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A b s t r a c t .  In [JM94] we used a branch and cut algorithm in order to de- 
termine a maximum weight planar subgraph of a given graph. One of the 
motivations was to produce a nice drawing of a given graph by drawing 
the found maximum planar subgraph, and then augmenting this draw- 
ing by the removed edges. Our experiments indicate that  drawing algo- 
rithms for planar graphs which require 2- or 3-connectivity, resp. degree- 
constraints, in addition to planarity often give "nicer" results. Thus we 
are led to the following problems: 

(a) 
(2) 
(3) 

(4) 

Find a maximum planar subgraph with maximum degree d E IN. 

Augment a planar graph to a k-connected planar graph. 

Find a maximum planar k-connected subgraph of a given k- 
connected graph. 

Given a graph G, which is not necessarily planar and not necessarily 
k-connected, determine a new graph H by removing r edges and 
adding a edges such that  the new graph H is planar, spanning, 
k-connected, each node v has degree at most D(v) and r + a is 
minimum. 

Problems (1), (2) and (3) have been discussed in the literature, we argue 
that  a solution to the newly defined problem (4) is most useful for our 
goal. For all four problems we give a polyhedral formulation by defining 
different hnear objective functions over the same polytope which is the 
intersection of the planar subgraph polytope [JM93], the k-connected 
subgraph polytope [$92] and the degree-constrained subgraph polytope. 
We point out why we are confident that  a branch and cut algorithm for 
the new problem will be an implementable and useful tool in automatic 
graph drawing. 
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In [JM93] we defined the polytope 7~s associated with all planar subgraphs 
of a given graph G. Here we define the polytope k-ArCS(G) associated with all 
k-connected subgraphs of the graph G. Furthermore, we give a description of 
the integer points by a system of linear inequalities for both polytopes Ps  
and k-ArCS(G). By intersecting the polytopes "Pf~S(G) and k-ArCS(G), we get 
a new polytope k-AfCPs We will see that by optimizing linear objective 
functions over the polytope k-A/'CTas we will be able to solve the problem 
of finding a maximum planar k-connected subgraph (k ___ 2) and the planar 
(k-)augmentation problem. 

Both problems have applications in automatic graph drawing [TBB88]. In 
automatic graph drawing a given graph has to be layed-out in the plane in a 
nice and pleasant way. Nice drawings for sparse nonplanar graphs can be achieved 
by determining a maximum planar subgraph and augmenting an embedding of 
this graph. There are many layout algorithms which only work for planar graphs 
and/or k-connected graphs, where k = 2 or k = 3. Furthermore, there are 
drawing algorithms such as the minimizing bends algorithm of Tamassia [T87], 
that restrict the degrees of the nodes to a fixed number d E IN. The degree- 
constrained maximum planar subgraph problem is the problem of determining 
a maximum planar subgraph in which all nodes have degrees at most d E IN. 

The maximum planar k-connected subgraph problem is the task of finding 
a maximum planar subgraph of a given graph which is at least k-connected. Of 
course, this problem is only meaningful, if the given graph is at least k-connected. 
In this case, it is common to first determine a maximum planar subgraph and 
then solve the planar k-augmentation problem, which is the task of adding the 
minimum number of edges to a given planar graph in order to achieve a planar 
k-connected graph. 

The natural problem arising in this context would be the following. Given a 
graph G, which is not necessarily planar and not necessarily k-connected, deter- 
mine a new graph H by removing r edges and adding a edges such that the new 
graph H is planar, spanning, k-connected and r + a is minimum. This problem 
never occurs in the literature before, we will call it the minimum planarizing 
k-augmentation problem. Adding the degree-constraints, saying that each node 
v has degree at most D(v), leads to the minimum planarizing degree-constrained 
k-augmentation problem. With the methods of polyhedral combinatorics, we can 
easily formulate all problems and it turns out that the new problem has the most 
natural formulation. 

Indeed, it is advantageous to solve the minimum planarizing k-augmentation 
problem in comparison to the following approaches. (Note, that k E {2, 3}, 
whenever we talk about k-connectivity in context with planarity.) 

(1) First solve the maximum planar subgraph problem and then solve the planar 
k-augmentation.problem on the detected planar subgraph. 
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(2) First augment the given graph to k-connectivity and then solve the k- 
connected planar subgraph problem. 

