
Opt imal -area upward drawings of AVL trees
Extended abstract

P. Crescenzi* and A. Piperno

Dipartimento di Scienze dell'Informazione
Universit~ degli Studi di Roma "La Sapienza"

Via Salaria 113, 00198 Roma
E-mail: {crescenzi,piperno}~dsi.uniromal. it

Abstract . We prove that any AVL tree admits a linear-area planar straight-line grid
strictly-upward drawing, that is, a drawing in which (a) no two edges intersect, (b)
each edge is mapped into a single straight-line segment, (c) each node is mapped into
a point with integer coordinates, and (d) each node is placed below its parent.

1 Introduction

In this paper we are interested in planar straight-line grid strictly-upward drawings (in short
upward drawings) of binary rooted trees, that is, drawings in which (a) no two edges intersect,
(b) each edge is mapped into a single straight-line segment, (c) each node is mapped into a
point with integer coordinates, and (d) each node is placed below its parent} A natural and
important criterion for evaluating these drawings is that they take as little area as possible.
Most of the known algorithms to upward draw a binary tree require quadratic area in the
worst case [10, 11]. Recently, Crescenzi, Di Battista, and Piperno proved that s log n)-area
is required in order to upward draw any binary tree and described an algorithm to obtain
such a drawing. Moreover, they gave two algorithms producing a linear-area upward drawing
of complete and Fibonacci binary trees, respectively [2]. Successively, Garg, Goodrich, and
Tamassia proved that if we allow an edge to be represented by a chain of straight-line
segments and a node to be on the same horizontal line as its parent, then any binary tree
can be drawn in linear area [8].

This latter result, however, doesn't settle the question whether a larger class of binary
trees exists which can be upward drawn in linear area. Since the Fibonacci and complete
binary trees are the (unlabeled) AVL trees with the least and the most number of nodes,
respectively, it seems natural to ask whether the result of Crescenzi, Di Battista, and Piperno
can be generalized to any AVL tree.

In this paper we positively answer this question, that is, we prove that, for any AVL tree
t with n nodes, an upward drawing of t can be produced with area O(n) in t ime O(n). In
particular, our main result shows that any AVL tree with n nodes can be upward drawn in
any rectangle whose shortest side is at least log ~ n and whose area is equal to ~n where a and

are two constants. This result improves that obtained in [8] (when applied to AVL trees)
in two directions. On the one hand, our algorithm produces straight-line strictly-upward
drawings, on the other the bound on the length of the shortest side provides a greater
flexibility to applications that need to fit the drawing in a prescribed rectangular region.

* Research partially supported by the MURST project Algoritmi, Modelli di Calcolo, Strutture
Informative.

1 Upward drawing is just one of several graphic standards that have been proposed for the drawing
of planar graphs. The annotated bibliography mantained by Di Battista, Eades, and Tamassia
mentions many papers in this research area [3].

308

We also present some experimental results which illustrate how, in practice, the area
requirements are much less than those specified by the theoretical results. These experiments
show that even from a practical point of view our algorithm improves the one proposed in
IS].

1.1 Pre l iminar ies

In this section we give preliminary definitions and results that will be used throughout the
paper.

We refer to directed rooted unordered binary trees, in short binary trees. In particular,
Ch denotes the complete binary tree of height h while Fh denotes the Fibonacci tree of height
h [5, 6, 7]. Moreover, no(h) and hE(h) denote the number of nodes ofch and Fh, respectively.
A binary tree is said to be k-balanced if, for each node u, the heights of the two subtrees of
u differ of at most k. A 1-balanced binary tree is also called AVL [1] and it is well known
that, for any AVL tree t of height h, nF(h) <_ n < no(h) where n denotes the number of
nodes of t.

A planar straight-line grid strictly-upward drawing, in short upward drawing, of a binary
tree t is a drawing of t such that:

1. Edges are straight-line segments that do not intersect.
2. Nodes are points with integer coordinates.
3. A node has the ordinate greater than that of its parent --we are thus assuming that the

y-axis is downward oriented.

The width (respectively, height) of a drawing is the length of the width (respectively,
height) of the smallest isothetic rectangle bounding the drawing. We adopt the convention
that both the width and the height are measured by the number of grid points, so that any
drawing of a nonempty binary tree has both width and height greater than zero. The area
of an upward drawing is then defined as the product of the width and the height.

Crescenzi, Di Battista, and Piperno proved the following result [2].

