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Abs t rac t .  In this paper we investigate some applications of the concept 
of tolerance to graph drawing. Given a geometric structure, the tolerance 
is a measure of how much the set of points can be arbitrarily changed 
while preserving the structure. Then, if we have a layout of a graph and 
we want to redraw the graph while preserving the mental map (cap- 
tured by some proximity graph of the set of nodes), the tolerance of this 
proximity graph can be a useful tool. We present an optimal O(nlogn) 
algorithm for computing the tolerance of the Delaunay triangulation of a 
set of points and propose some variations with applications to interactive 
environments. 

1 I n t r o d u c t i o n  

A basic problem in graph drawing is to create a layout of a graph G, given a com- 
binatorial representation of G, that  satisfies some requirements (small number 
of crossings, displaying symmetries, and so on). A summary of the huge amount 
of work generated in this area can be found in [6]. 

A-variation on this problem is introduced in [8] and named Anchored Graph 
Drawing. Suppose that  we have a layout of a graph G whose nodes have ge- 
ographic information, such as cities in a country. The objective is to redraw 
the graph with slight changes on the position of the nodes to make the picture 
clearer. The first difficulty is the meaning of the expression "slight changes". 
The aim is tha t  the changes preserve the mental map of the graph, that  is, that  
an observer can recognize both graphs as having the same general aspect. Some 
heuristic strategies are proposed in [9] among them the Voronoi Diagram Cluster 
Busting (VDCB). The meaning of Cluster Busting is that  the objective of this 
s trategy is to break clusters of points tha t  can make the graph difficult to read, 
and more evenly distribute the nodes in the plane. The idea of VDCB is to move 
each point to the centroid of its Voronoi region. 

In [7] it is suggested that  a possible way to capture the mental map of a 
layout of the graph G is by using some proximity graph of the nodes. The task 
is then trying to move the nodes of G while preserving the proximity graph. 
The Delaunay triangulation is a specially suitable candidate because it contains 
strong information about proximity. It is nevertheless true that  the problem of 
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capture the mental map of a set of points has more than one possible solution and 
that  in some cases the EMST or other proximity graph can be more convenient. 

It is proved in [9] that  even if we apply the VDCB strategy to one point 
(and the rest remain fixed), we can cause a linear number of changes in the De- 
launay triangulation. For preserving the Delaunay triangulation while moving 
the points, a different approach is required, If we knew a c > 0 such that  we 
could move freely any node p inside a disk centered at p with radius ~, then a 
redrawing strategy could incorporate this constraint and so preserve the mental 
map. For example a modified VDCB would consist of moving each point towards 
the centroid of its Voronoi region, but stopping when the boundary of the disk is 
encountered. The supreme of all these c is called the tolerance of the Delaunay 
triangulation. By moving the points less than the tolerance, we can be sure that  
the Delaunay triangulation does not change. A similar concept of tolerance can 
be defined for other proximity graphs also useful for describing the mental map, 
as well as for many other geometric and combinatorial structures. Actually, tol- 
erance was first introduced in [1], where the aim was to preserve a polygonization 
of a set S when the set S is continuously changed. A similar s tudy to the one of 
this paper for other geometric graphs can be found in [10]. 

Let us consider now a related problem. Let S --- {p l , . . . ,  pn } be a set of points. 
We shall call stability region of a point pi (denoted by SR(pi))  to the region where 
pi can be continuously moved without producing any change in the Delaunay 
triangulation (now the rest of the points remain fixed). In graph drawing that  
corresponds to a situation where a user wants interactively change a layout of 
a graph but  preserving the Delaunay triangulation. By clicking in a node, the 
stability region of this site can be displayed and then the node moved inside that  
region. By iterating this process, the configuration of the nodes can be changed 
but  again we are guaranteed that we preserve the Delaunay triangulation. 

The paper is organized as follows: in Sect. 2 the tolerance is defined in a 
general setting, in Sect. 3 we give an optimal algorithm for computing the tol- 
erance of the Delaunay triangulation of a set of points, in Sect. 4 we present an 
algorithm for computing the stability region of a point and we end in Sect. 5 
with some remarks. 