For example, consider the graph G given by the solid lines in Fig. 1. Approach 
(1) may lead to first removing the edges a and b. In order to augment the graph 
to biconnectivity, we have to add at least three edges, whereas the optimum 
solution of the minimum planarizing 2-augmentation problem would be removing 
the edges e and f.  For the graph G-{c}, the second approach may lead to adding 
edge c, and then removing the edges e and f,  whereas the optimum solution of 
the minimum planarizing 2-augmentation problem would be only to remove the 
edge e and add the edge g. 

The maximum planar subgraph problem is the following: Given a nonplanar 
weighted graph with edge weights we E ]R for e E E we want delete a set of edges 
F C E to obtain a planar subgraph G ~ = (V, E \ F )  such that the sum of all edge 
weights ~eeE\F we of G ~ is maximum. In the unweighted case, where we = 1 for 
all edges e E E, the problem consists of finding the minimum number of edges 
whose deletion from a nonplanar graph gives a planar subgraph. In either case 
the problem is NP-hard. 

The (node-)eonnectivity ~(G) of a graph G is the minimum number of nodes 
whose removal together with its incident edges results in a disconnected or trivial 
graph. A graph is said to be k-node-connected, or k-connected, if ~(G) ~ k. 
The problem of augmenting a given graph by the minimum number of edges 
in order to obtain a k-connected graph seems still to be open, whereas there 
are polynomial time algorithms for k = 2 and k = 3 [RG77,HR91]. Frank gives 
a polynomial time algorithm for the k-edge-connected augmentation problem 
for arbitrary k provided that the edge-costs are one (unweighted problem) or 
arise from node-costs, while the problem for arbitrary edge-costs is known to 
be NP-hard even for k --- 2 [F92]. The planar (k-)augmentation problem has 
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been brought up by Kant, and consists of adding a minimum number of edges 
to a planar graph in order to obtain a k-connected graph, which is still planar. 
Kant showed that this problem is NP-hard for k = 2, and gives a linear time 
approximation algorithm which adds at most 2 times the minimum required 
number of edges [K93]. 

In [JM94], we attack the maximum planar subgraph problem with the tech- 
niques of polyhedral combinatorics. This approach gives us quite good and in 
many cases provably optimum solutions for sparse graphs and very dense graphs. 
Here we will see that it appears to be promising to use this approach also for 
the related problems discussed above. 

In Sect. 2 of this paper we summarize results on the facial structure of the 
planar subgraph polytope given in [3M94] and [M94b]. In Sect. 3 we define the 
polytope associated to all k-connected spanning subgraphs of the graph G. Fur- 
thermore we give a system of linear inequalities characterizing the integer points 
in this polytope. In Sect. 4 we intersect both polytopes :Ps and k-ArCS(G). 
Using the new polytope, we show how to formulate the maximum planar k- 
connected subgraph problem and the planar k-augmentation problem. Moreover, 
we achieve a natural description of the newly defined minimum planarizing k- 
augmentation problem. Furthermore, we consider the degree-constraint versions 
of the problems. In Sect. 5 we suggest a "branch and cut" algorithm in order 
to solve the minimum planarizing 2-augmention problem. In Sect. 6 we give 
some computational results for the maximum planar subgraph problem and the 
degree-constrained maximum planar subgraph problem. 

2 T h e  P l a n a r  S u b g r a p h  P o l y t o p e  T's 

Given a graph G = (V, E) with edge weights we E IR for all e E E, let P~ be 
the set of all planar subgraphs of G. For each planar subgraph P = (V ~, F)  E 
:Pa, we define its incidence vector X P E lRE by setting X P = 1 if e E F and 
X P = 0 if e ~ F. The planar subgraph polytope ~Z:S(G) of G is defined as the 
convex hull over all incidence vectors of planar subgraphs of G. The problem of 
finding a planar subgraph P of G with weight w(P) as large as possible can be 
written as the linear program max{wWx [ x e ~/:S(G)}, since the vertices of 
the polytope "Ps are exactly the incidence vectors of the planar subgraphs 
of G. Kuratowski characterized the minimal nonplanar graphs to be exactly the 
subdivisions of K5 and K3,3. Hence we get the following integer programming 
formulation for the maximum planar subgraph problem: 

maximize cT ~ 
subject to 0 < xe < 1, for all e E E, (1) 

x(K) _< I K I -  1, for all induced Kuratoski subgraphs K C_ E (2) 
xe integral, for all e E E (3) 

