
Reduction of Visual Complexity
in Dynamic Graphs

Doug Kimelman, Bruce Leban,
Tova Roth, Dror Zernik

IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598

Abstract. Graphs are used extensively in software visualization to rep-
resent both static aspects of software structure and dynamic aspects of
execution-time behavior. However, for realistic subject software systems,
there are far too many nodes and edges in the displayed graphs to be
comprehensible to an end user. Further, for presentation of dynamics,
continual change and redisplay of such large graphs is too demanding
for conventional workstation computational resources. This paper poses
the problem of "reduction" or "abstraction" in dynamically changing
graphs, and proposes a combination of techniques that can be used to
reduce the visual complexity of a graph, without obscuring the signifi-
cant information that it was meant to convey. The abstract graph can
be comprehended more readily and it changes far less frequently than
the full graph. As well, when the abstract graph does change, it requires
far less computation for layout and redisplay. These abstraction tech-
niques are illustrated by way of examples showing their use in systems
for visualization of object-oriented and multi-layer software systems.

1 I n t r o d u c t i o n

Software visualization [17] [9] [31 [18] o•en makes extensive use of graphs to
represent software systems. Graphs have been used within the "PV" system [7]
to represent both static aspects of software structure, such as class hierarchies,
static call graphs, and program dependence graphs [8], and to represent dynamic
aspects of execution-time behavior, such as process hierarchies and dynamic
call graphs. In some cases, behavioral dynamics have been shown by animating
static graphs (e.g. by varying the color of nodes and edges in a static call graph
to show profiling information), while in other cases truly dynamic graphs have
been displayed, with structure varying over time.

The "Ovation" system [4] introduced the "call cluster", a dynamic undirected
graph laid out to reflect the degree of interaction between various pairs of ob-
jects or classes in an object-oriented system (the closer two objects or classes are,
the more they have interacted). The "Visage" system [19] includes three dimen-
sional layouts of causality graphs to show individual communication operations
between processors over time in a parallel system.

Unfortunately, for realistic subject software systems, there are often far too
many nodes and edges in these graphs to be comprehensible to an end user.
Programs with thousands of functions or classes, tens of thousands of objects,

219

and hundreds of thousands of communications are not uncommon. As graphs ap-
proach such sizes, conventional technology and graph display techniques become
inadequate. Displays first become cluttered and eventually just become flooded
with a sea of color'~until no discernible structure remains. Further, changes occur
frequently in these large graphs, making the cost of repeated layout and redis-
play prohibitive. With the computational resources available on conventional
workstations, it becomes impractical to keep up with ongoing activity within
the graph.

This paper proposes a combination of "abstraction" or "reduction" tech-
niques for reducing the visual complexity of a graph, while preserving or even
enhancing the significant information that it was meant to convey. A number
of means are provided for automatically selecting nodes and edges in a graph:
thresholds on weights, regular expressions on labels, relationships within the
graph, and constraints related to the semantics of the graph; and operations
are provided for then "disposing" of these selected nodes: "ghosting" (relegating
nodes to the background visually), "hiding" (removing nodes from the display
entirely), and "grouping" (grouping nodes under a single new meta-node). Mul-
tiple selection and disposal operations can be applied in sequence. After a user
arrives at a suitable sequence of operations for a given graph through interactive
experimentation, the system automatically displays the "abstract" or "reduced"
form of all subsequent instances of the graph, as it evolves through continual
change. Note that, with this form of abstraction, not every change to the full
graph results in a change to the abstract graph.

An abstract graph achieved in this way can be comprehended more read-
ily by an end user, and it changes far less frequently than the full graph. As
well, whenever the abstract graph does change, it can be laid out and displayed
more quickly. Thus, it becomes feasible for conventional systems to keep up with
ongoing activity within the graph.

2 P r o b l e m S t a t e m e n t

The basic abstraction problem introduced by this paper can be stated as follows.
The focus is on large and continually changing directed or undirected graphs.

