
D i s t r i b u t e d fi le s y s t e m o v e r a m u l t i l e v e l s e c u r e
a r c h i t e c t u r e

p r o b l e m s a n d s o l u t i o n s

Christel CALAS

CERT-ONERA
Drpartement d'Etudes et de Recherches en Informatique

2 av. Edouard Belin
BP 4025

31055 Toulouse Cedex FRANCE
email: calas@tls-cs.cert.fr

Abstract. This paper presents the principles of a distributed and secure file sys-
2 tern. It relies on M S machines and a secure network which control dependencies

and avoid any storage and temporal covert channel. It describes how, from NFS
(Network File System) principles, we adapt the organization and the structures to
obtain practical services despite constraining controls performed by the hard-
ware. Finally it proves that it is possible to obtain a practical distributed file sys-
tem, with usable features without any compromise on security enforcement.

Keywords. Security, Distributed file system, Multilevel security, M2S machine,
secure LAN.

1 Introduction

Distributed environment is today an important feature to provide in a multiple host
system. Particularly it is very efficient to offer distributed processing and remote access
to information from any station connected to the system: many distributed systems and
operating systems were built to that end. But well known techniques in classical envi-
ronments become difficult to enforce when a high degree of security is required. Indeed
distribution and security make a strange mixture where security, performances and ac-
cess possibilities seem to be incompatible.

This paper aims at presenting a distributed file system that enforces the security of
its data according to the multilevel security policy. It is based on using a particular ma-
chine called M2S (Machine for Multilevel Security) [2] and a network assuring secure
communication between hosts. The security of M2S and of the network relies on the in-
terpretation of the causality security model [3]. This model is based on controls of de-
pendencies between objects maintained inside the system (cell memory, driver ports,
...). These controls enforce the security but entail constraints on the operating system,
the file system and the applications running upon them. These constraints are not im-

282

posed to obtain security like "You must do that or else security would be broken" but
rather "Services are always secure and if you do not do that, your service could not
run".

This enforcement of security requires an adaptation of usual functions and struc-
tures to obtain practical services. We illustrate this fact through a distributed file system
example. As depicted in [2] or [6] security and distribution entail new problems both
of security and functionalities and we explain how to resolve them and show that it
could be realized in a simpler manner.

We first present hardware components and the local file system constructed on M2S
inside an adapted Unix operating system [1]. Then we depict the distributed file system
principles and structure through a description of its actors and its organization. We dis-
cuss problems ensuing from this organization and propose solutions and finally we de-
scribe examples of the utilization of this MLS distributed file system.

2 Secure basis

2.1 M2S: A Machine for Multilevel Security

M2S is a secure machine built at CERTI-ONERA 2 which enforces multilevel secu-
rity of its processes and its data avoiding any storage and timing covert channel. Its
principles are depicted on Fig. 1. Its architecture is composed of two processors: one
classical processor MC68020 and a MC68010 that is called the security processor. This
security processor controls the dependencies between objects by controlling the access-
es requested by the classical processor to memory cells and to device ports. The security
processor plus some simple software constitute the Security SubSystem (SSS) of M2S.
A UNIX operating system has been developed over this machine and classical kernel
has been modified to take account of the special functionalities of M2S. It offers multi-
level services as multilevel processing and multilevel file system through special calls
and a multiplexed organization which are described more precisely in [1,2].

Fig. 1. M2S security enforcement: Classical and security processors

1. Centre d'Etudes et de Recherches de Toulouse.

2. Office National d'Etudes et de Recherches Arronautiques.

283

2.2 Secure LAN (Local Area Network)

Several M2S machines can communicate through an Ethernet local network. The
SSS has been extended in order to control the accesses of the classical processor to the
communicator. As in case of local accesses, the SSS controls the dependencies between
the processor, the bus and the buffer data. It allows the communications only when the
communicators and the bus are at the same level. Moreover the SSS assures the timing
and the level multiplexing of the bus in order to control the sharing of the network. This
controls entails that:

�9 A l process may exchange information only with l processes.

3 Processing

Processes can run concurrently at different levels on M2S machine. The SSS con-
trois direct and indirect transmissions of information from high to low levels. Each ma-
chine is able to run processes up to a level corresponding to the maximum clearance
assigned to the site. Processes are created either at login time by the login process or
during sessions by user processes. Creating and killing processes can be done in accord-
ance with the security rules due to the M2S functioning:

�9 Processes at l level (l > Unclassified) may only create l children.