Since integer programming is NP-hard, we drop the integer constraints. In 
order to apply linear programming techniques to solve this linear program one 
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has to represent Ps as the solution of an inequality system. Due to the 
NP-hardness of our problem, we cannot expect to be able to find a complete 
description of 79s by linear inequalities. But even a partial description of 
the facial structure of 79s by linear inequalities is useful for the design of a 
"branch and cut"-algorithm, because such a description defines a relaxation of 
the original problem. Such relaxations can be solved within a branch and bound 
framework via cutting plane techniques and linear programming in order to pro- 
duce tight bounds. An irredundant description of 79s by linear inequalities 
contains only inequalities which describe proper faces of maximal dimension of 
79s so-called facet-defining inequalities. For efficiency, also in a partial de- 
scription by inequalities, we concentrate on those valid inequalities for 7~s 
which are facet-defining. For ease of notation, we define x(F) = ~-~eF Xe for 
F C E. In [JM94] we state the following 

T h e o r e m  1 [JM94]. The dimension of the planar subgraph polytope "Ps of 
G = (17, E) is IE], so it is full dimensional. For all edges e E E the inequalities 
xe > 0 and xe < 1 define facets of Ps  For all subdivisions G' = (W, F) 
of K5 or/(3,3 contained in G the inequality x(F) < I F [ -  1 defines a facet of 
"Ps For all cliques (V', F) (or complete bipartite subgraphs) contained in 
G, the Euler inequalities x(F) < 31v'[- 6 (or _< 21V'J- 4, respect ive ly)  are 
facet-defining for Ps 

In the following we introduce a new class of graphs which we will call by 
s-chorded cycle graphs. The s-chorded cycle graphs give rise to huge classes of 
inequalities generalizing the Kuratowski inequalities. In this section all sums of 
integers representing nodes of graphs G = (17, E), which are greater than n = IvI 
are to be taken modulo n. 

De f in i t i on  2. For s ,n , r , t  E IN, s > 2, n = st + r, 0 < r < s, the s-chorded 
cycle graph G(,~,~,t) = (V, E) is defined via 

V = { 1 , 2 , . . . , n }  and 
E = Cn U Dn, where 

C,~ is a cycle of length n, C,~ = {(i, i + 1) I i = 1 , . . . ,  n} and 
D,~ is the set of s-chords of Ca, D,~ = {(i, i + s) I i = 1 , . . . ,  n}. 

An s-chorded cycle graph gives rise to the definition of the corresponding s- 
chorded cycle inequality. In [M94b], it is investigated for which values of s, t and 
n the s-chorded cycle inequality induced by G(n,~,t) is valid, resp. facet-defining 
for PES(G(,~,~,t)). 

T h e o r e m  3 [M94b]. Let G(n,~,t) = (V, E) be a s-chorded cycle graph, i.e. n = 
st + r for s , t , r  E IN and r E {0, 1 , . . . , s -  1}. We define 
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n -  2 t -  s, if  x E Cn 
ce = 1, if x E Dn 

and c(E) := ~ e e E  ce. I f n  -- 2t -- s > O, the s-chorded cycle inequality 

(n - 2t - s )x(Cn)  + =(On) <_ c(E) - (n - 2t) 

is valid for 7~s if  and only if (t > 3, s > 3) or (t = 2, s >_ 3, r > 2). 
Moreover, if the s-chorded cycle inequality is valid, then it is facet-defining for 
PES(G(n, , , t ))  if r > O. 

C o r o l l a r y  4 [M94b]. Let G(n,,,t) be an s-chorded cycle graph, which is a subgraph 
of G. I f  

t - - 2 ,  o r s = 3 ,  o r r >  [2 j 

and the corresponding s-chorded cycle inequality corresponding to G(n,s,t) is 
facet-defining for G(n,8,0, then the s-chorded cycle inequality is facet-defining 
for "P f~S( G). 

