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A b s t r a c t .  This paper describes a new set of necessary condi t ions  for 
a given graph to be the visibility graph of a simple polygon. For every 
graph satisfying these conditions we show that a uniform rank 3 ori- 
ented matroid can be constructed in polynomial time, which if affinely 
co- ordinat izable  would yield a simple polygon whose visibility graph is 
isomorphic to the given graph. This will in turn offer the first character- 
ization of this  class of graphs. 

1 Introduction 

Visibility graphs are fundamental  structures in computat ional  geometry. They 
find applications in areas such as graphics [13, 21] and robotics [16], yet very little 
is known about  their combinatorial structure. This paper addresses the question 
of characterizing internal visibility graphs of simple plane polygons, henceforth 
simply called visibility graphs. Two vertices of a simple polygon P,  are called 
visible, if the open line segment between them is either a boundary edge of P,  or 
is completely contained in the interior of the polygon. Note that  in this setting, 
two vertices are considered to be invisible if the open line segment between them 
passes through a third vertex of the polygon. The v i s i b i l i t y  g r a p h  of a polygon 
is the graph whose vertices correspond to the vertices of the polygon and edges 
correspond to visible pairs of vertices in the polygon. From the computat ional  
standpoint ,  the complexity of the recognition problem for visibility graphs is 
only known to be in P S P A C E  [9]. It is not known to be in N P  nor it is 
known to be NP-comple te .  

Visibility graphs do not lie in any of the well known classes of graphs such 
as planar graphs, perfect graphs etc. [9, 11]. The first set of necessary conditions 
for a graph to be a visibility graph were obtained by Ghosh [11]. However, it was 
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shown by Everett [9] that  these conditions were not sufficient. Further necessary 
conditions were developed by Coullard and Lubiw [8], but they also showed 
that  they are not sufficient. Abello, Hua and Pisupati [2] have strengthened 
these results by showing that the proposed conditions are not sufficient, even 
for triconnected graphs, and in the case of the conditions of [8], even for planar 
graphs. O'Rourke [19] has an excellent review of current status of this research. 
In this paper, we develop stronger necessary conditions for a graph to be a 
visibility graph. 

In order to show that  a given set of conditions on a graph, are sufficient 
for the graph to be a visibility graph, one must demonstrate that  every graph 
satisfying the conditions can be realized as the visibility graph of a simple poly- 
gon in the plane. However, this r e c o n s t r u c t i o n  p r o b l e m  appears to be quite 
difficult in the general case. In this paper, we solve a combinatorial version of 
the reconstruction problem for general visibility graphs. We prove new neces- 
sary conditions for visibility graphs and show that these conditions are sufficient 
to construct a uniform oriented matroid of rank 3 corresponding to each graph 
in this class. These oriented matroids are combinatorial representations of sim- 
ple polygons realizing the graphs, in the sense that any affine realization of the 
oriented matroids yields a simple polygon whose visibility graph is isomorphic 
to the given graph. It would be sufficient to show that each of these oriented 
matroids is affinely realizable, in order to obtain a characterization of visibility 
graphs of simple polygons. The main results of the paper are summarized below. 

1. A class of graphs called Q u a s i - P e r s i s t e n t  graphs is defined and it is shown 
that  visibility graphs are properly contained in this class. 

2. Several new necessary conditions are proven for a given Quasi-Persistent 
graph to be a visibility graph. These conditions strengthen Ghosh's necessary 
conditions for visibility graphs. 

3. For each Quasi-Persistent graph satisfyingthese necessary conditions, a uni- 
form oriented matroid of rank 3 is constructed (in polynomial time) such 
that  any affine realization of the oriented matroid yields a simple polygon 
whose visibility graph is isomorphic to the given graph. 

Because of space restrictions, we just give the main ideas involved in the proofs. 
The details may be found in [4] and [14]. 

2 D e f i n i t i o n s  

It is clear that  every visibility graph is Hamiltonian and we therefore restrict our 
attention to Hamiltonian graphs. We further assume that the graphs considered 
are undirected, loopless and do not have multiple edges. 

