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Abst rac t .  What does it mean for an instruction pipeline to be correct? 
We recently completed the specification and verification of a pipelined 
microprocessor called UINTA. Our proof makes no simplifying assump- 
tions about data and control hazards. This paper presents the specifi- 
cation, describes the verification, and discusses the effect of pipelining 
on the correctness model. The most significant effect on the pipeline is 
that data and temporal abstractions in the correctness model are not 
orthogonal as they are in non-pipelined implementations. 

1 I n t r o d u c t i o n  

Much has been written over the years regarding the formal specification and 
verification of microprocessors. Most of these efforts have been directed at non-  
pipelined microprocessors. See IGor83, Bow87, CCLO88, Coh88, Joy88, Hun89, 
Win90, Her92, SWL93, Win94a] for examples. 

The verification of pipelined microprocessors presents unique challenges. The 
correctness model is somewhat different than the standard correctness models 
used previously (see Section 7.1). Besides the correctness model, the concurrent 
operations inherent in a pipeline lead to hazards which must be considered in 
the proof. There are three types of hazards: 

- s t r u c t u r a l  h a z a r d s  which arise because of resource constraints (i.e. more 
than one operation needing the ALU at a time), 

- d a t a  h a z a r d s  which arise when data is needed before it has been calculated 
or, alternately when data is changed before it has been used, and 

- c o n t r o l  h a z a r d s  which arise when instructions change the flow of control 
after some operations in the original flow of control have already begun. 

Several papers have presented the verification of pipelined microprocessors: 
In [SB90], the verification of a three stage pipelined machine name Mini- 

Cayuga is presented. The verification is the first, to our knowledge, of a pipelined 
microprocessor. Because the pipeline has only three stages, however, the verifi- 
cation did not have to deal with data and control hazards in the pipeline. 

The verification of a machine similar to the DLX processor of [HP90] is pre- 
sented in [TK93]. The machine has a five stage pipeline and encounters data 
and control hazards, but it is not clear from the presentation whether these are 
dealt with in the proof or in the assumptions. 
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This paper presents the verification of a pipelined microprocessor called 
UINTA. UINTA has a five stage pipeline which presents data and control haz- 
ards (there are no structural hazards). Mitigation of the data hazards is done 
using two levels of data forwarding; mitigation of the control hazards is accom- 
plished using a delayed branch (2 stages). Our verification makes no assumptions 
about software constraints or the ordering of instructions. 

Our work in microprocessor verification has been characterized by the devel- 
opment of formal models for microprocessor correctness and a standard model 
of microprocessor semantics [Win93]. In [Win94a] we present the verification of 
a non-pipelined microprocessor using our model, which we call the generic in- 
terpreter theory. The generic interpreter theory does several things: 

1. The formalization provides a step-by-step approach to microprocessor spec- 
ification by enumerating the important definitions that need to be made for 
any microprocessor specification. 

2. Using the formalization, the verification tool can derive the lemmas that 
need to be verified from the specification. 

3. After these lemmas have been established, the verification tool can use the 
formalization to automatically derive the final result from the lemmas. 

Using the generic interpreter theory provides a standardized model that en- 
sures that the theorems used can be put together in standard ways and used 
in other places in the proof. One of the goals of the effort presented here was 
to evaluate the use of the generic interpreter theory in verifying pipelined pro- 
cessors. We will see that while the generic interpreter theory provides the same 
benefits for most of the verification of UINTA, its fails in one important place. 
This is discussed in more detail in Section 7.1. 

The specification and verification of UINTA is done hierarchically to reduce 
the abstraction distance between successive layers. As noted in [Me188], there 
are four types of abstraction: structural, behavioral, data, and temporal. Where 
possible, we limit the types of abstraction between any two layers. The four 
specification models employed in the verification are: 

- Electronic  Block Model .  This model is a structural description of register 
transfer level. The model states how the major components such as the 
register file and arithmetic logic unit (ALU) are connected together. 