T h e o r e m 1. An infinite class of binary trees exists requiring Y2(nlogn) area to be upward
drawn.

A question naturally arises as a consequence of the above theorem: do classes of binary trees
exist which can be upward drawn in linear area? A preliminary answer to this question has
been given by Crescenzi, Di Battista, and Piperno [2].

T h e o r e m 2. An algorithm exists producing an upward drawing of either a complete binary
tree or a Fibonacci binary tree with n nodes in O(n) area.

In order to prove the above theorem, Crescenzi, Di Battista, and Piperno introduce the
notion of h-v drawing. An h-v drawing is an upward drawing in which rightward-horizontal
and downward-vertical straight-line segments only are allowed. That is, the notion of h-
v drawing is a restriction of that of orthogonal drawing in which each edge is a chain of
alternating horizontal and vertical segments [8]: on the one hand, each edge can be only one
segment, on the other no leftward-horizontai segments are allowed.

More precisely, an h-v drawing of a binary tree t is obtained by one of the two operations
illustrated in Fig. 1 where D1 and D2 are two h-v drawings of the two subtrees of t. In the
first operation, D2 is traslated to the right by as many grid points as the width of D1 and
D1 is traslated to the bottom by one grid point. The semantic of the second operation is
defined similarly.

The following fact shows that h-v drawings are a powerful tool to deal with upward
drawings.

309

Fig. 1. The two operations of an h-v drawing

P r o p o s i t i o n 1. Any h-v drawing of area A can be transformed into an upward drawing of
area at most 2A.

The above result will allow us to devote our attention to h-v drawings only (note that we are
interested in upper bounds on the area requirements). In [4], finally, an algorithm is given
yielding a minimum area h-v drawing of a binary tree with n nodes in t ime O (n ~) .

2 T h e A l g o r i t h m

In this section we shall show how to obtain linear-area upward drawings of AVL trees.
Let us first reconsider the approach of [2]. This approach mainly uses the fact that

complete and Fibonacci binary trees are inductively defined and shows that it is possible to
draw one of these trees of height h + 1 by using the drawings produced for the corresponding
trees of height h.

Any a t tempt to extend such a bottom-up construction to the case of AVL trees leads to
the necessity of producing multiple drawings for any tree. Indeed, let us fix an AVL tree t of
height h along with a drawing of t. An AVL tree of height h + 1 having t as one of its subtrees
can be obtained in many different ways depending on the choice of the other subtree. If the
drawing of this subtree must be produced so that, when combined with the fixed drawing
of t, the linear-area requirement is mantained, then it is immediate to realize that the same
drawing cannot be used in combination with the drawings of all trees of height h, which
could be considerably different from t (for example, in the number of nodes).

To overcome this difficulty, we shall instead follow a top-down approach. From the defi-
nition of the h-v drawing operations, any rectangle including a drawing for an AVL tree t of
height h must contain two rectangles including the drawings of the immediate subtrees of t.
From an algorithmic point of view, given a rectangle R in which we want to draw t, we must
be able to cut it into two rectangles in which it is possible to draw the immediate subtrees
of t. Our cut-rule can be roughly described as follows: cut R proportionally to the number of
nodes of the two subtrees. Two problems arise from the previous rule. On the one hand, we
need to maintain the linear-area requirement, on the other we must be able to treat 'highly
rectangular ' shapes (for example, consider the case in which one subtree is a Fibonacci tree
of height h - 2 while the other is a complete tree of height h - 1).

This section is devoted to the study of the conditions under which this construction can
be safely carried out. Given an AVL tree, we shall denote with n the number of its nodes
and with l and L the length of the shortest and the longest side of the rectangle in which
the tree has to be drawn, respectively. Intuitively, we shall prove that, if I and lL are 'large
enough', then there is a way of cutting the rectangle which preserves the desired properties
on the sides of the two obtained subrectangles.

Our proofs will refer to rectangles with real coordinates. However, it is clear that if we
can draw a tree whithin a real-coordinate rectangle R by mapping nodes into points with
integer coordinates, then the tree itself can be drawn whithin the largest integer-coordinate
rectangle included in R.

