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Abstract. We give a new algorithm for resolving singularities of plane
curves. The algorithm is polynomial time in the bit complexity model,
does not require factorization, and works over Q or finite fields.

1 Introduction

Resolving singularities is a central problem in computational algebraic geometry.
In this paper we describe a new algorithm for resolving singularities of irreducible
plane curves. The algorithm runs in polynomial time in the bit complexity model,
does not require polynomial factorization, and works over Q or any finite field.

Classical algorithms for resolving singularities [2, 15, 7] use a combination of
methods involving

– the Newton polygon, a polygon in Z2 whose vertices are the exponents of
terms in f ;

– Puiseux series, power series with fractional exponents.

These algorithms take polynomial time if we assume efficient factorization over
algebraic extensions of the base field and unit-time arithmetic these extensions.

Teitelbaum [13] establishes bounds on the degree of field extensions con-
taining the Puiseux coefficients, leading to an algorithm that is polynomial in
the number of base field operations. However, the algorithm is not analyzed
for its bit complexity. The problem of intermediate coefficient swell is not of-
ten addressed in theoretical analyses, but is a serious consideration in practical
implementations [14, 17].

Chistov [4] and Walsh [16] give algorithms that are polynomial time in the
bit complexity model, but require factorization of polynomials over Q and al-
gebraic number fields. The best known algorithms for these problems [12, 11, 9]
are theoretically polynomial time in the bit complexity model, but quite ineffi-
cient from a practical standpoint. There are currently no known deterministic
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polynomial-time algorithms for factorization of polynomials over finite fields. For
practical considerations, it is important to avoid factorization if at all possible.

A novel feature of our algorithm is that it does not calculate Puiseux series
explicitly. Rather, given a curve f(x, y) = 0, it builds a tree whose vertices are
labeled with approximations to local parameters of the exceptional places of the
curve. These are not Puiseux series as in the classical algorithms, but rational
functions of x and y obtained by direct reparametrizations based on information
obtained from the Newton polygon.

The algebraic numbers involved are represented and manipulated symboli-
cally, using the technique of passive factorization [5, 6, 13] in conjunction with
the squarefree decomposition algorithm of [1]. All necessary calculations can be
carried out with this implicit representation, thus avoiding factoring and the
explicit construction of high-degree extensions.

As an immediate corollary, we obtain an efficient algorithm for calculating the
genus of a plane curve using the Hurwitz formula [10, 7]. Trager has recently given
a polynomial-time algorithm for the genus problem using different techniques
[14].

2 Algebraic Preliminaries

Let R be an algebraic function field over an algebraically closed field K, i.e., a
finite extension of a purely transcendental extension K(x) of K. A place of R is
a valuation ring P ⊆ R, i.e., a subring such that K ⊆ P 6= R and for all u ∈ R,
either u ∈ P or 1/u ∈ P. P has a unique maximal ideal I = {u ∈ P | 1/u 6∈ P},
and P/I ∼= K. I is a principal ideal; a principal generator tP is called a local
parameter.

For R = K(x), there is exactly one place for each a ∈ K with local parameter
x− a, denoted x = a, plus one place with local parameter 1/x, denoted x =∞.

If P is a place of R, then p = P ∩K(x) is a place of K(x) and tp = tcPu for
some unit u ∈ P and positive integer c. The number c is called the ramification
index of P over p. Every place p of K(x) extends to at least one place P of R.

Now let f(x, y) = 0 be an irreducible plane curve of degree n in y with
coefficients in K, and let R = K(x)[y]/f . A place p of K(x) is called simple if
for any two places P,P′ of R over p, P ∩K(y) 6= P′ ∩K(y), and all places of
R over p have ramification index 1 (i.e., tp is a local parameter); otherwise it is
called exceptional. There are only finitely many exceptional places of K(x).

See [10, 7, 2, 3] for details.

