A Stable Model Semantics for Behavioral Inheritance
in Deductive Object Oriented Languages

(Extended Abstract)

Michele Bugliesi' Hasan M. Jamil?
Dip. di Matematica Pura ed Applicata Dept. of Computer Science
Universita di Padova, Italy Concordia University, Canada
michele@goedel .math.unipd.it jamil@cs.concordia.ca

Abstract. We present a model for deductive object oriented query lan-
guages with inheritance and overriding. In this model, we consider a DAG
like dynamic isa hierarchy and we account for both value or attribute in-
heritance and method inheritance or code sharing. We show that these two
types of inheritance can be treated uniformly within an elegant declar-
ative setting. We then propose a novel semantics for the non-monotonic
behavior resulting from the combination of overriding, dynamic self bind-
ing and the dynamic structure of the isa hierarchy. This semantics is
reminiscent of the stable model semantics of logic programs with nega-
tion. We also isolate a syntactic condition that guarantees the existence
of a unique stable model for a program. This condition, in its turn, is
inspired by the local stratification condition of perfect model semantics
for programs with negation. Finally we define a bottom-up procedure
that computes the unique stable model of a stratified program.

1 Introduction

There have been several attempts at combining inheritance with deductive pro-
gramming languages within clean mathematical settings [1, 2, 3, 5, 6, 8, 9, 10,
11, 12, 13, 14]. Inheritance is an essential concept in AI and in object-oriented
programming that comprises two main aspects: structural and behavioral inher-
itance. Structural inheritance is a mechanism for propagating method declara-
tions and signatures from classes to their subclasses or instances. Behavioral
inheritance, on the other hand, propagates method implementations as well as
the result of their application.

Logic languages like LOGIN [1] and LIFE [2] incorporate structural inheri-
tance by means of an extended unification algorithm for -terms, complex typed
structures that are used for data representation. In [10], Kifer et al. proposed
a formalism, called F-Logic, for deductive object oriented database query lan-
guages where the semantics of structural inheritance is captured within an el-
egant model theory and a sound and complete proof theory. F-Logic, together

! Partially supported by “Progetto Finalizzato Sistemi Informatici e Calcolo Parallelo”
of C.N.R. grant n. 93.00898.PF69.

2 Partially supported by grants from the Canadian Commonwealth Scholarship and
Fellowship Plan and the University of Dhaka, Bangladesh.

with other related formalisms, have also addressed the issue of behavioral inher-
itance. However, there are several aspects of the resulting models that can be
objected to in these approaches: we will discuss some of these aspects later on
in this paper, but only after having presented our model.

The object oriented language we consider here is loosely related to F-Logic,
but the syntax and semantics are quite different. In particular, we consider only
behavioral inheritance in our model and, consequently, disregard method sig-
natures and structural inheritance which are peculiar to F-Logic. Similarly to
F-Logic, we allow the isa hierarchy to be defined dynamically by allowing rules
with schema and method components. Within this setting, we consider both
value and method inheritance with overriding, multiple inheritance and we fo-
cus our attention to only set-valued methods. This choice is motivated by the
fact that it allows us to capture the semantics of multiple inheritance in a quite
natural and elegant way. Our syntax as well our semantics for set-valued meth-
ods is first order in that our variables range over the elements of a set rather
than on (the extension of) that set.

We propose the notion of inheritance by completion (i-completion) of a pro-
gram and present an abstract semantics that is based on conventional notions of
interpretation and satisfaction. This semantics is reminiscent of the stable model
semantics of [7]: as in that case, due to the non-monotonic nature of overrid-
ing, a program may have more than one stable model, or no stable model at
all. However, we isolate a syntactic condition, that we call i-stratification, that
guarantees the existence of a unique stable model. This condition is reminiscent
of the stratification condition of [15] for logic programs with negation, but in our
case it constrains the combination of deduction and inheritance with overriding.
Reasoning on the i-completion of our programs, we prove that i-stratification is
sufficient to guarantee the existence and uniqueness of the stable models. The
definition of i-completion provides also the basis for defining a bottom-up com-
putation of the unique stable model of every i-stratified program.

We organize the rest of our paper as follows. In Section 2 we present our
model of inheritance and we discuss the informal semantics by means of simple
examples. In Section 3 we introduce the notion of i-completion and present the
stable model semantics. Then, in Section 4, we introduce the i-stratification
condition and we prove the results of existence and uniqueness of stable models.
We then address similarities and differences with related work in Section 5, and
finally conclude in Section 6 discussing the extensions of the present model that
we plan for our future research.

2 The Inheritance Model

In this section we present the salient features of the inheritance model we con-
sider throughout. We do this by introducing a simple deductive object oriented
query language with inheritance: the language doesn’t account for a number of
important object oriented concepts like signatures, structural inheritance, en-
capsulation, etc. However, it comprises the essential functionalities related to

behavioral inheritance: multiple inheritance, overriding, dynamic self binding,
set-valued methods, etc.

