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Abs t rac t .  We consider visibility representations of graphs in which the 
vertices are represented by a collection O of non-overlapping convex re- 
gions on the plane. Two points x and y are visible if the straight-line 
segment xy is not obstructed by any object. Two objects A, B E O are 
called visible if there exist points x E A, y E B such that x is visible 
from y. We consider visibility only for a finite set of directions. In such a 
representation, the given graph is decomposed into a union of unidirec- 
tional visibility graphs, for the chosen set of directions. This raises the 
problem of studying the number of directions needed to represent a given 
graph. We study this number of directions as a graph parameter and ob- 
tain sharp upper and lower bounds for the representability of arbitrary 
graphs. 
1980 Mathemat ics  Subject  Classification: 68R10, 68U05 
CR Categories:  F.2.2 
Key Words  and Phrases:  Graph, Number of directions, Polygon, Vis- 
ibility. 

1 I n t r o d u c t i o n  

We consider visibility representations of graphs in which the vertices are repre- 
sented by a collection O of non-overlapping convex regions on the plane. Two 
points x and y are visible if the straight-line segment xy  is not obstructed by 
any object A E O. Two objects A,/3 E O are called visible if there exist points 
x E A, y E B which are visible. This gives rise to a graph with vertices the given 
objects. For a given direction, two such objects are "adjacent" if and only if one 
object is visible from the other along the given direction. It is well-known and 
also easy to prove that graphs which admit such a unidirectional representation 
must be planar [6, 8]. There have been several results in the literature which 
investigate the recognition problem for such a graph representation. Complete 
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characterizations exist for unidirectional representations as well as partiM results 
for 2-directional representations [1, 5, 6, 8]. 

Every graph can be represented as the visibility graph of a collection of non- 
overlapping convex regions in such a way that  the given graph is decomposed 
into a union of unidirectional visibility graphs for an appropriately chosen set of 
directions. Indeed, draw the graph on the plane such that  the edges are straight 
line segments and no three vertices are on the same line. Now replace the vertices 
with sufficiently small circles. Clearly, every graph can be represented with [E I 
directions, where E is the set of edges. 

This raises the problem of studying the number of directions needed to repre- 
sent a given graph. We study this number of directions as a graph parameter and 
obtain upper and lower bounds for arbitrary as well as specific graphs. We call 
a graph k-directional if it can be represented this way with at most k directions. 

The usual criteria for drawing a graph involve minimizing parameters such 
as number of directions of edges, as well as "misalignments". In particular, this 
makes desirable visibility representations with "low" number of directions. Our 
result implies that  there exist n vertex graphs for which "low" > n2/logn. 

1.1 Def in i t i ons  

Let O be a collection of n non-overlapping, convex regions on the plane. For 
any given direction r we define the visibility graph among these objects along 
direction r as follows: 

1. vertices of the graph are the n objects, 
2. for a, b objects, {a, b} is an edge if and only if a is visible from b along 

direction r 

As pointed out before, for every graph G = (V, E) we can find a collection of 
n plane, non-overlapping convex objects such that  G can be represented as the 
union of graphs Gr = (V, Er r E r  where �9 is an appropriately selected set of 
directions. We denote with dir(G) the minimum number I~1 of directions needed 
to represent G. It is clear from the definitions that  dir(G) < [E[. 

In addition, we will also consider the case where only directions are considered 
for which no two objects have the same supporting line. We denote with dir* (G) 
the minimum number I~1 of directions needed to represent G in this way. A 
related graph parameter is the thicknes of a graph G, denoted by 0(G), and is 
defined in [3] as follows: it is the smallest number of planar subgraphs whose 
union is G. A well-known result [6, 8] states that  unidirected graphs are planar. 
This implies that O(G) < dir(G) <_ dir*(G) < [E[. 

In general, we make the assumption that our objects are compact convex 
sets. For a given direction and any convex object on the plane it is clear that  the 
visibility of the object is fully determined by the line segment which is delimited 
by the convex object and the tangents to the object parallel to the given direction 
(see Figure 1). For this reason (as it is customary) for any fixed direction we 
will represent the objects as line segments perpendicular to the given direction. 
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Fig. 1. Reducing objects to straight-line segments. 

In a similar manner we can define the quantities dirseg(G), dir*eg(G), where the 
set O of objects consists of finite straight-line segments. Although not explicitely 
proved, the results of Section 2 are still valid for these parameters.  The necessary 
modifications are left to the reader. 