Each node and edge has a label (an arbitrary string), a weight (an arbitrary
positive integer), and a "context" property (an arbitrary integer), all of which are
set and continually updated at the request of the application which is a client of
the graph package. The context property is used to establish equivalence classes
related to semantics. For example, in a dynamic call graph, all of the functions
in a particular module or file could be grouped into a single equivalence class
(that is, they serve as context for each other). In an object interaction graph,
all of the nodes and edges related to the current call stack could form a single
equivalence class.

The application continually makes requests to add and delete nodes and
edges, and to changes labels, weights, and properties. In the case of a system
for visualizing dynamics of software behavior, the visualization system is the

220

client application. As it consumes event records describing execution history,
it makes requests to the graph package. As well, as time passes, the client may
effect gradual "aging" or "decay" of information by making requests to the graph
package to decrease the weight of nodes and edges.

The requirement, as discussed above, is to reduce the complexity of the graph,
or de-emphasize components of the graph, so that: it can be comprehended more
readily by an end user, it changes less frequently, and it can repeatedly be laid
out and displayed quickly by the system. As well, stability should be induced
between successive instances of the dynamic graph as it evolves through continual
change. Stability is important both for its own sake and so that changes in the
graph are more apparent, that is, so that artifacts of graph layout and display do
not obscure the actual changes in the graph. Finally, some means of maintaining
context or frame of reference as the graph evolves should be provided to the end
u s e r .

Throughout, the information which was intended to be conveyed by the
graph, i.e. the essence of the graph, must be preserved or enhanced. The ac-
tual layout of the graph may be significantly altered, but the meaning of the
layout and dynamics should remain the same. For example, in an object inter-
action graph, the clustering should continue to reflect which groups of objects
work closely together.

3 P r o p o s e d A b s t r a c t i o n T e c h n i q u e s

3.1 General Approach

The general approach taken in this work is for abstraction to take place outside
of, and independent of, actual graph layout. This approach was adopted for a
number of reasons: layout packages are often provided in "black box" form, and
hence there is no possibility of incorporating abstraction extensions into them; an
abstraction technique which is independent of layout is more broadly applicable
than one tied to a particular layout algorithm; independence allows a user to
employ domain-specific layout algorithms wherever applicable, yet still be able
to retain the benefits of abstraction; and, an independent abstraction facility
can mask the instability or sensitivity of underlying layout algorithms to small
changes (thereby freeing a user with dynamic graphs from having to locate a
suitable incremental graph layout package).

An important aspect of generality of the abstraction techniques is that they
are "graph abstraction" rather than "semantics-driven abstraction in the ap-
plication domain". That is, these techniques are cast strictly in terms of the
abstract properties of the graph e.g. the actual structure of the graph, weights,
labels, and context properties; and they are based as little as possible on "hard-
coding" concerning semantics of specific uses of the graph. For instance, nothing
is built into these techniques concerning dynamic call graphs specifically.

221

3.2 O v e r a l l P r o c e s s

The proposed abstract ion facility maintains two graphs: the actual or "raw"
graph, and a reduced or "abstract" graph. (Note that the cost of the additional
graph is small, as it is orders of magni tude smaller than the raw graph.) The
abstract graph is obtained from the raw graph by disposing of a number of nodes
and edges, and then invoking the same layout package as would normally be used
for the raw graph. Minor adjustments might then be applied to the layout, and
the abstract graph is displayed.

Operations are carried out on the raw graph as they are requested by the
client application, but the raw graph is not repeatedly laid out (unless the end
user has asked to have the raw graph displayed along with the abstract graph).
As each operation is carried out on the raw graph, it is considered, to determine
whether it affects the abstract graph. (This process is less costly than either
laying out the entire raw graph, or mapping the entire raw graph into an abstract
graph.) In cases where the abstract graph is affected, it is updated, laid out,
adjusted, and then redisplayed.

3 .3 S p e c i f i c T e c h n i q u e s

Because nodes and edges are treated in much the same way with respect to
abstraction, for the sake of simplicity this discussion will refer only to nodes.