2.1 Syntax

Every program in this language uses symbols from an alphabet (V,C, P) where
V is a denumerable set of variables, C is a set of data constructors and P is a
set of property (attribute and method) symbols. These components are assumed
to be pairwise disjoint. We call o-terms the terms built over C UV, and p-terms
the terms p = p/,(args) where p € P is a property name with arity a, and args
is a tuple of o-terms. To ease the notation, we will always denote the property
symbols from P using only their names, with the understanding that every name
has an associated unique arity. An o-term is a first order entity in the language
and denotes the object identity (oid) of a class or instance object. The set of oids
is denoted by O.

Atomic and Complex Formulas. Molecules and 4sa terms are the atomic
formulas of the language. Their structure is defined as follows.

Molecules are statements of the form o[p], where o is an oid and p is a p-term
(called respectively the molecule’s oid and p-term). The intended meaning of a
molecule in our language is essentially the same as in F-logic: o[p] states that
property p holds at object o.

Isa terms are statements of the form o : c or ¢ :: d where o, c and d are o-terms.
The intention of an isa term is to establish the subclass/membership relation
between two objects: o : ¢ states that o is an instance of ¢, whereas ¢ :: d states
that ¢ is a subclass of d. We will often denote with f the type of the isa relation
between objects: given a class object ¢, ofic stands for o : ¢ when o is an instance
object and for o :: ¢ when o is itself a class object.

Complex formulas are definite clauses of the form A «— Bi,..., B, where A and
the B;s are molecules and/or isa terms. We will call A and the B;s respectively
the head and the body literals of the clause and we will assume that all the
variables occurring in a clause are universally quantified.

Programs and Queries. As in other object oriented languages, a program
in our language specifies which methods/attributes are attached to each object
and organizes objects along isa hierarchies. Every program can be conceptually
viewed as consisting of two parts, each one dedicated to the specification of one
of these two components.

Definition 1 (PROGRAMS). A program is a pair I": IT where:

— I, the schema declaration, is a (possibly empty) set of isa clauses whose head
is an isa term and whose body literals are either isa terms or molecules;

— II, the property or data definitions, is a (possibly empty) set of method
clauses whose head is a molecule and whose body literals are either isa
terms or molecules.

When the oid in the head molecule of a method clause is a variable, we will
assume that there exist an isa term X flo in the body to qualify X as an instance or
subclass of some object. This assumption does not involve any loss of generality:
it serves the only purpose of disallowing clauses like “X[p].” that establish the
truth of a property, p in this case, at every object.

The only structural distinction between a method clause and an isa clause is
that the former has a molecule as its head whereas the latter has an isa term.
Thus it is possible that the isa clauses in the schema and the method clauses
in the data definitions of a program depend on each other: the satisfaction of a
property at an object may depend on the structure of the isa hierarchy (through
an isa term) and vice versa. Consequently, as in F-Logic, we allow a dynamic
structure of the ¢sa hierarchy.

2.2 Informal Semantics

The isa clauses of the schema organize objects in a DAG-like hierarchy. The
interplay between membership and subclassing is subject to the standard con-
dition: every instance of a class is also an instance of all of the super-classes
of that class. In other words, where o, ¢ and d are different objects, o : ¢ and
¢ :: d implies that o : d. Finally we assume that subclassing and membership are
reflexive: an object is always a subclass and an instance of itself.

Each class defines a set of properties (methods and/or attributes) for its
instances and subclasses. Every object inherits all the properties that are defined
at the objects that are placed higher up in the hierarchy. There are two ways
that a property can be inherited, either extensionally or intensionally: we refer
to these two types of inheritance respectively as value inheritance, and method
inheritance or code sharing.

In the sequel of this section we illustrate the functionalities of inheritance,
as well as the interaction of inheritance and overriding by means of a number of
simple examples. Later, in section 3, we will formalize these ideas precisely.

Value and Method Inheritance. The difference between value inheritance
and method inheritance can be explained as follows. Method inheritance is, in a
way, built into our syntax and originates from the interplay between instantiation
and the isa relations of the schema. Value inheritance, instead, is enforced by our
intuitive understanding of the interaction between the isa relation and deduction.
The following example helps clarify the point.

Q) o:c | 3) cla®)].
Ns=lo) cua =1) Xpla) — X : d. def,

The schema states that o is an instance of ¢ and that ¢ is a subclass of d. Given
that every object inherits from its class ancestors in the isa hierarchy, here we
have that o inherits ¢(b) from its class c. Similarly, o inherits a definition for p
from class d: this is because we can substitute o for X in (4) and, since o : d due
to the interplay between “” and “::”, clause (4) can be seen as a definition that
o inherits from d. If def,, succeeds, then we will be able to derive o[p(a)].