For n = 5 the 2-chorded cycle inequality is identical to the Kuratowski in- 
equality for Ks. So, the general s-chorded cycle inequalities are generalizations 
of the Kuratowski inequality for Ks. For the special case that  n = 2k + 1 and 
s = k, the s-chorded cycle graphs give rise to another kind of inequality, the odd 
n-ladder inequality, which is an alternative generalization of the Ks-inequality. 

T h e o r e m  5 [M94b]. I f G  contains the k-chorded cycle graph G(2k+l,k,2) = (V, E) 
on 2k + 1 nodes with E = C2k+1 U D2k+l, k E IN, k > 2, then the odd n-ladder 
inequality 

(2k  - 3) + < (2k  - 1) 2 

is facet-defining for 7)f.S(G(2k+l,k,2)) and for 7)f .S(G).  

In the special case s = k and n = 2k, the k-chorded cycle graphs G(2k,k,2) 
contain multiple edges. If we take each diagonal only once, we obtain a MSbius- 
ladder, which gives rise to an inequality which is a generalization of Kuratowski's 
//3,3 inequality. 

De f in i t i on  6. For k E IN, k > 3, we define the (even) MSbius-ladder to be the 
graph GM = (V, E)  with 

V = {1 ,2 , . . . , 2k}  and 
E = C2k U Dk , where 

C2k is a cycle of length 2k, C2k -- {(i, i + 1) [ i = 1 , . . . ,  2k}, 
Dk is the set of longest chords of C2k, D~ = {(i, i + k) I i = 1, 2 , . . . ,  k}. 
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T h e o r e m  7 [M94b]. For the MSbius-ladder graph GM = (V, E) with E = C2k U 
Dk and k >_ 3 the MSbius-ladder inequality 

(k - 2) x(C2k) + x(Dk) _< 2(k - 1) 2 

is facet-defining for 79s Moreover, the Mdbius ladder inequality is facet- 
defining for "Ps whenever GM is a subgraph of G. 

A complete overview of the currently known structure of the planar subgraph 
polytope can be found in [M94a]. 

3 The k-connected Subgraph Polytope k-.AfCS(G) 

Given a graph Go = (V0, E0), we are interested in the set of all k-connected 
spanning subgraphs of Go. If Go is not k-connected, the set of all k-connected 
subgraphs is the empty set. In this case we are interested in augmenting Go in 
order to reach k-connectivity. We associate the k-connected (spanning) subgraph 
polytope to a k-connected graph G = (V, E),  which contains Go as a subgraph, 
e.g. G = Kn with n = ]V0[. For each k-connected subgraph K = (W, F)  of G 
we define its incidence vector X K E IR E by setting X ff = 1 if e E F and X~ = 0 
if e ~ F.  The k-connected (spanning) subgraph polytope k-AfCS(G) is defined 
as the convex hull over all incidence vectors of k-connected spanning subgraphs 
of G. In order to solve the minimum k-connected subgraph problem for a given 
k-connected graph Go = (V0, E0), we choose G := Go and define the weight c~ 
for an edge to be 1. The problem of determining a k-connected subgraph of G 
with the minimum number of edges, can be formulated as the linear program 
min{ cTx I x E k-.AfCS(G)}. If we like to solve the k-augmentation problem for 
a given graph Go, we choose G = (V, E)  := Kn, define the weight Ce for an 
edge to be - M ,  if e E E0 and 1 if e ~ E0, where M = IE \ E0I + 1, and solve 
min{cTx Ix E k-ArCS(G)}. 

The k-connected subgraph polytope was already studied by Stoer in a more 
general form [$92]. For k = 2, the computational results in [$92] are promising. 

T h e o r e m  8 [S92]. The integer points of k-ArCS(G) are charactemzed by the 
following system of inequalities: 

O < xe <_ l, for all e E E (4) 
x(aa_y(W)) > 1, for all Y c_ V, IYI = k - 1, w c_ v \ Y (5) 
Xe integral, for all e E E (6) 

The inequalities (5) essentially say that  if a node set Y C V of size k - 1 is 
removed, the resulting graph must still be connected. 
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4 I n t e r s e c t i n g  "Ps a n d  k - N ' C S ( G )  

In this section we are interested in the integer points contained in the polytope 

k-]ie ,zs(a) = k- 'CS(a) n 7,LS(a).  