- Phase  Model .  This model is a behavioral abstraction of the electronic block 
model. There is no data or temporal abstraction between the electronic block 

model and the phase model. 
- P ipe l ine  Model .  This model is a temporal abstraction of the phase model. 

The two phases of the phase model are combined in the pipeline model. Each 
time unit in the pipeline model represents one execution of each stage in the 

pipeline. 
- Arch i t ec tu ra l  Model .  This model is a data and temporal abstraction of 

the pipeline model, the architectural model describes the instruction set 
semantics and is intended to represent the assembly language programmer's 
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view of the microprocessor. We will say more about why we perform the 
data and temporal abstract concurrently in Section 7.1. 

The verification of UINTA shows that  the resultant specifications and the- 
orems need not be different from those used in non-pipelined microprocessor 
verification, but that  the correctness model and the important  lemmas change 
considerably. We will briefly present the specifications of each level (in a slightly 
different order than that  above) and concentrate on the parts of the verification 
that  differ significantly from previous microprocessor verifications. 

2 A B r i e f  I n t r o d u c t i o n  t o  H O L  

To ensure the accuracy of our specifications and proofs, we developed them us- 
ing a mechanical verification system. The mechanical system performs syntax 
and type checking of the specifications and prevents the proofs from contain- 
ing logical mistakes. The HOL system was selected for this project because is 
has higher-order logic, generic specifications and polymorphic type constructs. 
These features directly affect the expressibility of the specification language. Fur- 
thermore HOL is widely available, robust, and has a growing world-wide user 
base. However, there is nothing our work that  requires the HOL theorem proving 
system. 

HOL is a general theorem proving system developed at the University of 
Cambridge [CGM87, Gor88] that  is based on Church's theory of simple types, 
or higher-order logic [Chu40]. Similar to predicate logic in allowing quantification 
over variables, higher-order logic also allows quantification over predicates and 
functions thus permitting more general systems to be described. 

For the most part,  the notation of HOL is that of standard logic: V, 3, A, V, 
etc. have their usual meanings. There are a few constructs that deserve special 
attention due to their use in the remainder of the paper: 

- HOL types are identified by a prefixed colon. Built-in types include :boo l  
and :num. Function types are constructed using ---*. HOL is polymorphic; 
type variables are indicated by a type names beginning with an asterisk. 

- The HOL conditional statement, written a ~ b I c, means "if a, then b, 
else c." A statement that  would read "if a, then b, else if c then d else if 
. . .  else e" would appear in HOL as 

a - - * b  I 
c - - ~ d  I 
�9 . .  I e 

- The construct l e t  v l  = e x p r l  alld v2 = expr2 arid . . . in  defines local 
variables vl ,  v2, etc. with values expr l ,  expr2, etc.simultaneously. 

- Comments in HOL are enclosed in percent signs, ~, 



36 

3 A r c h i t e c t u r a l  S p e c i f i c a t i o n  

Our intent is to present just enough of the specification of the architectural 
level to show that it is unchanged from the standard model and to support the 
discussion of the verification. Our presentation follows that of any denotational 
semantics: we discuss the syntax, the semantic domain, and the denotations, 
in that order. We conclude by showing the specification developed from the 
denotations using the generic interpreter theory. A more complete discussion of 
the use of HOL for specifying architectures is available in [Win94b]. 

3.1 In s t ruc t i on  Set Syn tax  

The instruction set for UINTA contains 27 instructions. The small number is not 
an issue since, as we show later, the verification would not change significantly 
with the addition of new instructions and the proof time is O(n) in the size of 
the instruction set. 