Note the difference between the two cases. In the former, o is inheriting the
extension of a property from its class c¢: we will say that o value-inherits ¢ from
c. In the latter case, it is the intension of the property (the clause defining it)
that gets inherited from d to o: accordingly, we will say that o method-inherits
p from d.

Overriding. If there were no overriding, we could account for the two types
of inheritance in an elegant and easy way. We would simply need to model
the relationship between the isa relations and substitution/deduction and have
our objects be characterized by all the properties they inherit via instantiation
and/or deduction in ways similar to those outlined above. With overriding the
picture becomes more complex, because there may be conflicts between the types
of inheritance and we may want to reject the inheritance of values (or clauses)
along the isa hierarchies in case properties are redefined at a subclass or instance.
Consider for example the following program.

| B) b

| (1) o: _
i c: | (4) Xpla)] — X :d.

@

The point is: how should we answer the query o[p(X)] ? Both the answers X =
a and X = b seem reasonable, because X = b follows from (3) being o : ¢,
whereas X = q follows from (4) being o : d implied by the schema. If there were
no overriding, then we would certainly accept both the answers as legal and,
consequently, say that {a,b} is the value of p at o. However, if we assume that
inheritance is subject to overriding, then clearly we have a conflict. In this case
we claim that the only acceptable answer to the above query is X = b, because
the inheritance of p from ¢ to o overrides the inheritance of the same property
from d to o.

Following the same line of reasoning, if we assume that w : d be part of the
schema in the example above, we will interpret the two following clauses:

c.
1 d.

X[t(a)] «— X : ¢, def;.
X[t(D)] « X : d, def,.

as two definitions for ¢ that o and w inherit from their (super)-classes. More
precisely, w inherits the second clause from d, whereas o inherits the first clause
from ¢ and the second from d. Again, the inheritance of ¢ from ¢ to o overrides
the inheritance from d to o. The same arguments apply to the following slightly
more complex example.

Here, the expected answer to the query u[p(X)] is X = e rather than X = b. This
is because the inheritance of p from c to u is overridden owing to the existence
of the local definition (5) for p at w.

Multiple Inheritance. The interaction between inheritance and overriding we
have outlined above applies to every path in the isa hierarchy: each object in-
herits a property and/or the clauses defining it from the closest ancestors in the
hierarchy that define that property. In order to formalize this notion of “close-
ness”, we assume that no pair of immediate ancestors of any given object be
connected by an isa link. Accordingly, I" = {o : ¢,0 : d} is a valid schema
whereas I'" = {o: ¢,c :: d,0 : d} violates the assumption because o has two im-
mediate ancestors, ¢ and d, that are connected by the link ¢ :: d. In our model,
I'" is interpreted as the linear schema {o: ¢, ¢ :: d} where ¢ is closer to o than d.
In other words, the model does not distinguish the cases when o : d is asserted
or entailed by the schema.

Dynamic Subclassing. In all of the previous programs, we have seen examples
of static schema definitions, where the isa clauses do not depend on the data
definitions. Consider now the more complex case of the following program.

e | 0 ere—ob@l) dp@].
(2) o:d. (4) c[p(b)].
Note that the isa relation between o and ¢ depends now on the satisfaction of
p(a) at the object o. Here, inheritance works as before: from o : d and d[p(a)], we
can derive o[p(a)] by inheritance from d to o. Then, by standard deduction we
derive o : ¢, and hence, o[p(b)] by inheritance from ¢ to o. Therefore, we conclude
that the value of p at o is the set {a,b}.

As a final example, consider adding the isa clause ¢ :: d < o[p(a)] to the previous
program. I'y : IT;. We obtain the new program (which we adapt from [10]).

(1) o:c« o[p(a)].
| @) oie -~ elpla) @ dp(a).
I's = g; O; [p(a)]. IIs) clp(b).

As in the previous example, we can derive o[p(a)] from o : d and d[p(a)]. Now,
however, by standard deduction, we derive not only o : ¢ but also ¢ :: d. But this
implies that o should inherit p from ¢, and consequently, that this inheritance
should override the inheritance of the same property from d to o. In other words,
we shouldn’t have used o : d to deduce o[p(a)]. However, if we disregard o : d,
then we are not even allowed to infer o : ¢, and hence we conclude that the value
for p at o is the empty set,

Neither one of the two conclusions seems reasonable: indeed this program
doesn’t seem to have any sensible (determinate) meaning. As we will show in
section 4, our semantics does classify programs like 5 : Il5 as meaningless pro-
grams because they have no stable models.

3 Stable Model Semantics

As in the classical theory of logic programming, an interpretation of a program
in our language is a subset of the Herbrand base over the alphabet of the pro-
gram. The only additional requirement in our theory is that we assume that

interpretations be isa closed: that means that, whenever ofic and c :: d belong to
an interpretation I, we require that ofid be also contained in I. The condition
of isa closedness provides a formal justification for the equivalence of the two
schemas {0 : ¢,c :: d,o : d} and {o: ¢,c :: d} we have discussed in the previous
section.