2.1 Statement of the Problem

The problem we consider in this paper is as follows. Given an irreducible plane
curve f(x, y) = 0 with coefficients in some subfield k ⊆ K, determine all the
exceptional places p of K(x). For each such p, determine the set of places P
of R over p. For each such P, determine its ramification index over p, a local
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parameter tP, and a birational reparametrization (change of variables) giving tP
in terms of x and y.

In the solution of this problem, all computation should take place in the
subfield k. In practice, k will usually be Q or a finite field.

Example 1. Consider the hyperbola y2 = x2 − 1. There are three exceptional
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places x = ±1 and x = ∞ of K(x). Each of the first two places extends to
one place of R with ramification index 2, with local parameters (x± 1)/y. The
third extends to two places of R, each with ramification index 1 over K(x),
corresponding to the two asymptotes x = ±y of the hyperbola. The two local
parameters are x/y ± 1.

2.2 Efficient Birational Reparametrization

A critical subroutine is birational reparametrization, or change of variables. We
will often wish to reparametrize an irreducible plane curve f(x, y) = 0 in terms of
new parameters u, v that are rational functions of x, y. We will need to compute
the defining equation g(u, v) = 0 of the curve in terms of the new parameters.

The problem of birational reparametrization of algebraic surfaces has an
efficient solution in general, using multivariate gcds. For our application, all
cases we will encounter will be of the following special form:

u = (x− a)s(y − b)−t + c (1)

v = (x− a)−n(y − b)m + d

3



where a, b, c, d ∈ K and s, t,m, n ∈ Z such that sm− tn = ±1. Any such map is
invertible, and its inverse is of the same form:

x = (u− c)m(v − d)t + a

y = (u− c)n(v − d)s + b

We can reparametrize efficiently as follows:

1. Substitute (u− c)m(v − d)t + a for x and (u− c)n(v − d)s + b for y in f to
obtain f((u− c)m(v − d)t + a, (u− c)n(v − d)s + b).

2. Multiply or divide by appropriate powers of u− c and v − d as necessary to
clear denominators and eliminate extraneous factors of the form u − c and
v − d.

The resulting polynomial g(u, v) is the irreducible representation of the plane
curve f(x, y) = 0 in terms of the parameters u, v.

Example 2. Consider the irreducible curve y2 = x3 − x4 and the map u = x2/y,
v = y2/x3. This is a birational map of the form (1) with (s, t,m, n) = (2, 1, 2, 3)
and a = b = c = d = 0. Its inverse is x = u2v, y = u3v2. To reparametrize in
terms of u, v, substitute u2v and u3v2 for x and y, respectively, in the equation
of the curve to get u6v4 = u6v3 − u8v4 and eliminate the factor u6v3, leaving
the irreducible equation v = 1 − u2v. Rewriting this as v = 1/(1 + u2), we see
that the curve is of genus zero and that u is a generator of the function field.

2.3 Squarefree Decomposition

Another key subroutine is squarefree decomposition. One wishes to transform
a set A of polynomials into another set A′ such that the elements of A′ are
squarefree and pairwise relatively prime, and every element of A is a product of
powers of elements of A′. An efficient solution to this problem was given in [1].

3 First Algorithm

In this section, we describe the high-level structure of our algorithm. For this
section only, we assume that K is algebraically closed, that arithmetic in K
is unit-cost, and that we are provided with an efficient algorithm for factoring
univariate polynomials over K. These strong assumptions are to simplify the
high-level description. Once the algorithm is understood, we will describe in the
next section how to remove these assumptions.