Let G = (V, E) be a Hamiltonian graph with a prescribed Hamiltonian cycle 
H.  The vertices of G are labelled along H from 0 to n - 1. The vertex labelled 
i is denoted vi .  v i - 1  and V,+l respectively, denote the predecessor and successor 
of vi on H. All subscript arithmetic is modulo n. It will be convenient to think 
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of G as being embedded in the plane so that  H forms a simple closed curve. In 
this setting, a traversal of H from vi to vj in the order v i , v i + l , . . . ,  v j - 1 ,  vj 
may be thought of as a counterclockwise traversal of H,  and the traversal that  
goes from vi to vj in the order vi, v i -1  . . . .  , v j+l ,  v~ will correspond to clockwise 
traversals. In this paper, unless specified otherwise, t raversals  o f  H are zmplici t ly  

as sumed  to be in counterclockwzse order. 

For any two vertices vl and vj ,  the ordered set { v i , v i + l  . . . .  , v j _ ] , v ~ }  of 
vertices encountered in traversing H from vi to v~, is called the chain from vz to 
vj and is denoted chain[v/, vj]. This set of vertices constitutes a simple path  in 
G. The  chain from vi+l to vj-1 is denoted chain(v/, vj). We also use chain[vi, v j )  
and chain(v/, vj] in the obvious manner.  We emphasize that  chain(vs, v/c) and 
chain(v/c, vi) are always disjoint sets. We say that  v, < vj < v/c if vj lies on 
chain(vi, v/c). 

Two vertices vi and vj of G are said to be i n v i s i b l e  if vivj  E E .  For an 
invisible pair vi, v/c, a vertex vj is called an i n n e r  b l o c k i n g  v e r t e x  [11], relative 
to H,  if vj lies on chain(vi,vk) and v=v v E E for all v= on chain[v/,vj) and 
v v on chain(vj, v/c]. Similarly, a vertex vj is called an o u t e r  b l o c k i n g  v e r t e x  
relative to H for the invisible pair v, vk i fvj  lies on chain(v/c, vi) and v=v v E E 
for all v,  on chain(vj, v,] and v v on chain[v/c, vj). In general, vj is called a 
b l o c k i n g  v e r t e x  for the invisible pair viv/c if it is either an inner or an outer 
blocking vertex for this pair. 

A simple pa th  P = uoul  . . .  ur is called an o r d e r e d  p a t h  relative to H,  if 
the vertices in P are encountered in the order u0, U l , . . . ,  ur when His traversed 
from Uo. Similarly, a simple cycle C = UOUl. �9 �9 UrUo is called an o r d e r e d  cyc le  
relative to H if the vertices in C are encountered in the order u0, u l , . . . u r ,  u0 
(or its reverse) when H is traversed from u0. Two pairs v ,v  3 and vkvt,  are said to 
be s e p a r a b l e  [11] with respect to a vertex vp if both v, and vj are encountered 
before vk and vl ( or vice versa), when H is traversed from Vp. In this case, 
we say that  v ,v  3 and v/cvl are vp-separable; otherwise we say that  they are 
vp-inseparable. Note that  two pairs vzvj and vkvt are separable with respect to 
vp when the two pairs do not interlace on the boundary, (z.e v, < vj < v/c < vt ) 
and Vp lies on chain(v~, v/c) or on chain(v/c, v,)). 

We now introduce a new class of graphs called Q u a s i - P e r s i s t e n t  graphs, 
and show that  the visibility graphs of all simple polygons are contained in this 
class. This class is a natural  generalization of perszstent  graphs, a class originally 
introduced by Abello and Egecioglu [1].A graph G with Hamiltonian cycle H,  is 
said to be Q u a s i - P e r s i s t e n t  (or q-persistent) relative to H,  if for every triple 
of vertices v, < vp < vq, such that  vivp and viy q E E, and vivj  E E ,  for all v~ 
in chain(vp, vq), the following conditions hold 

1. vp is adjacent to Vq. 

