 
line 1 sent in plaintext means that B can masquerade as A, at the same time 
playing his own role. By fixing (or carefully choosing) NA, he can obtain an 
unlimited number of MAC's which we put in the following set: 

{MACKAs(NA | B, Ns, NA @ S,T) [ Ns known to B} 

Notice that among the data input to these MAC's only Ns is a variable, or a 
real input value; the rest of the data are constants. Therefore we can rewrite the 
above set as the following one: 

{MAC~KAs(Ns) INs known to B} 
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In fact, elements in this set can be viewed as outputs from a block encryption 
algorithm which transforms one block of nonces, i.e., Ns, into one block of ciphers 
with the same block size. A more appropriate name for such a transformation 
should be ECB, the electronic code book mode of operation on a block cipher 
algorithm. Algorithmically, we can see little difference between a MAC with one- 
block length of input string and an ECB with the same input string. Now that  
both Ns and MAC~As(Ns) are 64-bit blocks (see [18]), they form a perfect 
plaintext-ciphertext pair. B can build a dictionary of such pairs for undermining 
the long-term channel between A and S. 

Similar to the scenario of the denial of service attack toward Kerberos that  
we discussed in the previous section, it is not a good solution to stop serving 
B when numerous malicious requests are detected. A desirable solution should 
be some mechanism designed in the protocol which does not prevent malicious 
action but instead prevents achieving the intended goal of such a malicious ac- 
tion. For instance, it will be attractive if no plaintext-ciphertext pairs will be 
produced against the long-term channel through sending a large amount of ma- 
licious requests onto the network. Such a technique will be devised in the next 
section. 

4 T w o  R e m e d i e s  f o r  K r y p t o K n i g h t  

Kerberos and KryptoKnight apply encryption techniques in two extremely dif- 
ferent manners. Kerberos overuses the secret-concealment property of crypto- 
algorithms; it unnecessarily, even harmfully, protects the confidentiality of non- 
secret data. KryptoKnight,  on the other extreme end, underuses that  property; 
lack of a secret t ransmit ted along the long-term channel (the session key dis- 
tr ibuted in KryptoKnight is not a secret to an internal attacker as the third 
party) makes the channel too exposed. Naturally, we should consider a balance 
between these two extreme situations. Our remedies are to design some secrets 
to be passed through the long-term channel. Such a secret is protected by, and 
protects, the long-term key. Two remedies for KryptoKnight using this idea are 
given below. 

4.1 R e m e d y  S c h e m e  1 

In the first remedy, the needed secret is a nonce N~ replied from the server. The 
original protocol will be revised into the following version: 

1. A-*  S : A,B, NA 
2. S -~ A: {N~s}KAs,Ns,B,T, MACKAs~N'(NA | B, Ns,NA | S,T) @ K 

In this specification, the usage of the identifiers is the same as in the original 
KryptoKnight,  except the extra nonce N~, which is generated by the server for 
each run. The server sends it to A under the protection of the long-term key KAs 
with an appropriate encryption algorithm (e.g., DES ECB). Thus, N~ is a secret 
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between A and S. By adding this secret, bitwise modulo 2, to the long-term key 
KAS, a "one-time" channel is formed and used to create a "one-time" MAC for 
each run. Thus, if B performs the same attack that we have described in the 
previous section, then each attacking run will give him one plaintext-ciphertext 
pair against a "one-time" channel. 

Finally, it is not difficult to see that in this revision, except that we have 
eliminated the attacking scenario revealed in Section 3, the security essence of 
the original KryptoKnight has not been changed and this carl be analysed anal- 
ogously to that of the original KryptoKnight [18]. 

4.2 R e m e d y  S c h e m e  2 

In the second remedy, the needed secret is derived from the Diffie-Hellman expo- 
nential key exchange technique [7]. Briefly, A and S each pick random exponents 
RA and Rs .  Assuming they agree on a common base a and modulus p, A com- 
putes NA = a RA modp  and S computes Ns  = a Rs modp. The NA arm Ns  are 
used in the same way as these two identifiers are in KryptoKnight. 

Now A, knowing /~A and ans  modp, can compute 

( aRs )aA mod p = a RsaA mod p 

Similarly, S can compute 

(aliA) Rz modp  = a RARs modp  

So A and S agree a secret 

Y = a asnA modp = a naRs modp  

The value Y will be used as the needed secret which is exclusively shared between 
A and the server. 

A message exchange for key distribution to realise this idea is given below. 

1. A--~ S : A , B ,  NA 
2. S ~ A : Ns ,  N's, B,  T, M A C K A s e y ( N A  @ B, Ns ,  NA 0 S, T) ~ K 

The protocol presentation is almost identical to KryptoKnight. In the mes- 
sage returned from S, a one-time channel is used to create the MAC. This channel 
is formed by adding, bitwise modulo 2, the secret Y to the long-term key K a s .  It 
is one-time because even if NA is a replay of an old message, the server will always 
generate a new Ns,  and so Y is fresh. Now let B perform the same attack that 
we have described in Section 3. As above, each attacking run will give him one 
plaintext-ciphertext pair against a one-time channel. So no plaintext-ciphertext 
pair will be generated by this protocol against the long-term channel based on 
KAs.  In order to form a dictionary against the long-term channel, B faces the 
well-known difficulty of computing a large amount of discrete logarithms. 