�9 Unclassified processes may create children at any I level managed by their host
(l > Unclassified).

Having many hosts running multilevel processes and a secure LAN able to provide
secure communications, multilevel distributed processing can be enforced.

4 M u l t i l e v e l f i le s y s t e m

Multilevel data are maintained on M2S, inside multilevel, single-level files and di-
rectories. Multilevel files store data at different levels inside a single object [1]. The
Unix kernel constructed upon M2S provides the user with a multilevel tree-organized
structure inside which files can be collected as depicted on Fig. 2. This structure and the
associated services constitute the multilevel file system of a machine where the SSS
controls the elementary flows. This fact necessitate to manage the underlying structures
(buffer, disk blocks, ...) in order to be in accordance with these security controls. The
following rules describe the perception of these controls at the user point of view:

�9 classified l files can be created only inside directories with same I level.

�9 classified l directories can be created both in unclassified or l directories.

�9 creation or deletion of a file or of a directory inside a given I directory can be
made only by a process running at this 1 level.

284

Users handle the file system structure through classical Unix services (open, read,
write, close, cp, mv, ...) and some new ones (smkdir, sopen, ...) that handle the multilevel
objects.

U,R,C,S multilevel host

1 [~ n c l a s s i f i e d

Fig. 2. Example of a multilevel tree in a multilevel file system.

5 Multilevel distributed file system

Consider a distributed environment composed of several sites and a communication
channel. The sites maintain files and run processes for users. Every user can run its pro-
grams on any of these machines and so needs a common configuration that can be
shared by these hosts. With respect to the file system, the distributed environment aims
at providing the ability o f accessing files of any sites from any machine.

But new problems appear in distributed systems: concurrent accesses, replication,
cache coherency management due to remote location of resources and due to the en-
tailed communications. Furthermore many others problems come from the controls en-
forced by the SSS. It is not problems of enforcement of security but rather problems of
functionalities to provide in this secure and distributed environment.

Fig. 3. Reading a remote file is forbidden by the SSS from high to low level

A classical problem occurs when a high level process attempts to read a low file
maintained on a remote host at low level. It is a legal operation from a multilevel secu-
rity point of view but it poses a serious problem in a distributed environment. Indeed in

285

a single-host system, read operations are exerted on passive objects whereas they are
realized through exchange of messages in a distributed system. These exchanges occur
between process requestor and a file manager process running on the remote site. We
saw in 2.2 that the secure network allows only the exchanges at equal level. So it pre-
vents the exchanges from high process to low process and the reading of a low remote
file from a high process cannot be processed.

In [2] the authors present some solutions to resolve this problem. They suggest ei-
ther to put the file manager in the SSS or to downgrade the read request or yet to con-
struct multiple managers. Finally they chose the second solution for SDOS (Secure
Distributed Operating System) consisting in downgrading read requests under the user
control. On the contrary we chose to implement multilevel managers. It is a better so-
lution for our point of view since, first, we need to maintain the SSS as light as possible
avoiding to increase its size with unnecessary code and second, we prefer avoiding any
downgrading mechanism which is a very constraining technique.

Knowing the controls enforced by the SSS we have chosen a structure and an im-
plementation of a distributed file system which offer the bigger set of functionalities.

5.1 Overview

The system comprises at least one M2S machine which offer multilevel processing
and storage. It is characterized by a maximum level called clearance corresponding to
the maximum level it can handle. A multilevel machine accepts logins at any level low-
er or equal than its maximum clearance so that a Secret multilevel site, for instance, is
designed as a [Unclassified, Restricted, Confidential, Secret] machine. Let us remark
that a multilevel machine can manage every level dominated by its clearance so it al-
ways manages the Unclassified level. This level is essential to construct multilevel serv-
ices like multilevel managers. If it is necessary, several M2S can be used in the
distributed system.

The distributed environment contains also single-level sites characterized by their
level [level], providing single-level processing and storage. Single-level machines
could be any kind of machines but they must be connected to the network through a
TNIU (Trusted Network Interface Unit) controlling their accesses to the network. To
obtain a correct functioning, this SSS must use the same protocol as M2S.

 networ
Fig. 4. Exemple of a hardware configuration of the distributed system

286

The last hardware component of the distributed environment is the secure network
assuring the multilevel communications in a secure way. The goal of a multilevel file
system is to offer some degree of sharing among the files stored on various machines in
a practical manner. Now let us look at the principles of this sharing.