Most of the techniques used here, such as the Newton polygon, are well known
[2, 7, 15]. However, as mentioned in the introduction, one novel feature of our al-
gorithm is that we do not extend to the field of Puiseux series to obtain local
parameters, but reparametrize directly to obtain local parameters in the func-
tion field itself. This approach allows us to give an explicit description of the
coefficients occurring in the computation and analyze their bit complexity that
will be useful in the analysis of the next section.
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3.1 Overview

We are given an irreducible polynomial f(x, y) ∈ K[x, y]. The algorithm builds a
rooted labeled tree. Each vertex τ in the tree is labeled with a reparametrization
fτ (xτ , yτ ) of f(x, y), along with some other information ∆τ that specifies a set
of places Pτ of R. The tree grows at the leaves as more information becomes
available that allows us to split or refine the set Pτ . The information is calculated
from the Newton polygon of fτ (xτ , yτ ).

The edges of the tree are labeled with positive integers giving ramification
information, along with coefficients of birational transformations. If τ is a child
of σ, then the integer labeling the edge (σ, τ) gives the ramification index of xσ
over xτ , and the birational transformation gives xτ and yτ in terms of xσ and
yσ.

The information ∆τ is a Boolean combination of constraints of the form
h(xτ , yτ ) ∈ P or h(xτ , yτ ) ∈ I, where the symbols P, I range over places of R
and their unique maximal ideals, respectively. The set Pτ is the set of places of
R satisfying these constraints.

We first do a precomputation involving discriminants to find all exceptional
places of K(x), and reparametrize so as to move these places to the origin. (Even
this step will be difficult without the assumptions above). We now want to resolve
the point (0, 0). In other words, we have fτ (xτ , yτ ) and ∆τ = {xτ ∈ I, yτ ∈ I},
thus we want to find all places of R whose maximal ideal contains xτ and yτ ,
along with their local parameters and ramification indices over K(x).

We cause the tree to branch at a vertex τ by adding new constraints that may
partition the set of places associated with that vertex or give more ramification
information. The new constraints are obtained from the Newton polygon of fτ .
We continue to expand the tree at the leaves, reparametrizing, adding more
constraints, and refining the partition, until each leaf τ determines a unique
place of R and xτ is a local parameter.

When we are done, the ramification index of the unique place of R associated
with a leaf τ is given by the product of the integers labeling the edges along
the path from the root to τ . The composition of the birational transformations
labeling the edges along the path gives xτ and yτ in terms of x and y.

3.2 Formal Description

We are given an irreducible polynomial f(x, y) ∈ K[x, y].

1. Create the root ρ of the tree and label it xρ = x, yρ = y, fρ = f , ∆ρ = ∅.
2. Create a new vertex σ and an edge labeled 1 from ρ to σ. Reparametrize

under the map xσ = 1/xρ, yσ = yρ and label σ with the resulting irreducible
polynomial fσ(xσ, yσ). Add the new constraint xσ ∈ I. Further resolution of
this vertex will give all places of R over the place xρ =∞ of K(xρ).

3. Compute the discriminant d(x) = discy f(x, y) and factor it. For each dis-
tinct root a, create a new vertex τ and an edge with label 1 from ρ to τ .
Reparametrize under the map xτ = xρ − a, yτ = yρ and label τ with the
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resulting irreducible polynomial fτ (xτ , yτ ) = fρ(xτ + a, yτ ), along with the
new constraint xτ ∈ I. Further resolution of this vertex will give all places of
R over the place xρ = a of K(xρ).

4. For each child σ of ρ, if fσ(0, yσ) is a nonzero constant, go on to step 5; there
are no finite points (0, b) on the curve fσ(xσ, yσ) = 0, i.e., no places or R
with xσ ∈ I and yσ ∈ P. (Note fσ(0, yσ) cannot be identically zero, since
fσ(xσ, yσ) is irreducible.) Otherwise, fσ(0, yσ) is of positive degree. Factor it,
and for each distinct root b, create a new vertex τ and an edge with label 1
from σ to τ . Reparametrize under the map yτ = yσ − b, xτ = xσ and label
τ with the resulting irreducible polynomial fτ (xτ , yτ ) = fσ(xτ , yτ + b). Add
the constraints xτ ∈ I, yτ ∈ I.