310

algorithm BT(R = (1, L, (x, y), b), t);
begin

cut L into two segments of length 11 and 12, respectively;
{ll and 12 will be specified in the proof of Theorem 3}
if b t hen (xl ,yl) := (x + 1,y) else (xl,yl) := (x,y + 1);
if 11 > l - 1 t hen R1 := (l - 1,1~, (xl,y~),b) else R~ := (l~ , l - 1, (xl,y~), not b);
if b then (x2, y2):-~ (x, y-I- Ill J) else (x2, y2):= (x-~ I/l J, y);
if 12 > l t h e n R2 := (l, 12, (x2, y2), b) else R2 := (12, l, (x2, y2), not b);
map the root of t into (x,y);
tl := subtree of t with the least number of nodes;
t2 := subtree of t with the most number of nodes;
if tl is not empty then BT(RI,t l);
if t2 is not empty then BT(R2, t2);

end.

Fig. 2. The algorithm to draw an AVL tree

In the following, a rectangle is specified by the lengths l and L of its sides, by the
coordinates x and y of its leftmost-topmost corner which is always assumed to be a point
with integer coordinates, and by a Boolean flag b which indicates the orientation of the
longest side (if b is true then the longest side is vertical, otherwise it is horizontal). Our
algorithm is then shown in Fig. 2 (see also Fig. 3).

In order to precisely specify the above algorithm, let us first introduce some functions
together with properties they are required to satisfy.

1. The factor function

k : I~l + --* R +,

that is, the function specifying the constant factor in the area bound, is supposed to be
a non decreasing function which satisfies the following

P r o p e r t y I. A constant ~ exists such that, for any h, k(h) <_ ~.

Since we will require that any AVL tree of height h with n nodes can be drawn in area
k(h)n, the linear-area bound immediately follows from Property I.

2. The shortest side function

l : N + --* I~ +,

that is, the function specifying the lower bound for l, is supposed to satisfy the following

P r o p e r t y I I . l(1) >_ 1 and, for any h, l(h + 1) >__ l(h) + 1.

This property implies that the length of the shortest side of the drawing of a tree of
height h is always greater than h. Such a requirement is due to the nature of the h-v
drawing operations.

3. The area function

A : I~ + x N + --, I~ +,

that is, the function specifying the area of the drawing, is defined: as

A(h, n) = k(h)n.

and is supposed to satisfy the following

311

P r o p e r t y I I I . For any h _> 2 and for any nl , n2 such that n F (h - 1) < nl <_ n2 <_ no(h),

A(h,n,) > 4Aih+ 1,"n) l(h),

where n = nl + n2 + 1.

Observe that if l >_ l(h), then the length L of the longest side is at most

L(h, n) = A(h, n)
l(h)

Clearly, if an AVL tree of height h with n nodes exists, then L(h, n) should be at least
equal to l(h). This is guaranteed, for h = 1, taking k(1) sufficiently large and, for h > 1,
by the following proposition.

P r o p o s l t i o n 2. For any h > 2 and for any n such that hE(h) <_ n <_ no(h),

L(h,n) > l(h).

Proof. By using Property III with nl = n2 and the assumption for k to be non decreas-
ing, we have

L(h,n) A(h,n) A(h + l ,2n + l) A(h + l ,2n + l)
l(h) = l~(h) >- A(h,n) A2(h,n) = A(h,n) > 1,

that is, L(h, n) > l(h). [3

Finally, the area function is supposed to satisfy the following

P r o p e r t y I V . For any h and for any nl,n2 with nl _< n2,

A(h + 1, n) - A(h, n2)
A(h + 1, n) >_ A(h, nl) + A(h, n2) +

l(h + 1)

where n = nl + n2 + 1.

Properties III and IV express the conditions that a rectangle has to satisfy in order to
allow its cutting into two suitably large subrectangles.

We are now in a position to prove the main result of this section. Intuitively, this result
shows that any AVL tree of height h with n nodes can be upward drawn in any rectangle
whose shortest side and whose area are large enough.

T h e o r e m 3. Let k, l, and A be three functions satisfying Properties II-IV and let h, n E b] +
and R be any rectangle whose sides have sizes l and L, respectively, satisfying the following
two conditions:

L > l > l(h) and IL = A(h,n).

Then any AVL tree of height h with n nodes admits an upward drawing whithin the rectangle
R.