2. For every v~ in chain(vp,vq), at least one of the vertices vp or vq is a 
blocking vertex for v, vj . 

The graph in figure 1 is a q-persistent graph. For a pair vlv 3 of non-consecutive 
vertices, let vp be the first vertex adjacent to v,, that  is encountered on a clock- 

wise traversal of H start ing from V~-l. vp is called the first neighbour of v~ 
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Fig. 1. A q-persistent graph. 

before vj and is denoted as pn(vivj). Similarly, the first vertex Vq adjacent 
to v,, encountered on a counter-clockwise traversal of H from vj+l , is called 
the first neighbour of v, after vj and is denoted sn(v~v~). Since G is Hamil- 
tonian, pn(vivj) and sn(vivj) exist for every invisible pair vivj, and they are 
distinct. Also, note that  the definition is not symmetric, z.e, it is not necessary 
that  pn(vivj) and sn(vivj) be the same as pn(vjvi) and sn(vjvi) respectively. 
The q-persistence conditions imply that for any invisible pair viv i,  the vertices 
pn(v~vj) and sn(v~vj) are adjacent in G, and at least one of them is a blocking 
vertex for vivj. 

Ghosh [11] gave the first set of necessary conditions for a given graph to 
be a visibility graph. These conditions which we will henceforth call G h o s h ' s  
c o n d i t i o n s  are summarized below. 

Propos i t i on  1. [Ghosh]lf a graph G zs the vzszbdzty graph of a szmple polygon 
then 

1. G has Hamdtoman cycle H. 
2. Every ordered cycle relatwe to H of length > 4 has a chord. 
3. Every invisible paw in G has a blocking vertex relatwe to H. 
.~. If two invzsible paws are separable wdh respect to a vertex vp, then vp cannot 

be the only blocking vertex for both the ~nvzsible paws. 

Our q-persistent graphs satisfy the first and third conditions of proposition 
1 by definition. In fact, the second q-persistence condition(ordered chordality) 
appears, at first glance, to be much stronger than Ghosh's third condition. How- 
ever, it can be shown that the class of q-persistent graphs is equzvalent to the 
class of graphs that satisfies the first three of Ghosh's conditions. We summarize 
this as theorem 2 below. 

Theorem 2. A graph G wzth Hamdtoman cycle H zs q-persistent relatwe to H tf 
and only if  every ordered cycle of length >_ 4 has a chord and every invisible 
pazr has a blocking vertex: (relative to H). 
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Thus, q-persistent graphs are not a fundamentally new .class of graphs. The 
main advantage of the above formulation is that the simpler structure of the 
definition makes it easier to analyze and prove properties of the resulting class. 
It is interesting to note the relationship between the two q-persistence conditions 
and Ghoshs conditions 2 and 3. The first q-persistence condition is a "weaker" 
version of ordered chordality, in the sense that the graphs that are Hamilto- 
nian and ordered chordal are properly contained in the class of (Hamiltonian) 
graphs satisfying the first q-persistence condition. On the other hand the sec- 
ond q-persistence condition is a stronger version of Ghosh's condition 3 since 
Hamiltonian graphs that satisfy the second q-persistence condition are prop- 
erly contained in the class of Hamiltonian graphs satisfying Ghosh's condition 
3. However, when both pairs of conditions are considered together, the classes 
become equivalent! 

Since visibility graphs satisfy all four of Ghosh's conditions, it is evident 
from theorem 2 that visibility graphs are properly contained in the class of q- 
persistent graphs. The following section develops additional necessary conditions 
for a q-persistent graph to be a visibility graph and shows that these conditions 
are strictly stronger than Ghosh's conditions. 

3 New Necessary Conditions for Visibility Graphs 

We assume throughout this section, that  P is a simple polygon in the Euclidean 
plane and that a q-persistent graph G is its visibility graph. Arbitrary points of 
the plane are denoted as p~, py etc. For two points Px and py, the ray from px in 
the direction of py will be denoted r~y. For a vertex v~ of G the corresponding 
vertex of P is denoted v~*. We will also use r~j to denote the ray from v~* in the 
direction of vj. A polygon P whose visibility graph is G, is called a r e a l i z a t i o n  
of the graph G. A given q-persistent graph that is a visibility graph, can have 
many different realizations. 