1.2 R e s u l t s  o f  t h e  p a p e r  

Here is a summary of the results of the paper. In Section 2 we consider techniques 
for determining the size of dir(G) for arbitrary graphs G. The quanti ty dir*(G) 
has a different behavior. It turns out that  one can obtain sharper bounds on 
dir* (G) when the given graph has girth at least four. This enables us to determine 
the number of directions for several special graphs, like multidimensional grids, 
complete bipartite, etc. In Section 3 we give strong lower bounds on the number 
of directions needed to represent a graph when the objects are polygons. In 
particular, we show the existence of n vertex graphs G such that  dirseg(G) -- 
~ ( n 2 / l o g  n). In Section 4 we consider unidirectional representations of graphs 
in three dimensions where the objects are polygons parallel to the xy-plane. We 
show that  all hamiltonian graphs have such a representation and give a tight 
bound on the number of vertices of the polygons. 

2 N u m b e r  of  D i r e c t i o n s  

In this section we obtain estimates on the parameters dir(G) and dir*(G). For 
any graph G let G denote the complement of G; this has the same set of vertices, 
but two points are adjacet in G if and only if they are not adjacent in G. 

T h e o r e m  1. For any graph G, either dir(G) = ~2(n) or dir(G) = ~(n) .  

PROOF (OUTLINE) The theorem will follow from the following lemmas. 

L e m m a 2  [6, 8]. Unzdireclional graphs are planar. 

L e m m a 3 .  For any graph G = (V ,E)  on n vertzces we have that dir(G) > 
I E ] / n ( n  - 2). 
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PROOF Let �9 be a set of directions representing the g r a p h G  for a given set of 
objects. Let Er be the set of edges corresponding to direction r We know that  
E = I.J~e ~ Er and therefore [E I = ~ r  IEr �9 However each graph Gr is planar. 
Hence [Eel < 3(n - 2), which proves the desired result. �9 
Now we can finish the proof of Theorem 1. Let G = (V, E) be a given graph. If 
[El > n(n - 1)/4 then by Lemma 3 dir(G) = $2(n). Otherwise, the complement 
of G must have at least n(n - 1)/4 edges, in which case the same lemma applies. 
This proves the theorem. �9 

For graphs with girth > 4 we can prove a better lower bound. 

T h e o r e m 4 .  For any graph G = (V ,E )  on n vertices and girth at least 4 we 
have that dir*(G) >_ [ E [ / ( n -  1). 

PROOF (OUTLINE) First we need the following simple lemma. 

L e m m a 5  [6, 8]. No cycle of more than 3 nodes is representable with only one 
direction, when no two segment endpoints form a line parallel to the given direc- 
tion. �9 

To prove the main theorem we argue as before. Let ~/i be a set of directions 
representing the graph G for a given set of objects. Let Er be the set of edges 
corresponding to direction r We know that E = U r  Er and therefore IEI = 
~ r  IEr Since the girth of G is > 4 the graph Gr (see Lemma 5) cannot have 
any cycles. Hence it is a tree and we have that  lEe[ <_ n - 1. This proves the 
theorem. �9 

Note that  the quantities dir(G) and dir*(G) may be unequal. This is due to 
the fact that  although all cycles are unidirectional (see Figure 2), every cycle C 

1 2 3 4 5 6 7 

Fig. 2. Representing the 8-node cycle with one direction. 

of more than three nodes must satisfy dir*(C) > 1. 
The parameter dir*(G) is not monotonic for the subgraph property, i.e. if G 

is a subgraph of G' then it is not in general true that  dir*(G) _< dir*(G'). To 
see this take an arbitrary planar graph G with girth 4. Such a graph requires 
at least 2 directions. For any interior face add a vertex and connect this vertex 
with every vertex of the face. The resulting graph G ~ is triangulated and planar, 
hence dir*(G) = 1. However, it is easy to see that  for any graph G, if the clique 
Kr is a subgraph of G then dir*(K~) _ dir*(G). 
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2.1 Spec ia l  g r a p h s  

An interesting case occurs when we consider the number of directions for rep- 
resenting the product of graphs (for the definitions see [3]). We say that  the 
representation (.9 of a graph has a visibility gap if there are two directions r r 
such that  for every x E O C (_9 any line through x with direction r r _< r < r 
intersects no object of (.9 except O. Now we can prove the following lemma. 

L e m m a 6 .  Let Pn denote the path on n vertices. For any graph G which has a 
visibility gap, 

dir* (P~ x G) _< 1 + dir* (G). 

PROOF (OUTLINE Consider a representation of the graph G with a set of direc- 

�9 ' ' 
�9 �9 ' ." �9 

' �9 : 

�9 ' , ,* 

........ 0 ................... ................ - ...... 