Satisfaction in an isa closed interpretation is defined exactly as in classical
Herbrand interpretations in terms of membership. To account for inheritance in
this framework, we introduce the notion of i-completion discussed in the next
subsection?.

3.1 Inheritance by I-completion

We first present the rational behind the idea of i-completion on intuitive grounds.
Consider the following program:

I's:=(1) o:ec I :=(2) c[p(a)].

In every model of this program we would expect to see both ¢[p(a)] (of course)
and o[p(a)] because it can be inferred by value inheritance. However, the fact
that p(a) holds at o is not expressed explicitly in the program: it is our idea of
the semantics of inheritance that implies it. This is in fact a general issue: value
inheritance is not expressed syntactically in our programs; it is a purely semantic
mechanism we are attributing to them. In contrast, method inheritance does have
a syntactic representation owing to substitutions. So the point is: why not model
value inheritance in terms of method inheritance so that we can account for value
inheritance syntactically the way we do for method inheritance? It is easy to see
how this can be accomplished, at least in the previous program: simply, consider
the following completed program:

o | @ ©pa).
r:=(Q1) o:c I==13) ofp(a)] — o ¢, clp(a)].

Note that clause (3) is inherited by o from c. It states that whenever p(a) holds
at ¢, it also holds at o: exactly as in the original program, with the difference that
now the value inheritance from ¢ to o is modeled in terms of the inheritance of
clause (3) between the two objects. This simple transformation extends naturally
to the general case as suggested in the following definition.

Definition 2 (I-COMPLETION). Let P be a set of clauses and let [P] be the
ground closure of P. The i-completion of P, denoted by C(P) is the minimal set

! In [4], we present an alternative semantics based on complex interpretation struc-
tures, called (-structures. Using these structures, we are able to capture the func-
tionalities of behavioral inheritance and overriding directly within the definition of
satisfaction, without resorting to the notion of i-completion. In [4] we also show the
equivalence of the notion of model that results in that framework and the definition
of stable model we present in this paper.

of clauses satisfying the following conditions:

1. [Pl c[C(P)]
2. ofc—B. cud«—B.€[C(P)] = ofld < ofic,c::d. € [C(P)]
3. ¢[p] — B. offc— B.€[C(P)] = o[p]+« ofe,c[p]. € [C(P)].

The effect of i-completing a program is to expose, syntactically, all the inheri-
tance that is implicitly expressed in the original program. As a consequence, the
semantics of an i-completed program can be given simply in terms of deduction
as it does not need to make reference to inheritance: what in the original program
is inferred by value inheritance can be inferred, in the i-completed program, by
standard deduction using the clauses added by the i-completion. In both cases,
method inheritance is implicitly entailed by substitution.

Clearly, we still need a formal account for overriding, but the use of i-
completion allows us to capture the functionalities of inheritance in terms of
a standard notion of satisfaction: we can characterize the semantics of an i-
completed program simply in terms of its (classical) minimal Herbrand model.

3.2 Overriding

Before we move on to introduce overriding, we put forward the definitions of
local and inherited clauses that, adapted from [8], help formalize this notion.

Definition 3 (LOCAL METHOD CLAUSES). Let ¢/ be a ground (instance of a)
method clause. We say that cl is local to o € O iff ¢l = o[p] < Bj,...,B, and
there exists no 4 such that B; = ofic with ¢ # o?.

Definition 4 (INHERITED CLAUSES). Let ¢l = o[p] < Bji,..., B, be a ground
(instance of a) method clause and let I be an interpretation. We say that ¢l is
inherited by o from c in I iff there exists ¢ such that B; = ofic and ofc € I

Next, we introduce the concepts of defined and inherited properties. Again, we
denote with p the property symbol of the p-term p and call p-clause any clause
whose head is o[p] for some object 0. We say that o defines a property p € P iff
there exists a p-clause local to o. Similarly, o inherits p from d in I iff o inherits
a p-clause from d in I.

Our notion of “overriding” is again inspired by the definition of locality of
method clauses proposed in [8]. Overriding comes into play whenever an object
o inherits the same property, say p, from different ancestors that are connected
by isa links in the hierarchy. In every such situation, the conflict is resolved
by establishing that o inherits p only from the closest ancestors that define p.
This inheritance blocks (overrides) the inheritance of p from all the ancestors of
o that are placed higher up in the hierarchy. Note that, since we assume that
membership and subclassing are reflexive, it follows that if an object defines

2 Here, and in Definition 5, with “=” we denote syntactic equality.

a property, then the local definition overrides the inheritance of that property
from any of the (proper) ancestors of that object.

The natural consequence of this interpretation is that for every object o, only
a subset of the clauses that o inherits from its ancestors are actually “relevant”
to the definition of the properties that hold at o itself. The set of relevant clauses
corresponding to the overriding rule we have just outlined is defined precisely as
follows.