5. Also for each child σ of ρ, determine whether the point (0,∞) lies on the
curve fσ(xσ, yσ) = 0 (i.e., whether there is a place of R such that xσ ∈ I
and 1/yσ ∈ I). This is done by checking whether the lead coefficient of fσ,
considered as a polynomial in yσ with coefficients in K[xσ], is divisible by xσ.
If not, go on to step 6. Otherwise, create a new vertex τ and an edge with label
1 from σ to τ . Reparametrize under the map yτ = 1/yσ, xτ = xσ to get the
irreducible polynomial fτ (xτ , yτ ). We must have fτ (0, 0) = 0, otherwise the
test above would have failed. Label τ with fτ (xτ , yτ ) and add the constraints
xτ ∈ I, yτ ∈ I.

We now have at each leaf σ an irreducible polynomial fσ(xσ, yσ) and constraints
xσ ∈ I, yσ ∈ I. By construction, fσ has no constant term, i.e. fσ(0, 0) = 0.

6. If fσ(xσ, yσ) has a linear term of the form cyσ, stop expanding this branch.
In this case xσ is a local parameter, and there is a unique place satisfying ∆σ.

7. Otherwise, assume fσ(xσ, yσ) has no constant term or term of the form cyσ.
For each edge of the Newton polygon of fσ(xσ, yσ) with slope −m/n, m and n
relatively prime, create a new vertex τ and an edge with label m from σ to τ .
Let s and t be a minimal pair of nonnegative integers such that sm− tn = 1.
Reparametrize with respect to xτ = xsσ/y

t
σ and yτ = ymσ /x

n
σ as described in

(1). Label τ with the resulting irreducible polynomial fτ (xτ , yτ ) and add the
constraints xτ ∈ I, yτ ∈ P− I.

8. For each vertex τ created in step 7 with label fτ (xτ , yτ ), factor fτ (0, yτ ).
For each nonzero root a of fτ (0, yτ ) (at least one such root must exist),
reparametrize with respect to the map yυ = yτ−a, xυ = xτ to get fυ(xυ, yυ) =
fτ (xυ, yυ +a). Create a new vertex υ with that label and edge labeled 1 from
τ to υ. Add the constraints xυ ∈ I, yυ ∈ I.

Continue expanding leaves according to steps 7 and 8 until the stopping
condition of step 6 obtains. This must happen eventually. When done, there is
exactly one place of R for each leaf σ, the ramification index over K(xρ) of this
place is the product of all the edge labels along the path from ρ to σ, and xσ is
a local parameter of the place.

Example 3. Consider the hyperbola y2 = x2−1 of Example 1. We first compute
the discriminant

discy f(x, y) = 4(x2 − 1)
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with roots ±1. Substituting either of these values for x in the equation of the
curve gives y2 = 0, which has a double root 0. Thus (±1, 0) are the two finite
exceptional points.

Reparametrizing by the map x 7→ 1/x, we obtain

x2y2 = 1− x2

and substituting 0 for x gives 0 = 1, therefore there are no points on the curve of
the form (∞, b) for b finite. A similar calculation shows that there are no points
on the curve of the form (a,∞) with a finite.

Reparametrizing by the map (x, y) 7→ (1/x, 1/y) gives

x2 = y2 − x2y2 (2)

and the point (0, 0) lies on this curve. It is an exceptional point since 0 is a
multiple root of the polynomial y2 = 0 obtained by substituting 0 for x.

We reparametrize the original equation under the maps x 7→ x ± 1 to move
the two finite exceptional points to (0, 0). The third equation (2) is already of
the desired form. We now have three irreducible equations

y2 = x2 − 2x

y2 = x2 + 2x

x2 = y2 − x2y2

labeling three children of the root, and wish to resolve the point (0, 0) for each.
Now we do step 7 for the first equation. We plot the three exponent vectors

(0, 2), (2, 0), (1, 0), and observe that the Newton polygon has a single edge
through (0, 2) and (1, 0) with slope −2. According to step 7, we take m = 2,
n = 1, s = 1, t = 1, u = x/y, v = y2/x, x = u2v, y = uv, and reparametrize to
obtain the irreducible polynomial

q(u, v) = v − u2v + 2

We create a child with this label and an edge to it labeled 2. Now we do step 8.
We compute q(0, v) = v + 2, which has one nonzero root −2. We create a child
with label

q(x, y − 2) = y − x2y + 2x2

and an edge labeled 1. The polynomial has a linear term y, so we stop expanding
this branch.