2 S t r u c t u r a l  T o l e r a n c e  

Let  S be a set of points in the plane and consider a discrete geometric s t ructure 
associated to the set. If S is in general position, we can move the points arbitrari ly 
inside some neighborhood and be certain that  the structure remains topologically 
or combinatorially the same. 

The tolerance of the structure is defined as the supreme of c > 0 such that  if 
each point is moved arbitrarily but not more than z then the structure does not 
change. 

More formally, let S = ( P l , . . .  ,pn} and S' = {p~,.. .  ,p~} be two sets of n 
labeled points and let us define 

= d ' s ' )  max Cp,,p,). (1) 
i=l, . . . ,n 
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It  is easy to prove that  ~ is a distance between labeled sets of n points. We shall 
say that  S'  is a e - perturbation of S if &(S, S') = ~. 

We define the tolerance of DT(S) as follows: 

tol(DT(S)) = sup {~ > 0 I DT(S) ~ DT(S') VS' such that  6(S, S') < c}, (2) 

where DT(S) ,~ DT(S ~) means that  p, and pj are neighbors in DT(S) if and 
only if p~ and p~ are neighbors in DT(S'). 

A general picture of the tolerance was given in [2] where the aim was to 
describe the concept, its variations and its applications. In this paper, as stated 
in the introduction, we focus on the tolerance of the Delaunay triangulation 
because of its applications to graph drawing. 

3 Tolerance of the Delaunay Triangulation 

We denote by CH(S) the convex hull of the set S. Hereafter, when we say convex 
hull we mean the boundary of the convex polygon that  can be described by the 
list of its vertices. We shall call extreme points to the points of S that  are in 
CH(S) and interior points to the points of S that  are not in CH(S). 

We recall the definition of tol(DT(S)) from (2). If some face of DT(S) is not 
a triangle, the tolerance is clearly zero. Hereafter we assume that  this is not the 
case for S. 

We denote by e~j the edge of the Delaunay triangulation between the points 
pi and pj. In order to check possible changes in DT(S), we have to deal with 
three different types of changes: 

a) If e~j is an interior edge of DT(S), consider the vertices of the two adjacent 
triangular faces (Pk andpl in Fig. 1). We denote by a~j the size of the smallest 
perturbation of the points Pi,Pj,Pk,Pl for which the perturbed points become 
cocircular. 

b) If the edge er8 belongs to the convex hull, then consider the face that  contains 
the edge er, (with vertices Pr, P8 and Pt in Fig. 1). In this case, fir8 will denote 
half the distance between Pt and the line determined by pr and ps. 

c) Finally, if p~, pv and p~ are three consecutive vertices of the convex hull 
(like in Fig. 1) we denote by ~/v half the distance from the point pv to the 
line determined by p~, and p~. 

If we denote by a,  /3 and ~/the minimum of c~j, fl~ and ~/v over all interior 
edges, convex hull edges and convex hull vertices respectively, then we have: 

L e m m a  1. tol(DT(S)) = min {~,/3, V}. 

Proof. It is important to take notice of ai j  is not the tolerance of the edge eij 
that  we can define in the obvious way: the size of the smallest perturbation of 
the set that  destroys the edge. As it is shown in Fig. 2, the point that  destroys 
the edge e~j can be different from pk and pl. Analogous remarks can be made 
about j3r8 and ~v. Nevertheless, we know that  changes in DT(S) are always a 
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Fig. 1. Different types of changes in the 
Delaunay triangulation. 

Fig. 2. It is enough to check Delaunay 
faces. 

flip of an interior diagonal or a change in the convex hull. If the first change that  
can occur is produced in an interior diagonal, then it is computed in Case a (in 
Fig. 2, before pr can destroy edge eij it has to destroy edge ejk and then it is 
checked). On the contrary, if the first change occurs in the convex hull, we have 
two possibilities: either a new point appears in the convex hull (and then it is 
checked in Case b) or a point disappears from the convex hull (and then it is 
checked in Case c). Q 

The algorithm that  computes tol(DT(S))  can be sketched as follows: 

A L G O R I T H M  to I_DT(S)  

1. Compute DT(S) .  
2. For each vertex pi of the convex hull, compute &. 
3. For each convex hull edge eij of DT(S) ,  compute/3ij .  
4. For each interior edge eij of DT(S) ,  compute aij. 
5. tol(DT(S))  is the minimum over steps 2, 3 and 4. 