The challenge-response mechanism of the original KryptoKnight based on 
the exchange of freshness identifiers NA and Ns is maintained, because now 
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these two identifiers are essentially fresh and random as long as RA and Rs 
are. Ns is now no longer related to NA as it is in the KryptoKnight protocol. 
For message integrity and authentication purpose, the value N~ is now a cipher 
of Ns under the session key K, i.e., N~ = {Ns}K. The security essence of 
the original KryptoKnight will not be changed due to this revision and can be 
analysed analogously to that of the original KryptoKnight [18]. 

A good property possessed by this version of the remedy for KryptoKnight 
can be referred to as perfect forward secrecy. An authenticated key exchange 
protocol provides perfect forward secrecy [8] if disclosure of long-term secret 
keying material does not compromise the secrecy of the exchanged keys from 
earlier runs. Here in the revised KryptoKnight, the secrecy of the session keys 
established in the history of a long-term key depends on the various one-time 
secrets agreed between A and S. The secrecy will not be damaged as long as these 
one-time secrets have been properly disposed of. This property is inherited from 
the use of the Diffie-Hellman technique for derivation of the one-time secrets. 

4.3 Discuss ion 

The first remedy scheme given in Section 4.1 effectively eliminates the potential 
attack revealed in Section 3 which allows an adversary to accumulate an arbi- 
t rary amount of plaintext-ciphertext pairs against a long-term key. The remedy 
strengthens the original KryptoKnight in terms of disallowing algorithmic crypt- 
analysis methods based on numerous chosen or known plaintext-ciphertext pairs. 
However, we should point out that if the cryptanalysis technique is simply key- 
space search by brute force, then that remedy does not strengthen the original 
protocol. This is because the computing time needed for searching a key for 
the first remedy protocol and that for the original KryptoKnight only differ a 
polynomial function of the key size (it is reasonable to view the computing time 
as a function of the key size). For instance, guessing a candidate key KAs, we 
can obtain a candidate nonce N~ in the remedy protocol by a step of decryption 
which takes a polynomial time; then we can further test whether KAs | Nb is 
a correct keying value to have been used for creating the MAC, and this test 
is the basic computation of any key-searching algorithm. Now that the time for 
key search is an exponential function of the key size, the polynomial difference 
due to the remedy will not count. 

In the second remedy scheme, due to the use of the Diffle-Hellman exponen- 
tial key derivation technique, the key searching problem now faces computing 
discrete logarithms. The difficulty of this problem will depend on the size of 
the prime p used. For a properly chosen large prime, the best known algorithm 
to date has a sub-exponential complexity [5]; no polynomial time algorithm is 
known. However, it should be noted that there is a trade-off between the extra 
security gained and the consequent increase in system complexity. 

There are various techniques for distributing or agreeing session keys, but the 
entity authentication steps that are inevitably needed in these techniques are of- 
ten very similar. In practice these are mainly achieved by using shared secret 
keys or passwords in a conventional fashion (see e.g., [8, 11] for non-conventional 
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key agreeing ideas with conventional authentication methods). Similar to the 
problem found in KryptoKnight, the authentication parts of these techniques 
are found to have weaknesses for allowing cryptanalysis of shared keys or pass- 
words. Our techniques proposed in this paper show a practical idea for preventing 
potential algorithmic cryptanalysis threats based on gathering numerous chosen 
or known plaintext-ciphertext pairs. In addition, the discussion supplied here 
points out that cryptanalysis threats in terms of brute-force key search needs to 
be countered by extra system complexities. Some authors [1, 2] have considered 
methods against brute-force searching for passwords; the remedy scheme 2 can 
be viewed as a different approach to a similar goal. 

4.4 Appl icab i l i ty  of  the Strengthening T e c h n i q u e  to  C o n v e n t i o n a l  
Authentication p ro to co l s  

Finally, we point out that the techniques supplied in this paper can be applied to 
strengthening conventional authentication and key distribution protocols which 
employ authentication servers. Here we show an example based on using the 
remedy scheme 2. 

The weakness that we have discussed on Kerberos in Section 2 generally 
applies to conventional protocols. For instance, in the case of the Otway-Rees 
protocol [20] below: 

1. A --* B : M, A, B, {NA, M, A, B}KAs 
2. B ~ S : M, A, B, {NA, M, A, B}KAs, {NB, M, A, B}Kss 
3. S --* B :  M, {NA,KAB}KAs, {Ns,KAB}KBs 
4. B ~ A:  M, {NA, KAS}KAs 

an opponent can repeat sending messages specified in the first line on to the 
network (he can do so by varying M and using any garbage for the cipher 
chunk), and B will thereby prompt messages specified in the second line. This 
malicious action results in an accumulation of chosen plaintext-ciphertext pairs 
in the same way as the attack on Kerberos explained above. 

To make an example of a wide application of our technique, we suggest 
strengthening the Otway-Rees protocol into the following version: 

1. A--* B :  M , A , B ,  NA 
2. B --* S : M , A , B ,  NA,Ns  
3. S --* B :  M, NsA,{B,  NA, KAB}K~s@yA,NsB,{A, NB,KAB}Kss@ys 
4. B -* A:  M, NsA,{B ,  NA,KAB}Kaseya 

where 
YA = a Rs•aA modp = NsA RA modp = NA asA modp 

and 
YB = a RsBRB modp = NsB RB modp : NB RsB modp 

and a, p are appropriate elements in the DifSe-Hellman key-agreement technique. 
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5 Conclusion 

Protocols need to be designed to take account of their implementation as well 
as their abstract security properties. We have shown how well known protocols 
allow attackers to obtain unnecessary assistance in obtaining plaintext-ciphertext 
pairs for use in cryptanalysis. Finally we have illustrated that simple steps may 
be taken to prevent such attacks which have very little computational cost to 
the legitimate users. 
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