There is one leaf and the product of the edge labels on the path from the
root to this leaf is 2, so we conclude that there is one place of R over the place
x = −1 of K(x) with ramification index 2.

A similar computation holds for the second equation.
For the third equation

x2 = y2 − x2y2
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we again plot the exponent vectors (2, 0), (0, 2), and (2, 2). The Newton polygon
has a single edge through (2, 0) and (0, 2) with slope −1, giving m = 1, n = 1,
s = 1, t = 0, u = x, v = y/x, y = uv. Reparametrizing, we obtain

q(u, v) = 1− v2 + u2v2 .

Then q(0, v) is 1 − v2 which has two nonzero roots ±1. We create two new
children labeled

q(x, y − 1) = −y2 + 2y + x2y2 − 2x2y + x2

q(x, y + 1) = −y2 − 2y + x2y2 + 2x2y + x2

with edges to these vertices each labeled 1. The stopping condition holds at each
leaf, since each has a linear term ±2y. We conclude that there are two places of
R over the place x =∞ of K(x), each with ramification index 1.

4 Second Algorithm

Suppose that the coefficients of f lie in a subfield k of K. The algorithm of
the previous section is polynomial time, assuming unit-cost arithmetic in finite
extensions of k and the ability to factor. If we count the cost of the representation,
a naive approach may require exponential time.

In this section we describe an implicit representation of the algebraic numbers
used in the algorithm of the previous section that allow them to be manipulated
using only arithmetic in the field k. We will use gcd heavily, but factorization is
unnecessary. This technique is called passive factorization and has been used by
Dicrescenzo and Duval [5, 6] and Teitelbaum [13]. We use this in conjunction with
the squarefree decomposition algorithm of [1] to avoid intermediate coefficient
swell when k = Q.

4.1 Overview

Each of steps 3, 4, and 8 of the algorithm of Section 3 factored a polynomial
q(y), producing roots a. For each such a, we created a new child τ of the current
vertex σ and associated a with τ . The reparametrization of fσ to obtain fτ
involved the algebraic number a.

Here, instead of factoring q to obtain the algebraic numbers a, we will just do
a squarefree decomposition of q using the algorithm of [1] to give finitely many
pairwise relatively prime factors qτ of q. We will create one new child τ for each
such factor qτ and associate qτ with τ . Subsequently, all computation involving
roots a of qτ will be done symbolically by introducing a new indeterminate a
and working modulo qτ (a). In effect, we will be dealing with all the roots of qτ
simultaneously in one subtree, instead of having a separate subtree for each root
as in the previous section.

It may happen that some later computation causes qτ (a) to split further. This
will occur when a discrepancy in the behavior of the resolution over two different
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roots of qτ (a) is discovered. This discovery takes the form of another polynomial
in a that has a nontrivial common factor with qτ (a). When that occurs, we can
return to τ and split qτ using the gcd algorithm, then split τ into a separate
vertex for every new factor of qτ (a), replicating the entire subtree below each
new vertex. The tree never gets too big because of the absolute bound n on the
number of places.

It may happen that qτ never splits. In that case the resolution over all roots
of qτ looks exactly the same, and the number of the places determined by the
subtree below τ can just be multiplied by the degree of qτ . Thus we have a single
node representing multiple places, but we know how many and their ramifica-
tions.