A number of criteria are provided for automatical ly selecting nodes and edges
in a graph:

- thresholds on weights e.g. above or below some value, or within some range
(thresholds on the gradients of weights allows selection of nodes which have
recently become active but which have yet to accumulate much weight)

- regular expressions on labels e.g. all matching, or all not matching
- relationships within the graph, e.g. any edge touching a selected node, or

any node which is a parent (or a child) of a selected node
- constraints related to the semantics of the graph e.g. any node identified as

being in the context of a selected node (based on the value of the context
property established by the client application according to semantics).

Once a set of nodes has been selected, a number of operations are provided
for "disposing" of selected nodes:

- "ghosting" - - relegating nodes to the background visually, e.g. for displays
with gray backgrounds, coloring nodes a slightly different shade of gray, and
coloring labels and edges white

- "hiding" - - removing nodes from the display entirely
- and r162 - - grouping nodes under a single new meta-node, or in the

case of nodes selected using a regular expression, forming a number of distinct
groups, one for each distinct string matched by the regular expression, and
then placing into a given group all nodes for which the regular expression
matched the stri.ng corresponding to that group e.g. where labels are of the

222

form 'file:function', and a regular expression is constructed to match the 'file'
part of the labels, a distinct group would be formed for each file, and all of
the functions from a file would be placed in that file's group.

Multiple selection and disposal operations can be applied in sequence. After
a user arrives at a suitable sequence of operations for a given graph through
interactive experimentation, the system automatically displays the "abstract"
or "reduced" form of all subsequent instances of the graph, as it evolves through
continual change.

Stability, a common deficiency of conventional layout algorithms for dynamic
graphs, is addressed in two ways for the abstract graph. In both cases, the
approach involves altering the coordinates of a node (and related edges) after
the layout algorithm has positioned the elements of the graph, but before the
graph is actually displayed. To combat "jitter", or oscillation of a node among
a number of almost identical positions, very small changes in the position of
a node are simply eliminated. To combat radical shifts of nodes in the graph,
smoothing is achieved by limiting the amount that a node can travel on each
successive instance of the abstract graph.

A means for the end-user to maintain context, or basic frame of reference,
as the graph evolves, is provided in the form of correlation mechanisms. At any
time, the user can continuously vary the thresholds applied to the weights in
order to reveal successively more of the hidden nodes of the graph. This allows
the user to see the relationship between the nodes in the abstract graph and
other nodes in the raw graph (possibly less transient and hence more stable as
a point of reference). As well, the user can cause the layout of a more abstract
graph to transform smoothly to that of a less abstract graph i.e. to one in which
the positions of the nodes corresponds more closely to their position in the less
abstract graph. This allows a user to correlate the nodes of one graph to their
counterparts in another.

One abstraction alternative that experience has shown no~ to be an effective
means of achieving preservation of context is that of at tempting to maintain
spatial similarity between the raw and abstract graphs. One approach might
involve removing nodes from the graph and then employing some form of non-
linear transformation to scale the graph so that the basic overall shape of the
graph is preserved, while remaining groups of elements of the graph are brought
closer together, and individual groups are expanded, in order to better utilize the
available space (in effect, a multiple fisheye) [15]. Any such approach attempted
was found to lead to displays which were still too sparse.

4 E x a m p l e s

As discussed above, the domain of interest for this work is software visualization.
In particular, the focus is on large and continually changing graphs representing
dynamic aspects of execution-time behavior of a software system. Two examples
of graphs which are candidates for abstraction are: a dynamic call graph (DCG)

223

showing profiling information, and an object interaction graph (OIG) showing
degree of interaction among objects. 1

For DCGs displayed by the "PV" system [7] 2, sequences of abstraction
operations which l~roved to be effective included: hiding all nodes whose weights
are be: - threshold; and grouping function nodes according to module, while
preserving i~ ts and context. For OIGs displayed by the "Ovation" system
[4], sequences of abstraction operations which proved to be effective included:
ghosting applied to nodes with weights below a threshold; and hiding all nodes
whose weights are below a threshold, yet allowing the layout to be transformed
so that node positions are the same as in the graph to which hiding had not
been applied.