Suppose I41 = w0 , . . . ,  wk is the sequence of neighbors of a vertex v~ In (~Y, 
obtained in traversing H, with w0 = v,+l and wk = v,-1. In a polygon Prealizing 
G, / w k v  'wJ_ 1 < z_w kv*iwJ* for l < j < k - l _  _ ( see [9 ] ,pg .  1 8 f o r a p r o o f o f t h i s  
fact). The second q-persistence condition can now be interpreted geometrically. 
let v, < v v < vq be a triple of vertices in G such that v~vp, vivq E E and v~vj E E 
for all vj on chain(vp, vq). For the corresponding triple of points v~, vp, and vq 
in a realization P of G, there exists a unique segment v~v~:+l on the boundary 
of P, such that,  vk and vk+l lie on chain[vp,vq], and for any ray ri~ such 
that  Zv~.lv~.v; < gv*_lv~.p, < gv;_lv~.v~, the first segment on the boundary 
of P that  is intersected by ray f ix  is Y~v~+ 1. The fact to be emphasized here is 
that  the segment so obtained does not depend on the specific ray r~x, but only 
on the triple of points involved (see figure 2). 

For any vertex vj on chain(vp, vk], the vertex vp is a blocking vertex ( 
in G ) for viv~ and for any vertex vj on chain[vk+l,Vq) , the vertex vq is 
a blocking vertex for v, vj. The edge v~v~+ t is called the sp l i t  s e g m e n t  for 
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Fig. 2. Geometric interpretation of q-persistence 

the triple of points v~'VpVq. The corresponding edge in the graph is called the- 
spl i t  edge.  Intuitively, the split edge determines, which one of the points v~ 
and Vq is involved in "physically" blocking a given pair viv~ on chain(vp,vq) 
in a given polygon whose visibility graph is G. In general, the split edge is 
not determined by the visibility graph alone. Different polygons with the same 
underlying visibility graph may have different split edges for the same triple of 
vertices in G. 

The q-persistence conditions stipulate that  for any invisible pair v, vj E E of 
a q-persistent graph G, at least one of the vertices pn(v iv j )  or sn(viv~) must 
be a blocking vertex for the invisible pair. However, according to the discussion 
above, in any fixed realization of G, at most one of these vertices "physically" 
blocks the corresponding invisible pair of points in the realization. This motivates 
the following definitions. 

A vertex vp is called a p r i m a r y  b lock ing  v e r t e x  for an invisible pair v, vj 
if vp is a blocking vertex for vivj and vivp E E.  By the definition of blocking 
vertices, the only possible choices for the primary blocking vertices for viv a are 
pn(v iv j )  and sn(v iv j ) .  Therefore, if either of the vertices pn(v, vj) or sn(vivs)  
is a blocking vertex for the invisible pair vivj in a q-persistent graph G, then 
it is called a primary blocking vertex for v, vj . The q-persistence conditions 
imply that  every invisible pair has at least one primary blocking vertex. Also, 
the primary blocking vertices of the pair vivj are not necessarily the same as 
those for vj vi �9 

A b lock ing  v e r t e x  a s s i g n m e n t  3 for a q-persistent graph G, is a function 

3 Everett, in [9], also defines a similar notion, but the requirement that vertices in the 
image of the function be pmmary blocking vertices makes the definition given here 
strictly stronger than the one in [9] 
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fl:E---,  V such that,  for all vivj E -E, /3(vlvj) is a primary blocking vertex for 
vivj. Any q-persistent graph has at least one blocking vertex assignment. If G is 
a visibility graph, then every fixed realization, P of a given q-persistent graph, 
determines a particular blocking vertex assignment for G as follows. For a triple 
vi < vp < vq of vertices in G, such that ViVp, ViVq E E and vlvj E E for all 
vj on chain(vp, vq), let v~v~+ 1 be the split segment in P f o r  the triple v~v~v~. 
We set fl(v~vj) = vp for all vj on chain(vp, vk]. For all vj on chain[vk+~, vq) 
we set fl(vivj) = vq. From the discussion in the last section, it follows tha t /3  is 
a blocking vertex assignment for G. This blocking vertex assignment is called a 
c a n o n i c a l  b l o c k i n g  v e r t e x  a s s i g n m e n t  for G determined by the realization 
P.  