5.2 Principles

The sharing of files is based on a client/server paradigm. Servers handle locally files
and offer services to remote clients for accessing them (read, write, create, delete, ...).
Servers and clients may run both on single-level and multilevel sites so that there are
single-level and multilevel servers. Multilevel servers run only on multilevel sites
whereas single-level servers run both on multilevel and single-level machines. A mul-
tilevel server is composed of one process by levels. Each process runs the same piece
of code. A multilevel server is characterized by the maximum level of processes which
compose it and it contains a process for every level lower than this maximum level. A
process of a I multilevel server manages files at 1 level but can also read files maintained
by processes at level lower or equal than I and belonging to the same multilevel server.
So these files are accessible from high clients through high server intermediary. Fig. 6
shows an example of Confidential multilevel server and Confidential single-level one.

~ server

file

Fig. 5. Multilevel and single-level servers maintain files

Clients are always single processes at a given level running on a single-level or mul-
tilevel sites. They realize user processing and contact remote server when it is neces-
sary.

@ �9 |
Fig. 6. Clients

A client at I level can only converse with a process at 1 level and so operates on files
with I classification but we saw that it can read also lower files through reading opera-
tions that can be performed by its equal server in the multilevel server. To sum up a cli-
ent with l level can:

�9 access (read, write) l files of l single-level servers and of l' (1'>1) multilevel serv-
ers.

�9 read files with level lower than l of multilevel servers.

From these rules we now present how clients contact servers and reference a file.

287

5.3 Mount-points

Accesses to remote files can be performed through direct addressing. When a user
needs to realize an operation on a file he calls a special service and gives the name of
the file and the address of the server maintaining it. This address must reference a proc-
ess at the same level than the user or else the access will be rejected. This technique is
simple but very constraining because it supposes than users know file location precisely
at any time.

We prefer a more transparent technique based on the use of mount-p. Locally, clients
keep mount-p tied up with remote files and perform access to these mount-p rather than
to the files. A client does not know the real location of the file and only handles mount-
p which can viewed as a pipe between this client and the file maintained by a server. A
mount-p is one end of the pipe where clients see the remote file. Reading the pipe re-
turns the file content and writing into the pipe modifies the file content. So pipe seems
like the file for the user client.

client moun t - p server

Fig. 7. Mount-p acts as a pipe pointed on a remote file

Mount-points are created either by clients themselves or by the kernel running on
the client machine. As any other objects, mount-p have a level of classification. This
level is defined by the classification of the process which creates them. It defines the set
of operations that can be realized on them by a given process according to the security
rules. The level of mount-p is equal to the level of the creating process and higher or
equal than the file level.

[
servers

clients

)
mount -p

' t?

] [

�9
Fig. 8. Mount-pointsbetween single-level, multilevel, clients and servers hosts.

A mount-p pointing on a lower file is called an inter-level mount-p. An inter-level
mount-p is an ambiguous object since it has a classification offering to realize some op-
erations which cannot affect real file. One example is a C mount-p pointing to an U file.
C processes can read, write, delete the mount-p but can only read the bound file. Fig. 8

288

depicts examples of every kind of mount-p that can be built with single-level and mul-
tilevel client and server sites. Mount-points are figured as arrows that point the client.
An arrow between a client and a server figures all the mount-p between the client and
files maintained by this server. Therefore they denote access possibilities and not only
mount-p constructed effectively.

5.4 File system structure
We present now the implementation of the mount-p abstract structure in the distrib-

uted system. We chose a transparent naming scheme and a tree organization like the
UNIX one. Every host maintains a local tree-structured file system inside which users
(or system) can place mount-p. Mount-p creation is called mount operation. Mount-
points do not reference files but directories and look like regular local directories. Their
creation is done explicitly by indicating the remote host and the local name of the di-
rectory being bound (see mount procedure). On the other hand, we saw that usage is
made transparently through the classical primitives and therefore a user can ignore the
real kind of mount-p when it did not create the mount-p itself. Mount-p name is chosen
by the creator and any string accepted by classical UNIX file system is allowed for this
name.