5 Re la t ed Work

Many systems allow zooming and panning through a large graph, but scrolling
is not an effective means of "getting a feel" for the overall structure of a graph.

The importance of reducing the visual complexity of the overall graph is
addressed in [2] and [16], where sophisticated and hierarchical displays are con-
sidered. These approaches are based solely on altering the display of a graph,
without removing any elements from the graph or otherwise reducing the com-
plexity of the underlying graph itself. An at tempt to provide automatic reduction
of graph complexity by applying an abstraction operation is described in [14].
In this case, only the number of edges in the graph is reduced, not the number
of nodes. Further, only the structure of the graph is considered. Weights, labels,
and other information in the graph are not exploited.

A more general tool for abstraction and parsing of graphs can be achieved
using graph grammars [13]. An approach which uses graph grammars for layout
is described in [1]. The complexity of such an approach for abstraction, however,
would make it computationally infeasible.

Abstraction of graphs used to represent databases is addressed in [11] [10]
and [6], but none of these consider the issue of dynamically changing graphs.

Much work has been reported recently concerning the related issue of incre-
mental graph layout algorithms [5] [12]. This work concentrates on reducing the
cost of repeatedly laying out a graph, by requiring only computation propor-
tional to the amount of change in the graph. There is no reduction in the visual
complexity of the displayed graph.

The issue of continuity of the display of a series of graphs over time is men-
tioned in [6] but not addressed.

I An expanded version of this paper, containing definitions for DCG and OIG, detailed
examples, and color figures, is available from any of the authors as an IBM Research
Center Technical Report, or on the World Wide Web from http://www.•
under Technology and Research and Program Visualization.
PV uses the "NARC" package [20] for all layout and display of directed graphs.

224

6 Conclusion

Dynamic graphs representing realistic subject software systems are often far too
large and changing far too rapidly to be handled effectively with conventional
techniques and display technology. However, with suitable combinations of "re-
duction" and "abstraction" techniques, the complexity of such graphs can be
reduced to the point where they are comprehensible to an end user, they change
less frequently, and they can be laid out and displayed more quickly, yet they still
convey the information that was originally intended. Further, it becomes feasible
to display these graphs with conventional technology, at the rates required for
software visualization.

Experience has shown that sequences of selection operations on nodes and
edges, based on weights, labels, structure, and semantics-related properties, fol-
lowed by disposal operations including ghosting, hiding, and grouping, are an
effective means of automatically reducing complexity in a series of instances of
an evolving dynamic graph. We believe that this form of abstraction will prove
to be essential for effective use of graphs in software visualization.

Acknowledgments

Thanks to Wim De Pauw for the Ovation cluster views and much of the work on
Ovation, to Bryan Rosenburg for the exponential decay algorithm, the dynamic
call graph view, and much of the work on PV, and to Vance Waddle for the
NARC package for graph layout and display.

References

1. F.J. Brandenburg "Layout Graph Grammars: The Placement Approach", Proc. 4th
International Workshop on Graph Grammars and Their Application to Computer
Science, Lecture Notes in Computer Science 532, Springer-Verlag, 1991, pp. 144-
156.

2. M.J. Carpano "Automatic Display of Hierarchized Graphs for Computer Aided
Decision Ans/ysis", IEEE Trans. Systems, Man, and Cybernetics, SMC-10(ll),
1980, pp. 705-715.

3. M.P. Consens, A.O. Mendelzon, and A.G. Ryman "Visualizing and Querying Soft-
ware Structures" Proc. 14th Intl. Conf. on Software Engineering, 1992, pp. 138-156.