We now consider the following problem: Given a q-persistent graph together 
with a blocking vertex assignment/3, determine the conditions under which there 
exists a polygon P whose visibility graph is G, and such that  the canonical as- 
signment on G determined by P is/3. Such conditions will clearly yield a charac- 
terization of visibility graphs. It turns out that blocking vertex assignments on 
q-persistent graphs must satisfy four additional necessary conditions in order to 
be canonical assignments. 

A blocking vertex assignment is said to be loca l ly  i n s e p a r a b l e  if any two 
invisible pairs v~vj and vkvt such that fl(v~v3) = fl(vkvt) = vp are vp-inseparable 
( see definition on page 3). The following is a necessary condition for a blocking 
vertex assignment to be a canonical blocking vertex assignment 4 

N e c e s s a r y  C o n d i t i o n  1: I f  fl is a canonical block, ng vertex ass,gnment for a 
q-persistent graph G, determined by a realization P, then/3 is locally-inseparable. 

In order to state the remaining necessary conditions we need to introduce 
the following definition Given an invisible pair v, vk in G, an o c c l u d i n g  p a t h  
generated by/3, between v, and vk, denoted pathz(v, ,  vk) is a path v, uo . .. urvk 
in G, such that u0 = fl(v, vk), ujvk E E, and uj+l =/3(u~,vk) for 0 < j _< r -  1. 
It is readily seen that a given blocking vertex assignment determines a unique 
occluding path between every invisible pair of vertices. It can also bee shown that 
this path is simple and that every internal vertex on this path is a blocking vertex 
for the invisible pair. For notational convenience, we identify pathz(v, ,  vk) with 
its underlying set of vertices. 

When a graph G is the visibility graph of a polygon P,  the graph theoretical 
notion of occluding path corresponds to the geometric notion of shortest path 
under the geodesic metric. This fact is stated in the following proposition 

P r o p o s i t i o n  3. Let/3 be the canonzcal block,ng vertex asszgnment for a vzszb~hty 
graph G, determzned by a fixed reahzatzon P. A vertex v~ hes on pathp(v~,vj) 
if and only if  v* lzes on the Euclidean shortest path in P between v: and v~. 

4 Everett [9] conjectures a similar result. However, since our definition of blocking 
vertex assignment is stricter, Necessary Condition 1 is stronger. 
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The remaining necessary conditions arise as a result of this correspondence 
between occluding and Euclidean shortest paths . A blocking vertex assign- 
ment is called p a t h - s y m m e t r i c  if for every invisible pair vivk such that 
patha(v, ,  vk) = v iuo . . ,  urvk, we have path~(vk, vi) = v k u , . . ,  uov,. We denote 

this as path~(vk,vi) = pathff(vi,vk) In other words, even though a block- 
ing vertex assignment is not symmetric in the blocking vertices it assigns to 
invisible pairs vivk and vkvi, it must ensure the symmetry of the occluding 
paths generated under the assignment between every invisible pair of vertices. 
Since Euclidean shortest paths between two points inside a simple polygon are 
unique, it readily follows that canonical blocking vertex assignments must be 
path-symmetric;  a fact which we summarize as necessary condition 2 below. 

Necessary  Cond i t ion  2:If 1~ ~s a canonical blocking vertex asszgnment for a 
q-persistent graph determzned by a realizat,on P, then fl zs path-symmetric. 

The two remaining necessary conditions reflect the constraints imposed on 
occluding paths, generated by canonical blocking vertex assignments, because of 
their correspondence with Euclidean shortest paths A blocking vertex assign- 
ment satisfying these two conditions will be called a p a t h - c o n s i s t e n t  assign- 
ment. 