Definition 5 (OVERRIDING-FREE INSTANCES). Let P = I': IT be a program
and I be an interpretation. All the ground instances of the isa clauses in I are
overriding free in I. Let ¢l = o[p] « B, ..., B, be ground instance of a method
clause in I1. cl is overriding free in I iff:

— either ¢l is local to o;

— or there exists a class ¢ such that o inherits ¢l from ¢ and o does not inherit
p from any d # ¢ such that {otid,d :: ¢} C I.

In several respects, this approach results in a model theory that is similar to the
model theory of Gulog proposed in [6]: as in that case, it is the syntactic struc-
ture of the program that determines the set of “relevant” clauses of a program
as well as the ways that overriding affects the inheritance of properties. One
important difference is that our notion of overriding in a given interpretation is
static, as it is based solely on the existence of an overriding definition (regard-
less of the satisfaction of the body of the definition in the given interpretation).
Furthermore, we generalize the definition of model by allowing the isa hierarchy
to evolve dynamically during the computation. Let M(P) denote the minimal
model of an (i-completed) program P, and let [P]; denote the set of overriding
free instances of P in any given interpretation I.

Definition 6 (STABLE MODELS). Let I be an interpretation and let P be an
i-completed program. We say that I is a stable model of P iff I = M([P];).

This definition should be contrasted with the corresponding definition of stable
models in [7]. As in that case, given an interpretation I, we isolate the subset
of the clauses in P that are “relevant” because they are overriding free in I,
and then we check whether the remaining clauses are satisfied by I. Note the
recursive flavor of the construction: the set of clauses that must be satisfied in
order for I to qualify as a model depend on I itself. Also note that, owing to
the dynamic nature of the isa definitions in the schema, in the construction
of a model I, the set [P]; may be subject to changes as the interpretation I
changes. Hence, this construction may or may not be convergent: the following
proposition shows that there exist programs that have no stable models.

Proposition 7. Program I5:II5 of section 2 has no stable model.

Proof. We show that that the i-completion of I5: IT5, as shown below, has no
stable model.

ol (5) dlp(a)).
) Cieomen (6) clp(®)]

=13 o:a = | 0 Oﬁﬁ))}Mo dd&()})l
(4) o:d—o:cc:d. 9) epa)] — ¢ :: d, djp(a)].

Clauses (4), (7), (8) and (9) have been added by i-completion. Let the above
i-completed program be called Q): we show that (Q has no stable interpretation.
First observe that since (4) is subsumed by (3) we can reason independently of
clause (4). Similarly, we can disregard clause (9) since it is “written over” in
every interpretation (6) being local to c.

Now observe that clauses (1), (2), (3), (5) and (6) are overriding free in every
interpretation. Hence, (3), (5) and (6) being unit clauses, if there exists a stable
interpretation I, then I must be a superset of J = {0 : d, d[p(a)], c[p(b)]}. Note
also that J itself is not stable: in fact, since clause (7) is overriding free in J,
o[p(a)] € M([Q]s). Assume now, by contradiction, that there exists a stable
interpretation I for Q. We have two possibilities:

1. If o[p(a)] € I, then o : ¢,c :: d € I because I is a model for (1) and (2) that
are overriding free. But then clause (6) is not overriding free in I and hence
o[p(a)] & I being I minimal: a contradiction.

2. If o[p(a)] & I, then neither o : ¢ nor ¢ :: d belong to I being I minimal. But
then, clause (7) is overriding free in I. This, in turn, implies that o[p(a)] € I,
being I a model. Again, we have a contradiction. m]

It is also not difficult to see that there are programs that have more than one
stable model. Consider the following new program.

g o o o

o o :a. o Cc p

PH1) end e ofp(a)). 3=10) olp(a)] o d. dip(a)]
(4) d:c—olp(b)]. (8) olp(b)] —o: ¢ cp(b)]

This program is not i-complete: to complete it we would need to add the following
clauses:

(i) o:c—o:d,d:c (iii) c[p(a)] < c:: d,d[p(a)].
(i) o:d—o:¢c:d. (iv) dlp(b)] < d ¢, c[p(b)].

However, we can disregard these clauses since (i) and (ii) are subsumed re-
spectively by (1) and (2), whereas (iii) and (iv) are written over in every in-
terpretation owing to the presence of the two local definitions (5) and (6) re-
spectively. Now, call P the above program: every model of P is a superset of
{o:¢, 0:d, d[p(a)], c[p(b)]} since (1), (2), (5) and (6) are unit clauses that are
always overriding free. Furthermore, owing to the presence of clauses (7) and
(8), every model must contain either one of o[p(a)] and o[p(b)], but not both

because otherwise we would be led to conclude that the schema of P contains a
cycle. Now consider the following two interpretations:

L ={o:¢, 0:d, dp(a)], ¢[p(b)], d: ¢, o[p(a)]}
I, ={o:¢, o:d, dp(a)], ¢[p(b)], c:d, o[p(b)]}

The set of overriding free instances of P in I; and I are, respectively, [P];, =
[PI\ {(8)} and [P];, = [P]\ {(7)}. It is immediate to see that Iy = M([P]1,)
and Iy = M([P]r,) and hence, that I; and I, are both stable models of P.
Furthermore, on the account of the previous observations, we conclude that Iy
and Iy are actually the only two stable models of this program: yet, neither one
is smaller than the other.