312

L i .i.:i. ~ : : i . : i : . ~ ~ ~ i-~ i-i i i - :: ::--i i i :: ~ i ~ ! - ~ , ~ J - - : : : i i
: : : : : : : : : : : : : i : i : : : : : : :~ 'T'~";"~"~"I" '? '~"!"I
::: ============================
~ .i ..~ ~ . . l = ; u : + [~ . l ~..~..~..;..: .~..~..~. i. ~. ~..~. i..i.; ~ = ~ - ~ . ~ t : ~ : a) ~ .~

!ii iii iiii!ii i!i iii ii]iii i ii iii!ii iiiiiii ii iii!i !!i i' ii i iii i! iii i
! i i i i i i i i i i i::i::i::! :i:i i::i :i::i

: . . ' . . . ' . . : . . : . . : . . ' . . . ' . . . ' . - : . . . ' . , ' . . . : . - : . . ' . . : . . : . . ' . . . : . . ' . . : . . : . . : . . ; . : : . . : . . ' . . . ' . . . : . . L . . ' . . : . . : . . '

Fig. 3. The splitting of a rectangle

Proof. The proof is by induction on h. For h = 1, the proof is straightforward.
Let h > 1 and let us assume that the theorem is true for any height less than h + 1.

Given an AVL tree of height h + 1 with n nodes where n = nl + n2 + 1 and nF(h - 1) <
nl <_ n2 <_ no(h), let us define

12= A(h, n2) and l l = L - 1 2 .
l

Intuitively, we are isolating two rectangles R1 and R2 within the rectangle R. The sides
of R1 have length Ii and l - 1, respectively, while the sides of R2 have length 12 and l,
respectively. Fig. 3 illustrates the case in which the longest side of R is the vertical one. Note
that according to the algorithm of Fig. 2, the topmost-leftmost corners of R1 and R2 have
coordinates (x + 1, y) and (x, y + [llJ), respectively, where x and y denote the coordinates
of the topmost-leftmost corner of R. Since the length of a segment is measured by the
number of grid points, we thus have that the y-coordinate of the r ightmost-bottommost
corner of R2 is equal to y + [llJ + 12 - 1 which is less than or equal to the y-coordinate of
the r ightmost-bottommost corner of R, that is, y + L - 1.

Clearly, the area of R2 is equal to A(h, n2). Moreover, since

L - 12 = IL - A(h, n2) = A(h + 1, n) - A(h, n2) < A(h + 1, n) - A(h, n2)
l l - l(h + 1) '

Property IV guarantees that the area of R1 is at least equal to A(h, nl) .
Let hi and h2 denote the heights of the two subtrees with nl and n2 nodes, respectively.

We now shall prove that the shortest sides of R1 and R2 have length at least l(hl) and l(h2),
respectively. To this aim, we distinguish the following three cases.

1. h l = h - l a n d h 2 - - h .

(a) Rectangle R1. If ll >__ l - 1, then from Property II it follows that

l - 1 > l(h + 1) - 1 >_ l(h) >_ l (h - 1).

Otherwise,

313

11 ~> A(h, nl) > l(h) > l(h - 1),
- 1 - 1 - -

where the second inequality follows from the fact that l <_ ~/A(h + 1, n) and from
Property III.

(b) Rectangle R2. If 12 _> l, then from Property II it follows that

l >_ l(h + 1) > l(h).

Otherwise, since A(h, n2) _> A(h, nl) , we have that

12 = A(h, - > A(h, - > l(h),

where the last inequality follows from the fact that l < ~/A(h + 1,n) and from
Property III.

2. hi - h and h2 = h - 1. The proof is similar to that of case 1: note that in this case we
are simply decreasing the upper bound for n2 and increasing the lower bound for n l .

3. hi --- h2 --- h. The proof is similar to that of case 1: note that in this case we are simply
increasing the lower bound for nl .

In all three cases we have that the inductive hypothesis is satisfied for both a rectangle
contained in Rx and a rectangle contained in R2. The theorem thus follows. D

C o r o l l a r y 1. I f the function k in the previous theorem satisfies Property I, then any A VL
tree admits a linear-area upward drawing.

3 The proof of existence

In this section we shall prove the existence of the functions k(h) and l(h) satisfying the
properties of the previous section. The definition of these two functions is quite simple:
indeed, l(h) = h a and k(h + 1) = (1 + i(h))k(h) where ~ > 1 and i(h) will be specified later.
These definitions are motivated by two natural reasons: on the one hand, the shortest side
cannot be smaller than the height of the tree, on the other the higher is the tree the bigger
should be the constant factor (even though asymptotically bounded by a constant).

Since ~ > 1, we have that (h + 1) a ~ h a + 1, that is, the function l(h) satisfies Proper ty
II.