Necessary  Cond i t ion  3: If fl ~s a canonical blocking vertex assignment for' a 
q-persistent graph determzned by a reahzatwn P, and zf uz E path#(v,, Uy), and 
u~ E path~(u=,vk) then u~,u v E path~(v,,vk). 
Necessary  Cond i t ion  4: If fl zs a canonzcal blockzng vertex assignment for a 
q-perszstcnt graph determzned by a realization P, and 

1. l fvp E pathz(vi, vk) 2s an znner blocking vertex for v, vk, then for all vx on 
chain[vi, vp) and vu on cha~n(vp, vk], Vp E path~(vz, %) 

2. If vp E path~(vi, vk) zs an outer blockzng vertex for v, vk, then for all v~: on 
chain(vp, vi] and vy on cha~n[vk, vp), vp E path~(v=, %) 

The proofs of necessary conditions 3 and 4 are based on the fact that Eu- 
clidean shortest paths satisfy the above combinatorial conditions. It is natural 
to ask whether all the above four conditions are independent of each other. It 
can be shown that  in fact they are. Namely, for any subset of these conditions, 
there exist q-persistent graphs for which blocking vertex assignments can be 
constructed that  satisfy only that subset and no the others. On the other hand 
to contrast these conditions with Ghosh's conditions, Everett has exhibited a 
graph that  satisfies Ghosh's conditions and yet it is not a visibility graph. It can 
be shown that Everett 's example is a q-persistent graph, that does not have a 
blocking vertex assignment that satisfies condition 1. The graph in figure 1 is a 
q-persistent graph that was shown not to be a visibility graph in [2]. It can be 
shown that this graph has one blocking vertex assignment that satisfies neces- 
sary condition 1, and another that satisfies conditions 2, 3 and 4, but no one that 
satisfies all conditions simultaneously. Thus these four necessary conditions are 
a non-trivial strengthening of Ghosh's conditions. The key question is whether 
they are sufficient. The next section provides a partial answer to this question. 
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4 Q-Persistent Graphs and Oriented Matroids 

We consider the problem of determining, given as input a q-persistent graph with 
a blocking vertex assignment satisfying the conditions of the previous section, 
a combinatorial representation of a potential polygon whose visibility graph is 
isomorphic to the given graph. The main result of this section is that  such a 
combinatorial reconstruction seems to be significantly easier than the actual 
reconstruction of the polygon. 

O r i e n t e d  m a t r o i d s  are a well studied combinatorial representation [6, 10, 
15] for point configurations. In the following, we adopt the conventions of [6] 
and identify oriented matroids with their representations by eh i ro topes .  An 
equivalence proof for this representation and the classical definition in terms of 
signed circuits of matroids may be found in [15]. We are concerned here, only 
with the definition of oriented matroids of rank 3. Let 7-n, n _> 3 denote the 
set of increasing triples from the set {0 , . . . ,  n -  1}( z.e 3-tuples (i,j ,  k) where 
i < j < k). A mapping X:7"n ~ { - 1 , + 1 , 0 }  ( alternatingly extended to the 
set of all ordered triples from {0 . . . .  , n - 1} ) is called a e h i r o t o p e  if for all 
i, 0 < i < n - 1  andal l  4-tuples O < _ j < k < l < m < n - 1  from{0 . . . .  n - l }  
the set x(i, j, t~).x(i, t, m), } 

- x ( i ,  j, l).x(i, k, m), 
x(i, j, m).x(i,  k, l) 

either contains {-1,  +1} or equals {0}. The chirotope is called simplicial if its 
image is contained in the set {-1, + 1 }. 

A chirotope is called eo -o rd ina t i zab le  if there exists an n x 3 matrix 
M such that  for any triple (i, j, k) 6 7-n, x(i, j, k) agrees with the sign of the 
corresponding 3 x 3 subdeterminant of M. The chirotope associated with a point 
configuration assigns to each triple of points its orientation ( given by the signed 
area). The fact that these subdeterminants obey the chirotope conditions above 
follows from the well known Grassman-Plucker identities (see [6]). Deciding if a 
given rank 3 oriented matroid is co-ordinatizable is known to be NP-hard [20]. It 
is also polynomially equivalent to the decision problem for the existential theory 
of the reals [17] and thus in P S P A C E  [7]. 