4 Existence and Uniqueness of Stable Models

Looking at the previous examples, one notices that the reason why we fail to
construct a model is that we have a conflict between the deduction of a property
at a given object and the deduction of an isa relation for that object. More
precisely, the problem is that we use an isa relation offic to derive a molecule
o[p] by value inheritance from ¢ but, having done this, we immediately find out
that there exists an intervening object mid such that ofimid and mid :: ¢ and
that the existence of mid causes ofic to be overridden for p. In both the previous
examples this is the actual reason why we fail to define a (unique) stable model.

4.1 I-stratification

To obtain a stable model, we will need to constrain the dependency of an isa
term on a molecule such that if the isa term ofc is used to derive a molecule
o[p] by inheritance from ¢, then we will not, at later stages, derive a new isa
term ofid that blocks the inheritance of p from ¢ to o. The following definition of
stratification ensures this property. Again, let [P] denote the ground extension
of P.

Definition 8. Let P be an i-completed program. We say that P is i-stratified iff
there exists a mapping p from ground atoms to positive integers such that, for
every pair of atoms A and B, the following conditions are satisfied:

1. u(A) > pu(B) iff A is the head of a clause of [P] and B is a body literal of
that clause;

2. u(A) > p(B) iff A = o[p] is the head of a clause of [P] and B = ofc is a
body literal of that clause.

The i-stratification mapping g aims at decomposing a program P in different
strata P1,..., P™ such that [P] can be obtained as the disjoint union of these
strata. The intention of condition (2) is to separate clauses defining isa relations
between objects from clauses defining properties at these objects by placing them

at different strata of the program. If there exists an i-stratification P*U---U P"
of P, then it will satisfy the following property. Assume that P’ contains a clause
olp] < Bi,...,B, and that there exists Bj such that By = ofic: then all the
clauses whose head is ofic are placed at strata P7 with j strictly lower than 4.

The notion of i-stratification, suggests also a way to compute a model of an
i-completed program. Let Tp be the following immediate-consequence operator:

Tp(I)={A|A—By,....,B, € Pand {B,...,B,} CI}UI

The intention is to construct a model for a program by repeatedly iterating the
Tp operator at each stratum of the program: owing to i-stratification, the set of
overriding free instances of each stratum will not be subject to changes as the
construction of the model proceeds with iterations at higher strata.

The following theorem shows that the iterated fixed point computation we
have just outlined leads indeed to the construction of stable models.

Theorem 9 (EXISTENCE). Let P be an i-complete and i-stratified program and
let P! U---U P" be an i-stratification of P. For every interpretation I, denote
with P} the subset of the j-th stratum of [P] consisting of the clauses that are
overriding free in I. Finally, let M} be the interpretation resulting from the
following iterated fixed-point computation:

Ml = Tgl (@)

M, = Tgl (Mifl) 1<1<n
M;_q

Mp =M,

M} is a stable model for P.
Proof. We use the following two properties:

L. for every interpretation I, T8, pisi(I) = Tgii (Tg:(I)) for every i = 1,..,
n— 1.
2. for every i = 1,...,n, P, = Pj; where we take My = @ by definition.

The first property is a well-known property of stratified programs that carries
over directly to i-stratified programs. The proof of the second is omitted for the
lack of space and can be found in [4]. To show that M} = M, is a stable model,
we need to show that M([P]a,,) = M,. From (1) and (2) above, we can proceed
as follows:

M([Plu,) = T, (0) = T .opy ()
by (1) =T, (Tg (- (T3, (@))-)
by (2) =Tg, (Tjo ((TH(©)-) = M,

-1

We conclude the section with the proof that every i-complete and i-stratified
program has exactly one stable model. The proof of this result also shows that
the construction of M} is independent of the choice of the i-stratification of P.

Theorem 10 (UNIQUENESS). Let P be an i-complete and i-stratified program.
Let I be a stable model of P. Then I = Mp.

Proof. Let I be a stable model and let P! U---U P" be an i-stratification of P.
Then consider the set of overriding free instances [P]; = P} U--- U Pp. Clearly
M([P];) = M(P} U---U PP). Let then N; be the following sequence of sets:

Ny = TES}(@)
1
N* =N,

Since P is i-stratified, clearly M([P];) = N*. Furthermore, since the minimal
model of every i-stratified set of clauses is independent of the i-stratification
mapping, the above construction of M([P];) is also independent of the chosen
i-stratification of P. Now consider the sequence of sets M; that result in the
construction of M} using the stratification P'U---UP™. We show, by induction
on i, that for every : =1,...,n, M; = N;.