Observe now that from the definition of A(h, n) it follows that proving Proper ty IV is
equivalent to proving that

[i(h)A(h, n) + k(h)]l(h + 1) > A(h + 1, n) - A(h, n2).

Since n > 2nl, we have that

A(h + 1, n) - A(h, n2) = A(h, n) + i(h)A(h, n) - A(h, n2)
= A(h, us) + k(h) + i(h)A(h, n)
< A(h, n) /2 + i(h)A(h, n) + k(h)
= i(h)A(h, n)[1 + 1/2i(h)] + k(h)
< [i(h)A(h, n) + k(h)][1 + 1/2i(h)].

We then need to define i(h) so that 1 + 1/2i(h) < l(h + 1). From Property II it follows tha t
we can simply define i(h) = 1/2l(h).

In order to prove Property III, we have to show that, for any h > 2,

314

k~(h)n~ > A(h + 1,n)h ~ = k(h)n (2 ~ + 1~ h2..
- \ 2h~]

This is clearly true if

Since n~/n is minimum when n l is minimum and n2 is maximum, we thus have to prove
that

where, for any h > 1,

p(h) = n F (h - 1) + no(h) + 1
n ~ (h - 1)

We shall prove the above inequality by induction on h and by suitably choosing c~ and k(1).
For h = 2, if we set k(1) equal to ~ �9 22~, then

k(2)p~2)=3~k(1)~1=5226.

Let us assume that the inequality is satisfied for any height less than h + 1. Then

p(h+l) = 1+2-~z ~ > l+~-~z h ~ - p (h + 1)"

In order to satisfy the inequality for h + 1, we must then define c~ so that

It is easy to see that a can be any value between 1 and & where & ~. 1.111 is the solution
of the following equation:

(2 .2 x + 1)2 z = 32~.

Table 1 shows the first 10 values of k(h), and, successively, its values for h = 20, 40 , . . . , 120
in the case a = 1.005. As shown in the table, the value of k(h) increases slower and slower:
this is formally justified by the following fact (whose simple proof is here omitted).

P r o p o s i t i o n 3. The function k(h) satisfies Property I. In particular, for any h,

k(h) < 2_~ . 22~ X/2C:(a)

where ~ denotes the Riemann zeta function [9].

315

4 Practical considerations, extensions, and open questions

In this section we shall discuss practical consequences and extensions of the results-ofthe
previous sections. '.

- T-T_-~. -T-" First of all, the theoretical upper bound on the area required to upward
::-" T- draw an AVL tree can be, in practice, substantially improved. The idea

is to use the algorithm described in Fig. 2 in order to compute, for each
!-V_I-!-" node, the h-v operation to be performed at that node. More formally,

�9 w" this can be done by simply replacing in the algorithm the instruction

::T---yl~-" map the root o f t into (x, y)

T-
T-" " by the instruction

~ y l - ! - label the root of t with b
T ~ o

(if a node is labelled with a true value, then its operation is the second
' ' - ' - - ' ,-]~-!-- I ~ - operation in Fig. 1, otherwise its operation is the first one). Once this

preprocessing has been realized, the drawing of the tree is obtained by
simply performing, for each node, the corresponding operation. Intu-

/ i~---]:!-" itively, this modification yields the smallest drawing which is obtained
by the same sequence of h-v operations generated by the 'theoretical' al-

_ -. gorithm. We have implemented such an algorithm. Table 2 presents ex-
I i ~ - - l : ! perimental results obtained for complete binary trees, Fibonacci trees,

and combinations of these two kind of trees. Note that from these ex-
t W--~l-t-. periments it can be conjectured that the real constant factor in t h e
l-'-" 1-: area bound is approximately 3. Unfortunately, we have not been able
w" �9 to prove this conjecture and leave it as an open problem.
-T-7---_T:!-" Secondly, observe that the bound on the length of the shortest side

allows a very great flexibility to applications that need to draw a binary
tree in a prespecified rectangular region. For instance, at the left of this

T~--I-T-- paragraph, we have been able to draw a complete binary tree of height
l-'-" !-: 8 without reducing too much the width available to the text. The area
T-" of this drawing is 800 which is a little bit more than three times the

[:_~-_l-!-" number of nodes. It is still an open question whether a logarithmic
7-" bound on the length of the shortest side is also obtainable (recall that

-" a > l) .
T~-~-[-T-" Finally, the algorithm we presented can be easily extended to the class
["- T-: of 2-balanced binary trees. In this case, for any node u of the tree, the
T-" number n of nodes in the subtree rooted at u satisfies the following

'--'i-I-" I~!-" where h denotes the height of the tree rooted at u, and n2 is defined as

V " h i fh < 2,

The previous two sections can then be modified in order to prove that
T ~-" 1-!-" I " any 2-balanced binary tree admits a linear-area upward drawing. How-

T-" ever, it is easy to see that in this case the constant factor in the area
1-" bound substantially increases.