We now establish the existence of a simplicial chirotope, corresponding to 
every q-persistent graph G with a blocking vertex assignment/3 that is path- 
symmetric, path consistent and locally-separable. Call such/3 a feasible blocking 
vertex assignment. The chirotope has the property that any of its coordinatiza- 
tions defines a simple polygon whose visibility graph is isomorphic to the input 
graph and induces a canonical blocking vertex assignment on G which is exactly 
/3. This chirotope, called the N o r m a l  C h i r o t o p e  for the pair (G,/3) can be 
constructed in polynomial time given G and/3. 

Given a q-persistent graph G with a feasible blocking vertex assignment/3, 
we define a function XG,Z: 7-n ---* {-1,  + l )  (alternatingly extended to the set of 
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all ordered triples in {0 , . . . ,  n - 1} ) where 

f 
1 

x( i ,  j ,  k) = 

[ 
+1 

if there exists 
an occluding path 
generated by fl that  
contains the vertices 
v i , v j  andvk 
otherwise. 

The function X can be constructed from G and/3 in O(n 4) time. Moreover, it 
defines a simplicial chirotope. This constitutes the main result of this paper. 

T h e o r e m  3. I f  G zs a q-perszstent graph and fl zs a blocking vertex aas~gnment 
that is path-symmetmc, path-consistent and locally-separable then )tG,fJ ~s a s~m- 
phcial chirotope. 

We now sketch a proof of the fact that if the normal chirotope XG,~ is 
realizable, then the corresponding realization yields a polygon whose visibility 
graph is isomorphic to G and such that  the canonical assignment induced on the 
graph by the polygon is precisely ft. Suppose that a normal chirotope is affinely 
cc~ordinatizable. We first note that  points v~ , . . . ,v~_  1 in a plane realization 
of the chirotope, together with the segments v~v]+ 1 mod n constitute a simple 
polygon P. To see this notice that  if fl is feasible, it is impossible that X(i, i + 
1 , j ) . x ( i , i +  1 , j +  1) = -1  and x(J ,J  + 1 , i ) . x ( J , J +  1 , i +  1) = - 1  when 
l i  - J l  > 1. In the realization this implies that no two segments of the polygon 
intersect, ensuring simplicity. Also note that since the chirotope is simplicial, the 
resulting point configuration is always non-degenerate. 

Now consider a triple v, vpVq in G such that v~ is adjacent to no vertex in 
chain(vp,Vq) and adjacent to vp and Vq. Let vkvk+l be the split edge for the 
triple determined by ft. Interpreting signs assigned to the ordered triples by 
as orientations of the corresponding triples of points, we can show that 

1. The interior of the triangle v~v~v~ contains no points of P .  
2. The points corresponding to chain(vp, vk] and the points corresponding to 

chain[vk+l, vq] lie on opposite halfspaces of the line containing v: v~. Simdarly 
the points corresponding to chain[vp,vk] and the points corresponding to 
chain[vk+l, Vq) lie on opposite halfspaces of the line containing V~Vq . 

We also note that by local-inseparability v, cannot lie both on an occluding 
path from vp to a vertex on chain(vi, vp) and also on a path from Vq to one on 
chain@q, vi). This together with item 1 allow us to claim that v:, vp, and Vq are 
visible from each other. Item 2 allows us to claim that  v,.* is invisible from all 
the points corresponding to those on chain(vp, vq). 

* and * are succesive neighbors of v~ and v*kv~+ 1 is the split Therefore v v v q 
segment for this triple. A similar argument shows the converse case, that is when 
v v and Vq are the succesive neighbors of a vertex v, , then the corresponding 
three vertices are all adjacent to each other. Also, if the split segment determined 
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by the realization is v~v~+l, then the corresponding split edge determined by/3 
for this triple is vkvk+l. Repeating the argument for each triple in G shows that 
the co- ordinatization gives a simple polygon P whose visibility graph is G, and 
determines the canonical assignment ~ on G. 

From the previous discussion it follows that any coordinatization of the chi- 
rotopes described here will turn theorem 4 into the first characterization of vis- 
ibility graphs. We know at this point such a characterization holds for values of 
n up to 7 and for visibility graphs of 2-spiral polygons. We notice in closing that 
all the conditions stated in the hypothesis of theorem 4 are used in its proof. 
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