We already gave a system of inequalities characterizing the integer points for 
both polytopes. So, the integer points of the new polytope k-N'CPs is 
aefined by the system of inequalities given by (1), (2), (3) and (5). 

By choosing G := Go = (Vo, Eo) and setting ce = 1 for all edges, or by 
choosing G := Kn and setting 

1, ife �9 E0 and 
c~= - M ,  i f e ~ E 0 ,  

where M ~ := IE0] + 1, we can formulate the maximum planar k-connected sub- 
graph problem for a given graph Go by max{cTx [ x �9 k-A/'C;Ps 

The planar k-augmentation problem is obtained by choosing G to be the 
complete graph on IV0] vertices, and setting 

{ M  ~, i f e � 9  
c~= -1 ,  i f e ~ E 0 ,  

where M ~ = IE \ E01 + 1. Now, the planar k-augmentation problem can also be 
written as max{cTx Ix �9 k-A/'C~/:,~(G)}. 

For both problems we introduced big M's in order to guarantee that either 
none of the forbidden edges of E\Eo or all required edges in E0 will be contained 
in the optimum solution. But having big M's as objective coefficients may lead 
to numerical difficulties during computation. This motivates in a natural way the 
definition of the minimum planarizing k-augmentation problem, which is given 
by setting G := K,~ and 

1, if e �9 E0 and 
c~= -1 ,  i f e ~ E 0 .  

Maximizing cTx leads to taking as many edges of Go as possible and as few 
edges of G - Go as possible. This way, the difference between the given graph G 
and the new graph H will be minimized. 

Obviously, the number of edges we have to delete from Go plus the number 
of edges we have to add to Go is given by cT(x G~ -- x), where X G~ denotes the 
incidence vector of Go. Itence, also this problem can be written as max{cTx I 
= �9 

Since choosing G := Kn increases the size of the original graph a lot and the 
set of edges which is never in any augmentation is huge, we may like to choose 
as G an arbitrary graph containing Go and a small subset of edges which are 
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likely to be in the opt imum solution. We can also give more relative emphasis 
to k-connectivity than to planarity and vice versa by setting 

a, if e E E0 and 
c~=  -b ,  i f e ~ E 0  

for arbitrary a, b > 0. 

If we wish to consider problem (1) and the degree-constrained versions of the 
problems (2), (3) and (4), we just have to add the degree constraints 

x6(v)) <_ D(v) for all v E V (7) 

to the integer linear programming formulation, and the corresponding polytope 
becomes the intersection of three polytopes, namely the planar subgraph poly- 
tope, the k-connected subgraph polytope and the "degree-constrained subgraph 
polytope". 

5 T h e  Algorithm 

In [JM94] we give a branch and cut algorithm for the maximum planar sub- 
graph problem using facet-defining inequalities for Ps as cutting planes. 
In a cutting plane algorithm, a sequence of relaxations is solved by linear pro- 
gramming. After the solution z of some relaxation is found, we must be able to 
cheek whether z is the incidence vector of a planar subgraph (in which ease we 
have solved the problem) or whether any of the known facet-defining inequalities 
are violated by z. If no such inequalities can be found, we cannot tighten the 
relaxation and have to resort to branching, otherwise we tighten the relaxation 
by all facet-defining inequalities violated by x which we can find. Then the new 
relaxation is solved, etc. The process of finding violated inequalities (if possible) 
is called "separation" or "cutting plane generation". 

The cutting plane generation as well as the lower bound heuristic are based 
on a planarity testing algorithm of Hopcroft and Tarjan [HT74]. At the beginning 
we solve the Linear Program (LP) consisting of the trivial inequalities ze _> 0, 
z~ _< 1 and the inequality z(E) _< 3IV I - 6 .  Let x be an LP-solution produced in 
the cutting plane procedure applied in some node of the enumeration tree. For 
0 < r < 1 we define Ee : {e E E I z~ > 1 - ~] and consider G~ = (V,E~). For 
the unweighted graph G~ the linear planarity testing algorithm of Hopcroft and 
Tarjan is called. The algorithm stops if it finds an edge set F which is not planar. 
In case the inequality z (F )  < I F] - 1 is violated, we reduce it to a facet-defining 
inequality before we add it to the constraints of the current LP. We also use a 
heuristic which searches for violated Euler-inequalities and inequalities given by 
some classes of s-chorded cycle graphs. 