Fig. 3. Representing the cartesian product graph Ln x G. 

tions ~ such that dir(G) = 1~51 for a given collection of objects. By applying an ap- 
propriate linear geometric transformation we can reduce as much as we wish the 
span of the directions of the graph, i.e. we can assume that �9 C_ 0 r / 2 - e ,  ~r/2+e), 
where e > 0 is sufficiently close to 7r/2. We arrange n copies of the graph G on 
the path P,~ such that in no two different graphs are the corresponding copies 
of the objects pairwise visible along the directions in ~. Using the fact that  the 
graph G has a visibility gap, we can add a new direction r = 0 and guaran- 
tee that  the copies of the convex objects are such that  the corresponding weak 
visibility graph is the cartesian product P~ x G (see Figure 3). �9 

For special graphs like multidimensional grids, hypercubes, etc we can give 
more precise bounds on the number of directions needed for their visibility rep- 
resentation. Namely, we can prove the following result. 

T h e o r e m  7. 

1. L(n + 7)/6J < d i r ( /Q)  < LrUSJ. 
r r ~  2. ,~+,~-1 -< dir*(/(,~,,,) < rain{m, n}. 

3. dir*(M d) = d, for  n sufficiently large, where M d is the d dimensional grid 
of side n. 
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4. r( n + 1)/4] _< dir(Q,,) _< rn/3] and fn/2] < dir*(Qn), where Qn is the 
n-dimensional hypercube. 

PROOF (OUTLINE) We give only an outline of the required constructions. An 
n(n - 1)/6(n - 2) lower bound in part (1) follows directly from Lemma 3. Using 
the formula for the thickness of Kn (see [3][page 120]) we can improve this to 
[(n + 7)/6]. The upper bound is proved by induction on n (see Figure 4). We 

A B 

Fig. 4. Representing the complete graph Kn+2. 

show how to construct a representation of Kn+2 from a representation of Kn 
by adding only one new direction. As in Lemma 6 we may apply a geometric 
transformation that reduces the span of the set of directions of Kn. Assume that 
the objects representing Kn are sufficiently small and add two new objects A, B 
as depicted in Figure 4. The result now follows hy induction and from the fact 
that dir(K2) = dir(Ks) = 1. 

The lower bounds in parts (2) and (3) follow directly from Theorem 4, The 
upper bound of dir*(Mn d) follows from the fact that the d-dimensional grid Mn d 
is the direct product graph of d copies of P ,  and Lemma 6. The upper bound 
for part (2) follows from the representation depicted in Figure 5. The upper 
bound dir(Q,~) < [n/3] follows from the fact that dir(Qs) = 1 (since Qs is a 
hamiltonian graph) and using the analogue of Lemma 6 for the product graph 
Q3 x G (i.e. dir(Q3 x G) < 1 + air(G), provided that G has a visibility gap). 
The lower bound for dir(Q~) follows from the fact that O(Qn) = [(n + 1)/4] (see 
[3][page 121]). " 
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Fig. 5. Representing the complete bipartite graph Km,n. 

3 L o w e r  B o u n d s  

In this section we use a result of H. Warren [10] on the number of sign pat- 
terns of a set of polynomials in order to prove the existence of graphs whose 
representation requires superlinear number of directions. 

Let Pz,P2,. . .  ,Pm be polynomials in r variables and for x = ( x z , . . . ,  xr) let 
the sign-pattern at x be the vector (sgn p1(x) , . . . ,  sgn pro(x)) consisting of +1  
and - 1 .  Let s (pz , . . . ,  pm) be the number of different sign-patterns for all values 
o f x  E R  r . 

Our main theorem makes use of the following result of H. Warren [10]. 

L e m m a  8. If p z , . . . ,  P,n are polynomials in r variables with degree <_ d then the 
number of sign-patterns is s(pl , . .  ,pro) < ( 4edm~r �9 

�9 - -  \ r l * 

The following theorem is the main result of this section�9 

T h e o r e m  9. There exist n-verlex graphs G E G such that 

dir~n(a) = J~(n2/log n). 

PROOF (OUTLINE) Suppose that k directions are sufficient to represent every 
graph. We consider the case where the objects representing the graphs are line 
segments�9 There are n finite, straight line segments determined by their end- 
points. For any given direction the visibility of any pair of line segments is 
determined by whether or not a straight line with slope the given direction and 
emanating from one straight line segment intersects the other straight line seg- 
ment. This easily gives rise to O(n2lc) polynomial conditions of constant degree 
in at most 4n + 2k variables. By Warren's theorem the number of sign patterns 
is bounded above by 

4 77k2 ' 

where C is a constant�9 In order to represent all possible graphs this quantity 

must be at least 2 t 2J . Taking logarithms and ignoring lower order terms this 
means that  k = J2(n2/logn). This proves the theorem. �9 
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A similar theorem holds when the objects are (smooth) convex sets deter- 
mined by a constant number of variables (e.g. circles, ellipses, etc). A similar 
lower bound is also possible if the objects representing the graphs are convex 
polygons. More precisely, as in Theorem 9, we can prove the following result. 