The instruction set contains instructions from most of the important classes 
of instructions one would find in any instruction set: ALU instructions, immedi- 
ate instructions, branch instructions, jump instructions, load instructions, and 
store instructions. The following is the abstract syntax for part of the instruction 
set: 

Instruction = 

LDI *ri *ri *short 

STI *ri *ri *short 

ADD *ri *ri *ri 

ADDI *ri *ri *short 

3MP *word26 

BEQ *ri *short 

NOOP 

3 .2  Semant ic  Domain  

The semantic domain is a record containing the state variables that the assembly 
language programmer would see. The name of the record and the name of each 
field is given in backquotes and the type of each field is enclosed in double quotes: 

create_record ~ State 

[~Reg ~, ":.ri-->*wordn"; 

'Pc', ":*wordn"; 

' NPc ~, " : *wordn" ; 

NNPc' , ": *wordn" ; 

Imem ~ , ":*memory" ; 

'Dmem c , ":*memory"; 

];; 

y, register file 

Z program counter Z 

% next program counter Y, 

Z next next program counter % 

Z instruction memory Z 

Z data memory Z 
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The register file is modeled as a function from register indices to n-bi t  words, 
the program counters are n-bit words. Imem and Dmem are both memories. The 
legal operations on n-bit words and memories are specified algebraically. We do 
not present those specifications here. Interested readers are referred to [Win94b]. 

The three instances of the program counter in the semantic domain are an ar- 
tifact of the delayed branches, Because delayed branches appear to the assembly 
language programmer, they are visible at the architectural level. We will see that 
in lower level of the specification hierarchy, there is only one program counter 
and the three program counters of the architectural level are merely temporal 
projections of the single program counter. 

The separation of the memory into instruction and data memory is a conve- 
nience that allows us to ignore self modifying programs. Self modifying programs 
do not cause much concern in a non-pipelined machine, but when instructions 
are pipelined, an instruction in the pipeline can modify another instruction that  
has already been loaded and started to execute. This kind of behavior hardly 
seems worth the trouble it causes, so we disallow it. 

3.3 I n s t r u c t i o n  D e n o t a t i o n s  

Instruction denotation can be given for classes of instructions. We call these spec- 
ifications semantic frameworks since they specify a framework for the semantics 
of an entire class of instructions. They are similar to the class level specifications 
of [TK93]. For example, here is the semantic framework for the ALU instructions 
in UINTA. Notice that it is parameterized by the ALU operation to be performed, 
op: 

1 ?d~ ALU_FM op Rd Ra Rb s e : 
2 l e t  reg = Reg s and 
3 pc = Pc s and 
4 nextpc = NPc s and 
5 nextnextpc = NNPc s and 
6 imem ~ Imem s and 
7 dmem ~ Dmem s in 
8 let a = INDEX_REG Ra reg and 
9 b = INDEX_REG Rb reg in 
i0 let result = op (a, b) in 

ii let new_reg = UPDATE_REG Rd reg result and 

12 new_pc = nextpc and 
13 ne._nextpc = nextnextpc and 

14 new_nextnextpc = inc nextnextpc in 

15 (State ne._reg new_pc ne._nextpc new_nextnextpc imem dmem) 

The framework is also parameterized by the destination register index, Rd and 
the source register indices, Ra and Rb. Because the function is curried, applying 
ALU_FM to an operation and the register indices like so: 

(ALU_FM add Rd Ra Rb) 
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returns a state transition function (i.e., a function that  takes a state, s, and 
environment, e, and returns a new state). 

Lines 2-7 of the preceding definition bind local names to the contents of the 
fields of the state s. Lines 8-9 bind a and b to the contents of the register file, 
reg ,  at indices Ra and Rb respectively. The op parameter is used to cMculate 
the result in line 10. Lines 11-14 calculate new values for those members of 
the state that  change in this framework. For example, in line 11, a new register 
file is calculated by updating the old register file at location Rd with the result 
calculated in line 10. Line 15 creates the new state record that  is returned as the 
result of the function. 