In a tree-structured file system every directory but root, is stored in another one
called its parent. There are rules which restrict mount-p creations and define the level
of parent according to the remote directory level. These rules come from both security
constraints and implementation choices.

�9 Mount-p created by a process with l level can only be inserted in I parent.

�9 Processes of a site with ml maximum level can mount mount-p only pointing on
directories with parent lower than ml. Indeed the directories must be visible to
be mounted.

�9 Mount-p on l directory can be created in any directory with level higher or equal
than l.

H1 C
single-level

host

U,R,C,S
multilevel

host
~t-p

"-inter-level moti

~ / ~ H2

]i l~ U)

L~

Fig. 9. Example of file system organization. Mount-points are stored as any other directories.

289

Fig. 9 presents an example of such a distributed file system containing a [U,R,C,S]
multilevel host H1 and a [C] single-level site H2. Each one contains local directories,
files and mount-p to remote directories. On H2 "cd/pub/d3/d4" is a valid command and
can be followed by an execution of "cat f l " if f / i s a file of/pub/d2/d4 on H1.

It shows also an example of inter-level mount-p through d3/on H2 site.This mount-
p has a Confidential classification but points on an Unclassified directory. Confidential
is the real classification but operations are performed on the real Unclassified directory
so that its behaviour (result of operations) always appears to H2 processes as the behav-
iour of an Unclassified entity. Whatever the destruction or modification operations in-
tended on this mount-p they concern only local structure on H2 and not real directory
on HI .

Clients and servers constitute the heart of the system. They communicate through
the secure network using an extension of TCP/IP and the protocol SMAC (Secure Me-
dium Access Control) regulating operation requests and data exchanges.

5.5 Server

The role of servers is to maintain files, directories and to offer services in order to
manage them from remote processes. There is only one server by host and it is the only
way to offer directory access to a remote site. Therefore files of a serverless host could
not be accessed remotely.

Servers receive requests from clients describing the directory operations requested
(change director3; file creation, file destruction, file transfer) then realize the service
and send the response. They use the local file system of the host on which they rely to
provide the realization of the operations. They perform the communication with clients
and control the creation of mount-p established on one of their own directories. These
controls prevent a mount operation on an inexistent directory and avoid so unnecessary
mount-p creation on client side.

\

\". RT [j / ".)

Fig. 10. Port numbers are multiplexed by level and clients reach only processes at their level

Servers could be single-level or multilevel according to type of their host and the
kind of clients they must be able to serve. In the distributed system presented here, there

290

is only one multilevel server which run on the M2S machine. Clients at 1 level contact
servers at 1 level. The multilevel server is composed of processes running at different
levels and waiting connections on the same TCP port number. This port is called SF-
S_PORT and it is reserved in every machine for the file system server. So from the ad-
dress of a machine, a process is able to reach its file system server by connecting to
address: SFS_PO RT.

Port numbers are multiplexed by level so that connections to port SFS_PORT wake
up the server having the same level as the requestor. The multilevel server is initialized
from Unclassified level which is always processed in multilevel machine. Its creation
is made by Unclassified process which creates the other classified processes composing
the server. This initialization is made at boot time in the initfsO procedure. Every proc-
ess of the multilevel server binds itself to the SFS_PORTport number and waits for cli-
ent requests on this port. Monolevel servers are identical to multilevel ones except that
they are single process.

Servers of the file system are stateless as NFS servers so that they do not keep any
information on client mount-p, connections and requests. Therefore clients must indi-
cate the whole information necessary to perform an operation inside every request. The
advantage of stateless servers is that they can crash and later rejoin the system without
any drawbacks than the lack of service during their malfunction. So global state is con-
served and does not need to be restored.

Client requests have all the same structure presented on Fig. 11. They contain the
identification of the operation requested (opid), the local path (local path) of the file or
the directory on which the operation must be intended by the server and finally the
length and the data necessary to provide the operation (namefile infile creation, offset
in thefile and so on). Every operation corresponds exactly to one local service and lo-
calpath is directly used by the server to perform the operation through call of the local
file system. Servers receive the result of the local execution and send it to the client. Er-
ror report is generated when the operation fails.