Step 1 is carried out in O(n log n) time and clearly steps 2 and 3 take linear 
time. For completing the analysis, we next show that  each aij can be computed 
in constant time. As a consequence, the overall running time will be O(n log n). 

L e m m a  2. Let e,j be an interior edge of DT(S)  and let p~, pj, Pk and Pt the 
vertices of the two faces that share the edge eij. Then c~iy can be computed in 
0(1)  time. 

Proof. Let us denote by C the annulus of minimum width that  contains the 
points Pi, Pj, Pk and Pt. It is clear that  c~ij is half the width of C. Then, we have 
to prove that  C can be computed in O(1) time. It is not hard to see that  in the 
solution, the four points have to be on the boundary of C and then we only have 
seven different options (four with three points on one circle and three with two 
points on each circle). [] 
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We can prove that  the former algorithm is optimal by providing a lower bound 
for the computation of tol(DT(S)). Details are omitted due to space limitations. 
We summarize preceding paragraphs with the following result: 

T h e o r e m  3. The algorithm tol_DT(S) computes the tolerance of the Delaunay 
triangulation of S in O(n log n) time and this is asymptotically optimal. 

4 Stability Region of a Point 

Let us consider a set of points S = {p, p l , . . .  ,p,~}. We define the global stability 
region of p, denoted by GSR(p), as the set of points where p can be moved to 
without producing any change in the Delaunay triangulation of S. More formally, 

GSR(p) -- {q E ~ 2 1 D T ( S )  ~ DT(S')  forS'  = {q, Pl , . . .  ,pn}}. (3) 

We know that  triangular faces of DT(S) correspond to empty circles passing 
through three points of S and then in order to prevent changes in the Delaunay 
triangulation of S we are going to check changes in these circles. Three possibil- 
ities have to be considered, as two different types of changes are possible in the 
inner faces and moreover we have to take into account possible changes in the 
convex hull: 

i) p enters a previously empty circle and then destroys a face of DT(S); 
ii) p leaves a circle determined by three points that  after that  becomes empty 

and then creates a face of DT(S); 
iii) p is an extreme point and becomes interior or vice versa. 

Of course, changes of type i) and ii) are diagonal flips and when a face is destroyed 
another one is created and vice versa. The first important observation is that  
circles involved in changes i) and ii) are always of these two types: 

i) a-circles, that  are empty circles corresponding to the triangular face associ- 
ated to two consecutive Delaunay neighbors of p, plus a third site different 
from p (like the circle passing through pl,p2,p7 in Fig. 3); 

ii) fLcircles, that  are circles passing through three consecutive Delannay neigh- 
bors of p in convex position, containing p and no other site (like the circle 
passing through p2, p3, p4 in Fig. 3). 

In order to deal with changes in the convex hull, we introduce a point at c~ and 
we consider that  all extreme points have as Delannay neighbor this extra point. 
Then, when p is a vertex of a face having an edge on CH(S), convex hull edges 
are generalized a-circles and i fp  is a vertex of the convex hull the line defined by 
the two adjacent vertices of the convex hull is a generalized fl-circle. Hereafter, 
when we say a-circles and fLcircles we include the generalized case. 

L e m m a 4 .  GSR~)  = (naT) n (nf~j) where subscripts range over all a-circles 
and fl-circles oS p. 
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Fig. 3. Examples of a-circle and 
/~-circle. 

Fig. 4. The global stability region of p can be 
not connected. 

Proof. It is clear that  GSR(p) lies in the exterior of all a-circles and in the 
interior of all fl-circles. We are going to prove that  the boundary  of GSR(p) 
cannot contain any other element. Suppose that ,  on the contrary, the boundary  
of GSR(p) has an element ~ that does not belong neither to a a-circle nor to a 
fl-circle. If p cut across % a change has to be produced in the Delaunay trian- 
gulation of S. Because the only possible changes are diagonal flips, we conclude 
that  either a Delaunay edge starting from p is created (and then "y is par t  of a 
a-circle) or a Delaunay edge starting from p is destroyed (and then ~/is par t  of 
a fl-circle). [] 

Next observation is that  GSR(p) can be not connected as is shown in Fig. 4. 
In the context of graph layout and recalling the motivation for this problem, 
it is reasonable to restrict ourselves to movements of p that  can be performed 
continuously without changing the Delaunay triangulation of S. Of course, this 
can be done by restricting the s tudy to the connected component of GSR(p) 
containing p that  we shall call stability region of p and denote by SR(p). In the 
rest of this section, we are going to give an upper bound for the combinatorial 
complexity of SR(p) and an efficient algorithm for its computation.  