We create a denotation for the instruction set by relating the instruction 

syntax to the 

~def (M_INST (LDI Rd Ra imm) 
LOAD_FM Rd Ra imm) A 

(I~_INBT (ADD Bd Ira Rb) = 
ALU_FM add Rd Ra Rb) A 

(M_INST (SUB Rd aa Rb) = 

ALU_FM sub Rd Ra Rb) A 
(M_I~$T (ADDI Rd Ra lmm) = 

ALUI_FM add Rd Ra imm) A 
(M_INST (BNOT Rd Ra) = 

UNARY_Fbl bnot Rd Ra) A 
~_I~ST (3~LI Rd s = 

JALI_FM Rd imm) A 
(M_INST (BEQ Ra imm) = 

BRA_FM eqzp Ra i~m) A 

semantic frameworks using the following definition: 

M_I~ST maps a valid instruction, given syntactically, to a state transition function 

denoting the meaning of that  instruction. 

3.4 Interpreter Specification 

The architectural level specification is created by the generic interpreter theory 

from the preceding definitions: 

Arch_Interp s e = 
(Yr. 

let k = Opcode s e in 
(s (t q- I)) = M_INST k (s t) (e t)) 

The definition, in classic form, declares that  the state of the architecture, s, at 
t ime t q- 1 is a functmn~ M_.INST, of the state at t ime t. 
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Fig. 1. UINTA Electronic Block Model 

4 E l e c t r o n i c  B l o c k  M o d e l  

The electronic block model, EBM, is a structural model of the register transfer 
level and is shown in Figure 1. The model describes the connections between 
the major components of the microprocessor. The EBM is the lowest level in 
the verification hierarchy. For the most part there is a recognizable correspon- 
dence between the EBM and synthesizable statements in a hardware description 
language such as VHDL. 

The EBM state record is shown in Figure The state of the EBM is, obviously, 
larger than the state of the architectural level. Comparing the state record with 
Figure 1 shows that  the EBM state record contains a field for each register and 
flipflop in the implementation. The EBM state record contains a field for each 
component of the architectural state record as well as all of the state invisible at 
the architectural level. Note that  the next program counter, npc, and next next 
program counter, nnpc are not present in the electronic block model; we will 
discuss the disappearance of these later. The stage markers (in the comments) 
indicate the stage in which the register is set, not the stage in which it is used. 
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crea te_record  'EbmState ~ 
['EbmReg', ":*ri-->*wordn"; ~ register file 

CEbmPc~, ":*wordn"; ~ program counter 

~EbmIMem ~ , ":*memory"; ~ instruction memory 

~EbmDMem ~ , ":*memory"; ~ data memory 

CEbmIr', ":*wordn"; ~ instruction register, fetch 

'EbmIrl c , ":*wordn"; ~ instruction register, decode 

'Ebmlr2', ":*wordn"; ~ instruction register, execute 

~Ebmlr3 ~ , ":*wordn"; ~ instruction register, memory 

'EbmA', ":*wordn"; ~ ALU input latch A 

c EbmB ~, ":*wordn" ; ~ ALU input latch B 

~EbmPcl', ":*wordn"; ~ program counter, decode 

'EbmPc2 c , ":*wordn"; ~ program counter, execute 
~EbmALUout ~ , ":*wordn"; ~ ALU output latch 

~EbmALUoutl c , ":*wordn"; ~ ALU output latch, memory 

CEbmDMAR', ":*wordn"; ~ data memory address register 

CEbmSMDH~, ":*wordn"; ~ store memory data register 

CEbmLMDR', ":*wordn"; ~ load memory data register 

'EbmCond c , ":bool"; ~ branch condition flipflop 

~EbmStall ~ , ":bool"; ~ stall flipflop 

(clk ~, ":bool"; ~ 2 phase clock 
];; 

Fig. 2. UINTA Electronic Block Model State Record 

The top-level description of the EBM connects three large blocks; the con- 
trol block, the clock, and the data path; together. The structure is modeled in 
the usual existentially quantified conjunction of predicates format. Each of the 
predicates is itself an existentially quantified conjunction of predicates. When 
fully expanded, the structural definition of UINTA is approximately four pages 
of text. 

~d4 uintaEBM s e p = 

B (clk_l clk_2 .rsig rsig newstall:time-->bool). 