1 2 51 52 53

Fig. 11. Structure of requests provided by a client to a server

Servers are managed only through one primitive called iniO~sO which is executed at
boot time (at Unclassified level in the multilevel machine) and realizes server creation.
Server characteristics are defined in the local file "/SFS.INIT" which describes if a serv-
er must be created on this host, its type (multilevel or single-level) and its level, o f
course these informations are restricted by the abilities of the site to manage the levels.
For instance a Secret multilevel server becomes a Confidential single-level server on a

291

Confidential single-level site and on the other hand, single-level server may be created
on a multilevel site in order to restrict the remote accesses to one given level,

5.6 Client

Clients are the second components of the multilevel distributed file system. A user
process intending an operation on a mount-p becomes a client of the corresponding
server. Ideally, this transformation is transparent to the user but in fact it could be per-
ceptible through the difference in response time between a local and a remote response
due to the communication duration. Cache mechanisms can be used to improve the re-
sponse time in the better case where file content is in the local buffer. [4] presents the
security problem due to the cache utilization and we discuss it in section 5.7.

Mount-points are the only means to reach remote files and directories. They main-
tain the correspondence between a virtual local directory (the mount-p) and the real re-
mote directory attached to it. This correspondence is only maintained on a client site.
In the following text we will use the word mount-p instead of the corresponding virtual
local directory. From transparency principle, user processes use mount-p as any other
local directory both in commands and file system calls. References to these mount-p are
then transformed on remote communications with the server handling the real directory.

access to ~ r " ~ access
local file~,,, / - " , ~ t o mount - 1

[local file system [communicat ion [

network

Fig. 12. The Distributed File system Manager switches user accesses either to local file system
or to a server

These conversions are performed by the DFM (Distributed File Manager) which is
a special module located over the local file system. Any call to file system reaches the
DFM which switches it either to local file system or to communication layer. DFM uses
an extension of classical inodes to determine the type of directory referenced and find
its real address. Precisely extensions concern inode mode field which can take the new
value MODE_REMOTE indicating a mount-p to a remote directory. The r_localpath
field receives the localpath of the mounted directory (real name on server host), r_level
keeps the level of this directory and r_server_level contains the type of server (single-
level or multilevel) and its level. The two last fields are used to anticipate errors returned
by the SSS when a process intents a forbidden access. Remember that these fields are

292

not used in any way to enforce security but only to gain time in avoiding requests which
will be anyway not accepted by the SSS.

struct inode_DFM
{
Struct inode inode_l;
char r_localpath[LG_LOCAL_PATI-I];
int r_level;
int r_server_level;
}

For example at current level current_level it is not necessary to intent an access on
an host at level r_server_level lower than current_level (current level > r_server_lev-
el). As we saw in 5.4, mount-p on single-level host have not necessarily the same level
as the remote directory and r_level is used to avoid request impossible to realize on the
real directory (destruction or modification for example), r_level is also used by DFM to
display correct information in Is command for example where level of a mount-p takes
r_level value and not the real level of the mount-p. So users have all the information to
understand the result of their operations (modification rejection for example).

Consider now the DFM primitives mount, umount, lmount and initfs managing the
mount-p. For every one we present its syntax and a description of its functionalities.
The syntax is the same as classical UNIX description where [...] denotes an optional pa-
rameter and <...> contains the description of a real parameter.

�9 mount [-f] <machine>:<remote directory> <mount-pname>

mount creates a new mount-p, in place of the existent local directory named
<mount-p name>, which points on <remote directory> of the <machine> site. From
this creation, the <remote directory> content (files and directories) is transparently
present in the directory <mount-p name> of the local host and can be manipulated as
any other directories. Mount operations entail a communication with the corresponding
server which verifies the existence of its local directory and sends an acknowledgment
or an error both when it does not exist and when none server can be reached at current
level. The server sends the new location of the directory afetr a file system reorganisa-
tion. Optional parameter -f forces the mount-p creation even when an error occurs. It is
usable when the corresponding server has not yet be initialized. Mount-p creation per-
forms a directory modification so that DFM allows creation (due to SSS controls) only
when it takes place in a directory having same level than the process intending it. There-
fore mount-p take the level of their creator and never the level of their bound remote
directory.

�9 umount <mount-p name>

umount deletes a mount-p. It entails a modification of parent directory and must be
executed at parent level. Only the mount-p is concerned by this command and in any
way the remote directory bound with it.

293

�9 lmount

lists the whole mount-p mounted on the host with real directory names and levels
associated. It is useful for administrator users intending debug procedures.