Let us denote by Dn(p) = (Pl,..., Pk) the ordered list of Delaunay neighbors 
of p. We have k a-circles and at most [k/2J /~-circles and then the stability 
region of p is a single cell in an arrangement of O(k) circles. It follows tha t  the 
combinatorial complexity of SR(p) is O(k). 

Next we are going to give an algorithm for the computat ion of the stability 
region. The first step is to determine the a-circles and fLcircles for p. We suppose 
that  DT(S) is given (if this is not the case, the Delaunay triangulation would be 
computed in a first step) and then we have Dn(p). Therefore we are given the 
set of a-circles. The set of fl-circles is a bit more complicated to obtain because 
we have to obtain the circles determined by three consecutive neighbors of p 
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that contain just the point p. We can compute the/%circles by exploiting the 
fact that, because they only contain the point p, they become Delaunay circles 
if we remove p. Then, if we consider the set Dn(p) and compute DT(Dn(p)), 
the points Pi,p~+l,Pi+2 (subscripts must be understood modulus k) determine a 
f~-circle if and only if they are consecutive, determine a face in DT(Dn(p)) and 
are in convex position. 

Once we have determined the k a-circles and the at most [k/2J ~circles, we 
only have to compute the cell corresponding to p in the arrangement, that is, the 
connected component of (na~) O (nf~j) containing p (i ranges over the a-circles 
and j over the f~-circles). We compute na~ and nf~j using one of the algorithms 
that compute the union and the intersection of a set of disks (see [4],[5]). This 
can be done in O(k log k) time. We denote by .4 the boundary of Of~j and by F 
the boundary of the connected component of na~ containing p. If we show that 
the total number of intersections between/" and A is O(k) then we will be able 
to compute SR(p) in O(k log k) time with a standard sweep step. 

Let us consider a circular arc ~/ in /~ (see Fig. 5). It is part of a a-circle 
passing through three points of S, two consecutive Delaunay neighbors of p and 
a point q that is not neighbor of p. By construction of f~-circles, q is outside 
all of them. Therefore, when ~/cross A, it is in the interior of all f~-circles and 
when it intersects A again, it goes out a ~circle where it cannot enter again. 
Then, we have proved that "/intersects A in at most two points and then F N A 
has linear size. We have proved that the stability region of a point p having 
k Delaunay neighbors can be computed in O(klogk) time. Moreover, we can 
repeat this calculation for all the points of S and the total amortized cost will 
be O(nlogn). We summarize the paragraphs above with the last theorem: 

T h e o r e m  5. Let S be a set of n points. Once we know the Delaunay triangula- 
tion of S, the stability region of a point p having k Delaunay neighbors can be 
computed in O(k log k) time. The stability regions for all the points of S can be 
obtained in O(n log n) overall time. 

5 Concluding Remarks 

In this paper we have presented some applications of tolerance to a special class 
of problems that appears in graph layout, problems where we want to redraw a 

" ~ / ~ ~ q  

Fig. 5. 7 cuts the intersection of the f~-circles at most twice. 
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graph while preserving some structure that  captures the mental map of the set 
of nodes. The relevant case of the Delaunay triangulation has been considered, 
and we have shown how to compute its tolerance. An step-by-step process for 
layout modification within the same constraints has also been described. 

It  is worth noticing that  if DT(S)  is given, then tol(DT(S))  can be computed 
in linear time. As a particular case, if the points are moved away from their 
position less than the tolerance, the new tolerance can be computed in linear 
time. 

Half the distance between the closest pair of points of S is obviously a lower 
bound for tol(DT(S)).  So the presence of a small cluster of points highly con- 
centrated will result in a very small value for tol(DT(S)).  It  is then reasonable 
to  introduce a concept of local tolerance relative not to the full s t ructure but  to  
some subset of edges or faces. These ideas, as well as the variants mentioned in 
the introduction are developed in [10] for DT(S)  and many other structures. 
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