(CONTROL_BLOCK (EbmIr o s, EbmIrl o s, EbmIr2 o s, 

clk_1, EbmStall o s, newstall, rsig, wrsig)) A 

(CLOCK_SPEC (clk o s, clk_1, clk_2 )) A 

(DATA_PATH (EbmReg o s, EbmPc o s, EbmIMem o s, 
EbmDMem o s, EbmIr o s, EbmIrl o s, EbmIr2 o s, EbmIr3 o s, 

EbmA o s, EbmB o s, EbmPcl o s, EbmPc2 o s, EbmALUout o s, 

EbmALUoutl o s, EbmDMAR o s, EbmSMDR o s. EbmLMDR o s, 

EbmCond o s, EbmStall o s, clk o s, elk_l, clk_2. 

wrsig ,rsig, newstall)) 
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The arguments to the predicates are not just values, but signals (time depen- 
dent values). Thus, most of the arguments to  the predicates are some function 
name, such as EbmDMem, composed with the EBM state stream s. Because the 
state stream, s, is a function with type " : t ime --+EbmState", composing a field 
selector function with s returns a function with type " : t ime ---~f" where f is 
the type of the field. For example, EbmDMem o s has type " : t ime ---**memory". 

5 P h a s e  M o d e l  S p e c i f i c a t i o n  

The phase model provides a behavioral abstraction of the EBM. The behavior 
of the phase model is equivalent to the EBM (i.e. there is not data or temporal 
abstraction). The phase model can be specified and verified from the EBM using 
the generic interpreter theory. 

We do not give the details of the specification or verification here. Like the 
verification of most behavioral abstractions, the proof is quite irregular, but not 
technically difficult. 

6 P i p e l i n e  M o d e l  S p e c i f i c a t i o n  

The pipeline model is a temporal abstraction of the phase model. The behavior 
of the two phases is collapsed into one behavior for the pipeline. The data ab- 
straction that takes place is mostly related to the temporal abstraction. Thus, 
the state description is largely the same for the pipeline model as for the EBM. 

The specification of the state transition in the pipeline model is given as one 
large function since all of the changes take place concurrently. We will present 
the behavior by stages, but keep in mind that the stages make their state changes 
concurrently. 

Fetch Stage. The primary state change in the fetch stage is loading the instruc- 
tion register: 

stalls occur when ... 

let stall = STALL ir irl in 

fetch stage 

let new_ir = stall -+ ir 

I decode_word ( 

fetch (imem, address pc)) in 

The instruction register is unchanged in the event of a stall and gets the current 
instruction from memory otherwise. 

Decode Stage. The primary state change in the decode stage is loading the ALU 
input latches, A and B from the register file: 
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Z decode stage, use ir and pc Z 

let new_irl = stall -~ N00P 

I ir and 
nev_pcl = stall -~ pcl I pc and 

new_a = INDEX_BEG (sel_Ra Jr) new_reg and 

new_b = ((CLASSIFY ir) = STORE) -~ 

INDEX_BEG (sel_Rd ir) new_reg I 

INDEX_REG (sel_Rb ir) new_reg in 

In the event of a stall, the decode stage instruction register, i r l  gets a NOOP 
rather than the instruction in Jr .  

i 

Execute Stage. The execute stage can be broken into two large blocks. The first 
block describes the state changes associated with the ALU: 

execute stage, use irl andpcl Z 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