�9 initfs I-g]

We saw this primitive in 5.5 for server initialization but it concerns also the client
part to initialize the initial tree-structure at boot time. It reads a setup multilevel file
called "/TFS.INIT" containing the description (mount-p name - remote directories) of
the initial structure, at every level managed by the host. On the multilevel site an Un-
classified boot process creates a process for every level managed by the host. Each one
of these processes realizes the mount operations at its level and then dies. Option -g ex-
ecutes a global initialization. In global initialization the system uses a remote "/TFS.IN-
IT" called globalfile, rather than the local "/TFS.INIT". This global file is stored on a
host called global host (classically the M2S machine) whose identification is given in
GLOBALSERVER variable. Each initialization process contacts the process o f that
global server and requests the content of the setup file. Then it realizes the mount oper-
ations and dies. Of course multilevel server must be present on GLOBAL_SERVER host
or else local file will be used. IniO~s execution must be integrated in the boot procedure.

5.7 P rob lem discussion

Transparency is a requirement that is difficult to meet in a distributed and secure en-
vironment because of the set of complex actions executed inside a simple operation. For
example reading a file implies a connection to the server and exchange of part of its con-
tent. It takes a not inconsiderable time to execute these sub operations and then reading
a file becomes a slow service. Therefore caches can be maintained on the client hosts.

But in [2, 5] authors explain that there is a possibility of timing covert channels in
using these caches since they modulate the time of file access. Assume that a high proc-
ess is reading a low file for the first time on a machine. This operation creates a cache
on the machine. Then a low process intents a read on the same low file. The response
time depends on the cache existence an so on high process actions. So there is a timing
covert channel.

In the system presented in this paper, this timing covert channel is inexistent be-
cause either cache is a low memory and so high process cannot place the file content in
it or it is a high buffer and low process cannot read it. In both cases the same cache may
not be used by processes running at different level.

Fig. 13 shows a functionality problem specific to a multilevel system: the problem
of Tantalus mount-p. Tantalus mount-p are directories visible to high processes but in-
accessible for them.

294

This problem appears when a low process on the multilevel host creates a mount-p
to a low directory maintained in a low single-level site. The example shows an Unclas-
sified mount-p which points a directory stored on an Unclassified single-level site H2.
Being an Unclassified mount-p, it is visible for high processes. U clients of i l l contact
[U] server of H2 to realize operations on the directory. Any other high clients of H1 can-
not contact this server and so cannot access to the remote directory whereas they see the
Unclassified mount-p.

H1 [U,R,C] I EO E]
a_ e_o O

Fig. 13. Tantalus mount-p: processes see them but cannot reach.

It is the Tantalus mount-p problem. We have at least two solutions to solve this prob-
lem. Either to reject all creations of mount-p on a site whose levels are not managed by
the server or to allow this problem but offering a manner to console frustrated process-
es. We chose the latter solution which is based on the multiplexing of inodes in memory.

When a process realizes a directory operation, the DFM loads in memory the inode
of the directory. This inode is stored in memory inside the in-core inode table. This table
is multiplexed by levels and the inode is stored in the table classified at the process lev-
el. In a mount operation, the information about the remote directory pointed by this
mount-p are stored in this table (see structure of inode DFM in 5.6). Therefore proc-
esses classified at various level can create mount-p with the same name (in place of the
same directory) but which point various remote directories. These mount-p are called
multiplexed mount-p.

Fig. 14 depicts its principles based on inodes table multiplexed by levels in memory
and on a searching procedure nameiO running at current level. When a process intends
to access to a directory (mount-p) d/it calls a file system service and furnishes the name
of this directory. NameiO is then executed to find the inode associated with the given
name. This function realizes its research in the in-core inode table classified at the cur-
rent level and so reaches the directory stored at this current level.

295

namei("d/") "i

(~) namei("d/") ..,

7
Q namei("d/") ..,

in-core inode tables

Fig. 14. Principles of mount-p multiplexing

The advantages of this functionning is that low mount-p will be visible only to low
processes and not to high ones (and conversely) hiding the Tantalus mount-p problem.
Low process can also perform a copy of this file from the single level site to its multi-
level host. Rather than to impose a rigid solution, the freedom is given to users to or-
ganize clients, servers and mount-p in order to avoid such a problem.