Formally, at any vertex in the tree at any point in time, we have sequences

a = a0, a1, a2, . . . , ak (3)

q = q0(a0), q1(a0, a1), q2(a0, a1, a2), . . . , qk(a0, a1, . . . , ak) (4)

of indeterminates and polynomials describing them. The polynomials q gener-
ate a zero-dimensional variety V (q) in Kk+1. Arithmetic on coefficients will
be done modulo these qi. We maintain the invariants that each qi is reduced
modulo q1, . . . , qi−1 and that the qi are squarefree. We also maintain the invari-
ant that the coefficients of qi, considered as polynomials in the indeterminates
a1, . . . , ai−1, are relatively prime to qi−1.

These conditions are determined by signs (zero or nonzero) of various sub-
resultants, which are minors of the Sylvester matrix [8]. These are polynomials
p(a0, a1, . . . , ai−1) in the coefficients of qi. For each such p, either its sign is de-
termined uniquely by q, i.e. p either vanishes on all of V (q) or does not vanish on
all of V (q), which allows the computation to be carried on; or p and qi−1 have a
nontrivial common factor, i.e. p vanishes on some nonempty subset of V (q) and
does not vanish on some other nonempty subset, in which case qi−1 splits and
we get a refinement. When all the splitting is done, we again have the property
that p(a) either vanishes on every point of V (q) or on no point of V (q).

The key idea being exploited here is the same used in the BKR algorithm
for the theory of real closed fields [1], namely that we do not need to know the
algebraic numbers a themselves to solve the resolution problem, but only the
signs of certain polynomials in these algebraic numbers. This idea leads to an
efficient implementation of the passive factorization method of [5, 6, 13].

Coefficients remain small under these symbolic operations. For example, in
step 7, we reparametrize

f(x, y) =
∑
ij

pij(a)xiyj

to obtain a new polynomial g(u, v). The terms of g(u, v) and those of f(x, y) are
in one-to-one correspondence, and corresponding terms have the same coefficient.
Thus g(u, v) is also of the form

g(u, v) =
∑
k`

pk`(a)ukv` .
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The polynomial g(0, y) has at least two nonzero terms. Let g(0, y) = ykh(y)
where h(y) is not divisible by y. In step 8, we factored h(y) and extended the
tree with a separate branch for each root, but here we will instead do a squarefree
decomposition of h(y) and extend the tree with a branch for each factor qn+1(y).
For each such branch, a new indeterminate an+1 is created and qn+1(an+1) is
added to the list q0 . . . , qn. Then we reparametrize symbolically with respect to
the map (u, v) = (x, y − a) to get

g(u, v + a) =
∑
ij

pij(a)ui(v + a)j

=
∑
ij

pij(a)ui(

j∑
k=0

(
j
k

)
vkaj−k)

=
∑
ij

pij(a)(

j∑
k=0

(
j
k

)
uivkaj−k)

=
∑
ik

(
∑
j≥k

(
j
k

)
pij(a)aj−k)uivk .

The new coefficients are

p′ik(a, a) =
∑
j≥k

(
j
k

)
pij(a)aj−k

which are small. We reduce these modulo the qi and test the signs (zero or
nonzero) of the new coefficients p′ik(a, a) modulo the qi. As above, this may
cause further splitting of q in case the signs are not uniquely determined. When
done, we again have the property that no coefficient of g(u, v + a) vanishes at
any point of the variety V (q).

5 Analysis

The tree is of small depth, since at each vertex, either there are multiple children;
or m > 1, in which case we get ramification (the maximum is n, and they are
multiplicative along edges); or the degree of the discriminant strictly decreases
[2, Theorem 15.1]. The number of branches is bounded by n, since there are at
most n places in all.

There are at most as many qi at any vertex as the depth of the vertex. The
splitting of the tower (4) may cascade, but each such split uses only subresultant
computations and takes polynomial time. There are at most n splits since each
one creates a new branch of the tree. The product of the degrees of the qi is
at most n, since each sequence of roots (3) represented by the qi determines a
distinct place.
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