Even though one might think of a different algorithm, the behaviour of our procedure

316

seems to be sufficiently natural: as more unbalanced is the tree, as bigger must be the area
of the drawing. This is in accordance with the lower bound of [2] which refers to a family of
binary trees which are highly unbalanced.

In any case, it still remains open the question whether other types of balanced trees, such
as k-balanced tress with k > 2, red-black trees, and weight-balanced trees, admit linear-area
upward drawings. More generally, it would be interesting to know whether our results can
be extended to any family of trees with logarithmic height.

References

1. G.M. Adelson-Velskii and E.M. Landis. An algorithm for the organization of information. Soviet
Math. DokL, 3:1259-1262, 1962.

2. P. Crescenzi, G. Di Battista, and A. Piperno. A note on optimal area algorithms for upward
drawings of binary trees. Computational Geometry: Theory and Applications, 2:187-200, 1992.

3. G. Di Battista, P. Eades, and R. Tamassia. Algorithms for drawing graphs: an annotated bibli-
ography. Computational Geometry: Theory and Applications, to appear. A preliminary version
is available via anonymous ftp from wilma.cs.brown.edu, gdbiblio.tex.Z and gdbiblio.ps.Z in
/pub/papers/compgeo.

4. P. Eades, T. Lin, and X. Lin. Minimum size h-v drawings. In Proc. Int. Workshop AVI '9~,
pages 386-394, 1992.

5. Y. Horibe. An Entropy View of Fibonacci Trees. Fibonaccz Quarterly, 20:168-178, 1982.
6. Y. Horibe. Notes on Fibonacci Trees and Their Optimality. Fibonacci Quarterly, 21:118-128,

1983.
7. D.E. Knuth. The Art of Computer Programming, Addison Wesley, 1975.
8. A. Garg, M.T. Goodrich, and P~ Tamassia. Area-efficient upward tree drawing. In Proc. ACM

Syrup. on Computational Geometry, pages 359-368, 1993.
9. I~.L. Graham, D.E. Knuth, and O. Patashnik. Concrete Mathematics, Addison Wesley, 1989.

10. E. Reingold and J. Tilford. Tidier drawing of trees. IEEE Trans. on Software Engineering,
SE-7:223-228, 1981.

11. K.J. Supowit and E. Reingold. The complexity of drawing trees nicely. Acta Informatica, 18:377-
392, 1983.

Table 1. The first values of k(h) in the case c~ = 1.005

]1 hi k (h) I I

II 114.166667 II
II 216.250000 II
II 317.807o94 II
II 419.101149 II
II 5110.23093411
II 61n.24582811
II 7112.17462211
II 8113.03581711
II 9113.84212911
II 10114.6027341]

40 29.I80922
II 60135.63~28311
II 80141.04803811

I00 45.793926
120 50.069237

317

Table 2. Experimental results on the drawings produced by the modification of the algorithm

of Fig. 2 starting with l -- L -- V/'~-h, n) for comparison with the theoretical upper bounds

JlType [Nodes nlWid,th]HeightJArea AJRatio A/nil
Complete 15 6 5 30 2.00{]
binary 63 12 12 144 2.286
tree 255 24 28 672 2.63~

1023 48 60 2880 2.81, j
4095 96 119 11424 2.790

163831 192i 239 45888 2.801
32767 267 349 93183 2.844

Fibonacci 20 6 5 30 1.5
tree 8~ 121 13 156 1.773

231 2C 22 446 1.897
609 34 37 1258 2.066

258.~ 7G 74 51801 2.005
418G 94 I00 9400 2.249

Complete 2G 6 7 42 2. I00
and 76 16 12 192 2.526
Fibonacci 28g 28 29 812 2.810
tree 1112 53 61 3233 2.907

4328 104 125 1300{] 3.004
16993 201 253 50853 2.993
67132 396 509 201564 3.003