The multiplexed mount-p can also be used to assure a multiplexed service. Fig. 15
shows an example of such a utilization. In this example, U and C users need to run a
program which displays the list of books classified at their level. Each list is maintained
by a server and the program accesses to them in the same directory (mount-p)
"BOOKS" whatever the level. Transparency is so given between level and multiplexed
service is assured.

(~ ~ i BOOK/

Fig, 15. Mount-pmultiplexing can provide transparent multiplexed services

6 Sharing

The following text describes the real possibilities of sharing provided by this file
system. If we consider an environment composed only of single-level sites (at identical
levels) this system offers the same functionalities as the NFS protocol. But advantages

296

came in an heterogeneous system where users, files and sites run at different levels. In
this environment mount-p usage offers the sharing of information between various lev-
els. The classical sharing technique is based on the use of the multilevel host M2S main-
taining shared files and of clients running on single-level hosts [2]. Low processes
modify file content inside the multilevel site and high processes read it when they need.

The implementation of this sharing technique in the distributed system presented
here, relies on the usage of the multilevel server and of mount-p created on the client
hosts (low and high) and pointing on the shared file. Remark that this organization pro-
vide the sharing of information even if client hosts are single-level. So it is possible to
construct a multilevel distributed system with only one multilevel host (the server) and
several single-level sites and so reduce its cost and its complexity.

Multiplexed mount-p are a new functionality offered by this system. On one hand
there are several single-level hosts running servers and on the other hand users on the
multilevel site which access transparently to the site running at their level. This con-
struction is very important to assure the perfect transparency necessary to run a program
from any level. The multiplexing technique can be used either on the data files or di-
rectly on the programs.

In any case, the users (or an organizer) are in charge of constructing the system and
of placing the files in order to offer the sharing of data in a practical way. Indeed if a
user decides to maintain a file inside a single-level site, the system will be never able to
offer accesses from another level. But, on the other hand, it offers the possibilities of
publishing a file by copying it in a mount-p pointed on a server. The file will be so
placed on the server and will be accessible by any client handling a mount-p on this
server. Therefore and only if they decide it, the users are the possibility to allow access
on their files. But whatever the organization chosen by the users, the security is always
assured.

L o w
Hos t

5;J

M L S High
Server Hos t

L L.

Fig. 16. Example of MLS server

297

7 Summary

Distribution functionalities and security are often difficult to mix. They seem to be
antagonistic and pose problems to any designer of distributed file system. Generally
compromises must be made and some lacks of security are commonly accepted. In this
project compromises are made on functionalities and not on security. Indeed, this
project aims at assuring the functionality of a practical distributed file system over se-
cure basis and not the security of a distributed file system. We showed that despite the
controls enforced by the hardware, it is possible to construct a practical system offering
the classical services and many new ones (multiplexed views). Of course it entails some
problems but we saw that solutions could always be constructed and that they are quite
simple.

Further, we would discuss about other kind of security as discretionary policies. Cli-
ent/server is a practical paradigm to realize controls on user accesses since the servers
handle the whole accesses intended on one of their files. It would be so the main actor
of this security. It would be also interesting to study how we could use process migra-
tion to realize accesses impossible directly or yet redundant servers.

8 References

1. B. d'Ausbourg, C. Calas
"Unix services for multilevel storage and communications over a LAN"- Pro-
ceeding of the Winter 93 USENIX Technical Conference, San Diego, 1993

2. B. d'Ausbourg, J-H. Llareus
"M2S: A Machine for Multilevel Security "- Proceeding of Esorics'92, Toulou-
se, November 23-25, 1992

3. E Bieber, F. Cuppens
"A Logical view of Secure Dependencies"- Journal of Computer Security, Vol
l,Nr 1, 1992

4. Thomas A. Casey Jr., Stephen T. Vinter, D.G. Weber,
R. Varadarajan,D. Rosenthal
"A Secure Distributed Operating System"- Proceeding of lEEE Symposium on
Security and Privacy, Oakland, April 18-21, 1988.

5. Glenn H. MacEwen, Bruce Burwell, Zhuo-Jun Lu
"Multi-Level Security Based on Physical Distribution"- Proceeding of 1EEE
Symposium on Security and Privacy, Oakland, 1984.

6. Richard E. Smith
"MLS File Service for Network Data Sharing"- Proceeding of Computer Se-
curity Applications Conference, Orlando December 6-10, 1993