) T h e o r e m  10. There exist n-vertex graphs G requiring ~ ~ - m directions 

for their visibility representation by convex polygons whose to~al number of edges 
i s m > n .  �9 

4 T h r e e  d i m e n s i o n a l  r e p r e s e n t a t i o n s  

In contrast to the two dimensional case, we can obtain unidirectional represen- 
tations in three dimensional space for a large class of graphs. Here we assume 
that  the objects are polygons which are parallel to the zy-plane. In the proofs 
below it will be convenient to use the standard terminology and definitions on 
the page number of a graph [4, 12]. 

T h e o r e m  11. Every graph G which has a hamiltonian path has a unidirectional 
representation in three dimensional space, where each object is a convex polygon 
with at most [n/2J vertices, and this bound is tight. 

PROOF (OUTLINE) We give only an outline of the algorithm. First we show 
how to represent hamiltonian, one-page graphs. Initially, we represent the ver- 
tices of the graph as segments of equal length. The segments are parallel and 
their corresponding endpoints form two parallel straight lines. This represents 
the hamiltonian path. Next, beginning with the outermost edges of the graph we 
augment appropriately the lengths of the adjacent vertices so that  the visibility 
representation of the segments coincides with the representation of the given 
graph. Clearly, this shows that  hamiltonian, one-page graphs have a unidirec- 
tional representation with parallel segments. 

We use the transformation above for graphs of arbitrary page number p. We 
represent each page with parallel segments and join the corresponding vertices to 
form polygons with p vertices. In general, these will be star-polygons. However, 
it is easy to see that  in the transformation of the previous paragraph we can 
adjust at will the range of length of the segments representing our graph. This 
easily implies that  the corresponding polygons may be assumed to be convex 
with p vertices (notice that  if p = 2 then the representation can be assumed to 
be planar). 

First we prove an n -  1 upper bound. It is easy to see that  the complete graph 
Kn can be represented with n - 1 pages, where the vertices on the spine form a 
hamiltonian path. To represent G put a hamiltonian path of G on the spine and 
delete edges of K~ which are not edges of G. This gives a representation of G 
on at most n - 1 pages. Now the previous argument implies the desired result. 

The proof of the [n/2J upper bound is based on a part i t ion of the set of 
edges of the comple.te graph into [n/2J paths. The parti t ion can be such that  
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each path lies on a page. This and the previous argument .implies the required 
bound for any graph G. The reason this bound is tight is that  Kn has exactly 
n(n - 1)/2 edges and, not counting the edges on the spine, no page can have 
more than n - 1 edges. �9 

We can give a related theorem for the case of planar graphs, where the 
visibility representation uses star polygons having O(1) vertices. Namely we can 
prove the following result. 

T h e o r e m  12. Every planar graph G has a unidirectional representation in three 
dimensional space, where each object is a lO-vertex star polygon. 

PROOF (OUTLINE) We give an outline of the algorithm. The representation 
with star-shaped polygons follows by induction on the number of vertices of 
the planar graph. First we give a representation with overlapping star-polygons 
on the plane; here adjacency means that two polygons overlap. By "lifting" the 
polygons in parallel in three dimensional space we get the desired representation. 

We use the fact that  every planar graph has a vertex of degree at most 5. 
Delete such a vertex from the given planar graph. The remaining graph has a 
representation satisfying the conditions of the theorem. Now add the deleted 
vertex and represent it as a star polygon which overlaps only its adjacent star 
polygons. This gives the desired representation. �9 

An even stronger theorem has been independently proved in [2], namely every 
planar graph has a uni-directional representation in three dimensional space by 
rectangles parallel to the xy-plane, where the visibility direction is parallel to 
the z-axis. 

5 C o n c l u s i o n  

In this paper we have studied the number of directions needed in the visibil- 
ity representations of graphs. We have obtained several sharp upper and lower 
bounds for general as well as special graphs. Several interesting questions con- 
cern tightening the existing upper and lower bounds. For example, as shown 
in Section 3, Theorem 8 implies there exist graphs with lower bound n2/logn 
on the quantity dir~eg. We conjecture that  this lower bound is tight. A simi- 
lar question applies when the objects are (smooth) convex sets: Is it true that  
dir(G) _< n, for every graph G? It is known that every planar graph is a sub- 
graph of a unidirectional visibility graph on the plane by using line segments [8]. 
However we conjecture that there is a constant k such that  every planar graph 
is a k-directional visibility graph (here visibility refers to the notion of visibility 
as defined in this paper). 

Another interesting problem concerns the complexity of the problem dir(G) < 
k, for G a graph on n nodes and k constant (or variable). In particular, is there 
an efficient (even approximation) algorithm for computing the function dir(G)? 
We conjecture that this is not true. 

A rather intriguing question concerns the study of the number of directions 
needed for the visibility representation of the product graph H • G in terms 
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of dir(H),  dir(G). For example,  is it true tha t  d i r (H x G) < dir (H)  + dir(G)? 
(Similar question for dir* .) 
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