4. W. De Pauw, R. Helm, D. Kimelman, and J. Vlissides "Visualizing the Behavior
of Object-Oriented Systems", Proc. OOPSLA '93 The Eighth Annual ACM Con-
ference on Object-Oriented Programming Systems, Languages, and Applications,
SIGPLAN Notices 28(10), October 1993, pp.326-337.

5. G. Di Battista and R. Tamassia "Incremental Planarity Testing", Proc. 30th IEEE
Syrup. on Foundations of Computer Science, 1989, pp. 436-441.

6. K.M. Fairchild, S.E. Poltrock, and G.W. Furnas "SemNet: Three-Dimensional
Graphic l~epresentations of Large Knowledge Bases", in Cognitive Science and
its Applications for Human-Computer Interaction, R. Guindon Ed., Lawrence Erl-
baum Associates Publishers, 1988, pp. 201-233.

225

7. D. Kirnelman, B. Rosenburg, and T. Roth "Strata-Various :-) Multi-Layer Visual-
ization of Dynamics in Software System Behavior", Proc. IEEE Visualization '94,
October 1994, pp. 172-178.

8. D. Kimelman and G. Sang'udi "Program Visualization by Integration of Advanced
Compiler Technology with Configurable Views", Proc. CNRS-NSF Collaboration
Workshop on Environments and Tools for Parallel Scientific Computing, Saint
Hilaire du Touvet, France, J.J. Dongarra and B. Tourancheau, editors, Elsevier
Science Publishers, September 1992, pp. 73-84.

9. E. Kraemer and J. Stasko "The Visualization of Parallel Systems: An Overview",
Journal of Parallel and Distributed Computing 18(2), 1993, pp. 105-117.

10. Y. Hara, A. Keller, P. Rathmann, G. and Wiederhold "Implementing Hypertext
Database Relationships Through Aggregations and Exceptions", Stanford Techni-
cal Report STAN-CS-91-1381, September 1991.

11. M.P. Consens, F.C. Eigler, M.Z. Hasan, A.O. Mendelzon, E.G. Noik, A.G. Ryman,
and D. Vista "Architecture and Applications of the Hy+ Visualization System",
IBM Systems Journal 33(3), 1994, pp. 458-476.

12. K. Miriyala, S.W. Hornick, and R. Tamassia "An Incremental Approach to Aes-
thetic Graph Layout", Proc. International Workshop on Computer-Aided Software
Engineering (CASE '93), 1993.

13. M. Nagl "A Tutorial and Bibliographical Survey on Graph Grammars", Proc. of
International Workshop on Graph Grammars and Their Applications to Computer
Science and Biology, Lecture Notes in Computer Science, 1978.

14. F.J. Newbery "Edge Concentration: A Method for Clustering Directed Graphs",
Proc. 2nd International Workshop on Software Configuration Management, 1989,
pp. 76-85.

15. E.G. Noik "A Space of Presentation Emphasis Techniques for Visualizing Graphs",
Proc. Graphics Interface '94, May 1994, pp. 225-234.

16. S.C. North "Drawing Ranked Digraphs with Recursive Clusters", Private Commu-
nication, Draft from November 1993.

17. B.A. Price, R.M. Baecker, and I.S. Small "A Principled Taxonomy of Software
Visualization", Journal of Visual Languages and Computing 4(3), 1993, pp. 211-
266.

18. S.P. Reiss "A Framework for Abstract 3D Visualization", Proc. IEEE Symposium
on Visual Languages, August 1993, pp. 108-115.

19. A. Rudich, D. Zernik, and G. Zodik "Visage - Visualization of Attr ibute Graphs: A
Foundation for a Parallel Programming Environment", Proc. CNRS-NSF Collab-
oration Workshop on Environments and Tools for Parallel Scientific Computing,
Saint Hilaire du Touvet, France, J.J. Dongarra and B. Tourancheau, editors, Else-
vier Science Publishers, September 1992, pp. 171-192.

20. V. Waddle and A. Malhotra "NARC/X Nodes and ARCs Graph Widget API
Definition", IBM Research Center Technical Report, 1993.