Base case. First note that for every interpretation I, P} C P'. If P} C P!, then
P! must contain an inherited clause ¢l = o[p] < ofic, B that is overridden in I
(for these are the only clauses that can be written over). But then, since P is i-
stratified, neither [P] nor P! contain any isa clause whose head is ofic. Hence, by
iterating Tp on P!, ¢l will never produce o[p] and, consequently, P! and P\ {cl}
have the same minimal model. Since this argument applies to all the clauses of
P! that are not overriding free in I, we have that: Ny = M(P}) = M(PY) = M,

Inductive step. First notice that, being I stable, I = M([P];) and consequently,
I = N,,. Then observe that, by construction, IV; C I for every i: from this we have
that M;_; C I because, by the inductive hypothesis N;_; = M;_;. Now we can
show that P} = P}m_l using the properties of i-completion and i-stratification.
Further details can be found in [4]. O

4.2 Remarks

A natural question that arises at this point is how large is the class of programs
that have a unique minimal model. A subclass of the programs that enjoy this
property is the class of programs that are simple, in the sense of the following
definition.

Definition 11 (SIMPLE PROGRAMS). A program [':II is simple if and only if
the body of every clause in the schema I is constituted solely of isa terms.

That these programs have a unique stable model follows as corollary of the
results of the previous section. The proof is immediate since the i-completion
of every simple program I":II can be seen as a two-stratum program P! U P?
where P! and P? are the i-completions of respectively I" and IT.

The case of non-simple programs, where the schema and data definitions may
depend mutually on each other, is more complex. In this regard, it is interesting

to note that the condition of i-stratification is precise enough to distinguish the
two programs Iy :I14 and I5: IT5 of section 2. We already showed that the latter
has no stable model: it can now be easily verified that the i-completion of this
program, introduced in proposition 7, is not stratified. On the other hand, it is
easy to see that the sets of clauses displayed below, define a stratification of (the
completion of) I'y:1ly.

d.
(a)).
(b))-

0: ¢+ o[p(a)].

o[p(a)] « o: d,d[p(a)].

P3 = |o[p(b)] < o0: ¢, c[p(b)].

o

Pl= coi[p
[p

P? .=

In general, it is hard to give a precise characterization of the class of i-stratified
programs. However, our contention is that i-stratification is interesting in itself
as a structuring principle: it simply requires that the isa relation between two
objects be independent of the properties whose satisfaction depends itself on that
isa relation. As such, i-stratification seems indeed to offer a reasonable principle
for writing programs that exploit the power of inheritance in meaningful and
practical ways.

5 Discussion on Related Work

In this section we take a very brief look at other proposals that are related to
our present work. Readers are referred to [10] for a lucid and comprehensive
discussion on the contemporary approaches to inheritance in the literature.

In L&O [12], the semantics of inheritance and overriding is given indirectly
by translating L&O program to logic programs and, hence, it provides little
insight into the relationships between inheritance, overriding and deduction.

In F-Logic [10], only structural inheritance is captured semantically within
the model theory and the proof theory of the formalism. Counterwise, for be-
havioral inheritance, the non-monotonic aspects introduced by the combination
of overriding and dynamic binding are modeled only indirectly by means of an
iterated fixed point construction. Another weakness of F-Logic is that it accom-
modates only value inheritance: in F-Logic, what gets inherited along the isa
hierarchy is ground data expressions — values resulting from the application of
a method at a superclass — and not method implementations. Method inheri-
tance and overriding, in their turn, are accounted for only indirectly by means
of an ad-hoc technique that relies on the higher order features of this formalism.
Finally, in F-Logic the problems introduced by the dynamic structure of the
schema are solved resorting to a highly non-deterministic semantics: in F-Logic
a program might have more than one model and no mechanism is provided so
that one can systematically identify an intended or preferred model.

In Gulog [5, 6], Dobbie and Topor develop an elegant semantics for inheri-
tance with overriding that addresses some of the unresolved problems in F-Logic.
However, the elegance of their solution is achieved at the expense of a number of
restrictions on the inheritance model. In particular, Gulog does not account for
value inheritance and, more importantly, it separates the schema declarations
from the data definitions thus avoiding the problems introduced by the dynamic
subclassing capabilities of F-Logic.

In Orlog [9], Jamil and Lakshmanan developed a model for inheritance based
on the notion of inheritance withdrawal to capture the idea of user defined in-
heritance and conflict resolution in multiple inheritance networks. One of the
major shortcomings of this model is that overriding is captured via specifica-
tion and hence is not deducible. However, by introducing the idea of locality
of method clauses and the notion of inheritability in [8], the above handicap in
Orlog is eliminated. However, the proposal in [8] achieved this functionality at
the expense of the loss of dynamic subclassing capability.