Although the vectors x coming up as solutions of LP-relaxations in the above 
outlined process have fractional components in general, they are often useful to 
obtain information on how a high-valued planar subgraph might look like. We 
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exploit this idea with a greedy type heuristic with respect to the solution values 
of the edges. Starting from the empty graph, a planar subgraph is constructed by 
adding the edges in order of decreasing values if they do not destroy planarity. 
So, in addition to the upper bounds wTx on the value of a maximum planar 
subgraph, we also obtain a lower bound wT~ from the planar subgraph incidence 
vector �9 derived heuristically from x. 

In our computational experiments for the maximum planar subgraph prob- 
lem we solved several problems from the literature to optimality. For solving the 
degree-constrained maximum planar subgraph problem, we add the inequalities 
(7) to the LP. In order to solve, for example, the maximum planar 2-connected 
subgraph problem, the planar 2-augmentation problem or the minimum planariz- 
ing 2-augmentation problem, we suggest to use the above algorithm extended by 
the use of the inequalities corresponding to the k-connected subgraph polytope 
given in (5). For k = 2, the inequalities reduce to 

z(~G_{,o}(W)) >_ 1 for all v0 E V, W C_ V \ {v0} (S) 

Given an LP-solution y produced in the cutting plane procedure, we are able 
to give a node v0 E V and a set W, W C_ V \ {v0} violating inequality (8) or 
guaranteeing that all the inequalities in (8) are satisfied by y. This can be done 
in polynomial time by the following separation routine. For all nodes v0 E V 
construct the graph G' := G - {v0} = (V', E') and search for the minimum cut 
in G r with edge values Ye for all e E E r. Let z be the value of this minimum cut. 
If z > 1, all inequalities of the type (8) for the specific node v0 are satisfied. Oth- 
erwise, the inequality Z($G_{vo}(W)) > 1 is violated for the set W determined 
by the minimum cut 8(W). 

6 C o m p u t a t i o n a l  E x p e r i m e n t s  

Up to now we have only implemented the easiest case in which the planar sub- 
graph polytope is intersected with the degree-constrained subgraph polytope. 
The other cases require a much higher implementation effort which we plan to 
carry out in the future. 

Our computational experiments were run on a SUN SPARCstation 10/41. 
The following table shows the results for solving the maximum planar subgraph 
problem and the degree-constrained maximum planar subgraph problem for sev- 
eral graphs occuring in the literature of automatic graph drawing. The columns 
from left to right display the problem name, resp. the origin of the problem 
plus the origin of the published computational result, if it appeared elsewhere, 
the number of nodes, the number of edges, the value of the optimal solution 
found by our algorithm, and the CPU times in seconds (Fractions of seconds 
are not shown) for the maximum planar subgraph problem and for the degree- 
constrained maximum planar subgraph problem. 

In the cases we tested, with one exception, it turned out that the degree- 
constrained version of the maximum planar subgraph problem is easier. The 
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Table 1. Results for the (degree-constrained) maximum planar subgraph problem 

Author #Nod #Ed$ SoLMPS 
[JTS8~ 10 22 20 

[K92] 45 85 82 
[C92] 60 166 165 

[BGHS92] 11 21 20 
[E93] 20 30 28 
[H93] 34 45 43 

[EM94] 38 73 66 
[TBB88,STT81] 43 62 58 

[H93] 46 64 62 
[H93] 48 69 64 

Tim-MPS SoI-DCMPS 
0 18 
5 61 
4 120 
0 17 
1 28 
1 35 

7972 63 
31 53 

1 59 
327 56 

Tim-DCMPS 
0 
1 

94 
0 
0 
1 

434 
0 
1 
0 

opt imum solution of the "competition graph" given by Eades and Marks in the 
Graph Drawing Competit ion'94 [EM94] is found in a few seconds, but it took 
us about 2 hours to prove it, in the degree-constrained version, however, it took 
only 7 minutes. 
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