Behavioral inheritance has been studied also in deductive formalisms like the
Ordered Theories of [11], in modular languages such as Contextual Logic Pro-
gramming [13, 14], SelfLog [3] and several others. In these proposals, an object is
viewed as a set of rules (clauses) that represent the properties that hold at that
object. Hence, although the functionalities of inheritance are the same as in ob-
ject oriented systems, the resulting languages are essentially modular languages
that retain the relational flavor of data peculiar to logic programming and, as
such, differ from conventional object oriented languages, both syntactically and
semantically.

6 Conclusion and Future Research

A desirable extension of the inheritance model we have presented would be to
include inheritance with dynamic overriding in ways similar to those proposed
for Gulog (and F-Logic, to that matter).

In Gulog, this feature is accounted for by resorting to interpretation struc-
tures that carry extra information needed (i) to identify the objects from which
a value is inherited and (ii) to resolve the possible conflicts between the inheri-
tance from different ancestors. Our current solution, based on static overriding,
simplifies the treatment of overriding for set-valued methods and has also the
potential benefit of allowing room for some form of static type checking. How-
ever, the extension to dynamic overriding appears to be necessary for several
applications, notably for reasoning about inheritance hierarchies in artificial in-
telligence [16]. Our current work shows that the generalization of the framework
we have presented in this paper should be smoothly accomplished by integrating
our definition of i-stratification with the i-stratification condition proposed by
Dobbie and Topor in [6].

As a further extension, we are currently studying the integration of our model
with a corresponding model of structural inheritance. One of the challenges, in
this extended framework, is to isolate and define an adequate relation between

method inheritance and overriding, as we have defined them here, with the prop-
erties of covariance and contravariance for the types of these methods’ arguments
and results.

References

10.

11.

12.

13.

14.

15.

16.

H. Ait-Kaci and R. Nasr. Login: a logic programming language with built-in in-
heritance. Journal of Logic Programming, 3:182-215, 1986.

H. Ait-Kaci and A. Podelski. Towards a Meaning of LIFE. Technical Report 11,
Digital Paris Research Labs, 1991.

M. Bugliesi. A declarative view of inheritance in logic programming. In K. Apt,
editor, Proc. Joint Int. Conference and Symposium on Logic Programming, pages
113-130. The MIT Press, 1992.

M. Bugliesi and M. H. Jamil. A Stable Model Semantics for Behavioral Inheritance
in Deductive Object Oriented Languages. Technical Report 6, Dip. di Matematica
Pura ed Applicata, Univ. di Padova, 1994.

G. Dobbie and R. Topor. A Model for Inheritance and Overriding in Deductive
Object-Oriented Systems. In Sixteen Australian Computer Science Conference,
January 1988.

G. Dobbie and R. Topor. A Model for Sets and Multiple Inheritance in Deductive
Object-Oriented Systems. Technical report, School of Computing and Information
Technology, Griffith University, Nathan Qld 4111, Australia, January 1993.
Michael Gelfond and Vladimir Lifschitz. The Stable Model Semantics for Logic
Programming. In R. A. Kowalski and K. A. Bowen, editors, Proc. 5th Int. Con-
ference on Logic Programming, pages 1081-1086. The MIT Press, 1988.

H. M. Jamil. Semantics of Behavioral Inheritance in Deductive Object-Oriented
Databases. PhD Thesis (in preparation), Department of Computer Science, Con-
cordia University, Canada, 1994.

H. M. Jamil and L. V. S. Lakshmanan. Orlog: A Logic for Semantic Object-
Oriented Models. In Proc. of the International Conference on Information and
Knowledge Management, Baltimore, Maryland, pages 584-592, November 1992.
M. Kifer, G. Lausen, and J. Wu. Logical Foundations for Object-Oriented and
Frame-Based Languages. Technical Report TR-93/06, Department of Computer
Science, SUNY at Stony Brook, 1993. (accepted to Journal of ACM).

E. Laesen and D. Vermeir. A Fixpoint Semantics for Ordered Logic. Journal of
Logic and Computation, 1(2):159-185, 1990.

F.G. McCabe. Logic and Objects. Prentice Hall International, London, 1992.

L. Monteiro and A. Porto. A transformational view of inheritance in Logic Pro-
gramming. In D.H.D. Warren and P. Szeredi, editors, Proc. 7th Int. Conference
on Logic Programming, pages 481-494. The MIT Press, 1990.

L. Monteiro and A. Porto. Syntactic and Semantic Inheritance in Logic Program-
ming. In J. Darlington and R. Dietrich, editors, Workshop on Declarative Pro-
gramming. Workshops in Computing, Springer-Verlag, 1991.

Teodor Przymusinski. Perfect Model Semantics. In R. A. Kowalski and K. A.
Bowen, editors, Proc. 5th Int. Conference on Logic Programming, pages 1081-1096.
The MIT Press, 1988.

D. S. Touretzky. The Mathematics of Inheritance Systems. Morgan Kaufmann,
Los Altos, CA, 1986.