let bsrc = ((CLASSIFY irl) = STORE) -~ (sel_Rd irl) I 

(sel_Rb irl) in 

let ra = (sel_Ra irl) and 

imm = (sel_Imm irl) in 

let amux = 5 

(~(ra = R0)) --+ 

(((ra ---- (sel_Rd Jr2)) A 

(CLASSIFY ir2 = JUMPLINK)) -~ pc2 I 

((ra = (sel_Rd ir2)) A 

(IS_REG_WRITE ir2)) -* aluout I 

((ra = (sel_Rd ir3)) A 

(IS_BEG_WRITE ir3)) -* aluoutl I 

((ra = (sel_Rd ir3)) A 

(CLASSIFY Jr3 = LOAD)) --+ imdr I 

a) l 
a and 

bmux = ... in 

let new_ir2 = irl and 

new_pc2 = pcl and 

new_dmar = add (amux, shl (sel_Imm irl, 2)) and 

new_smdr = bmux and 

new_aluout = 
((CLASSIFY iri) = ALU) --+ ((BINOP irl) (amux, bmux)) I 

((CLASSIFY irl) = ALUI) -~ ((BINOP Jr1) (amux, imn)) I 

((CLASSIFY irl) = UNARY) -. ((UNOP irl) amux) I 
ARB in 

The new value of the aluout latch is calculated from the value given by the amux 
and bmux. These multiplexors supply the correct value for the respective inputs 
to the ALU based on the data forwarding conditions. For example, in lines 9-10, 
if the destination of the previous instruction in the pipe is the same as the A 



43 

source for the current instruction and that  instruction writes to the register file, 
then we supply the value in a l u o u t  to the A input to the ALU rather than the 
value in the A latch. 

The second major state change in the execute stage is the calculation of the 
new value for the program counter: 

Z execute stage, use irl and pcl Z 
1 l e t  co n d  = (CMPOP i r l  amux) i n  

2 let new_pc = stall -~ pc I 
3 (((CLASSIFY irl) = BRA) A cond) -~ 

4 (add (pc2, shl (sel_Immirl, 2))) I 
5 ((CLASSIFY irl) = JUMPLONG) -~ 

6 (add (pc2, shl (sel_Imm26 irl, 2))) I 
7 ((CLASSIFY irl) = JUMPREG) --, 

8 (add (amux, shl (sel_Imm irl, 2))) I 
9 ((CLASSIFY irl) = JUMPLINK) --, 

I0 (add (pc2, shl (sel_Imm irl, 2))) I 
11 (inc pc) in 

Note that  in the event of a stall, the program counter does not change (line 2). 
The new value of the program counter if the current instruction is a branch and 
the condition is true, for example, is the sum of pc2 and the immediate portion 
of the instruction shifted left twice for word boundary alignment (lines 3-4). 

Memory Stage. The memory stage calculates values for the load memory data 
register if the current instruction is a load or the stores a value in the data 
memory if the current instruction is a store: 

let new_Jr3 = Jr2 and  

new_imdr = ((CLASSIFY Jr2) = LOAD) -* 

(fetch (dmem, address dmar)) I 
imdrand 

new_dmem = ((CLASSIFY it2) = STORE) --, 

(store (dmem, address dmar, smdr)) I 
dmemand 

new_aluoutl =((CLASSIFY ir2) = JUMPLINK) -+ pc2 1 

aluout in 

Write Back Stage. The write-back stage updates the register file if necessary: 

I 
let -~ new_reg = 

(IS_REG_WRITE ir3) UFDATE_REG (sel_Rd ir3) reg aluoutl I 
(CLASSIFY ir3 = LOAD) -~ UPDATE_REG (sel_Rd Jr3) reg Imdr I 

reg in 
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The New Pipeline Stale. The new values calculated in the preceding code frag- 
ments comprise the updated pipeline state. The state returned from the pipeline 
model is a new pipeline state record created be the following expression: 

(PipelineState new_reg new_pc imem new_dmem 
new ir new_irl new_Jr2 new_Jr3 

new a new_b new_pcl new_pc2 

new aluout ne~_aluoutl 

new dmar new_smdr new_imdr) 

VeriJyiu9 the Pipeline Correct. The proof that  ~he pipeline model is correctly 
implemented by the phase model is done within the generic interpreter theory. 
There are no special considerations or exceptions. 

7 Verifying UINTA 

In this section we will concentrate on the proof that  the pipeline model imple- 
ments the architectural model since this is the part of the proof that  differs 
from previous microprocessor verifications. We first discuss why the correctness 
model at this level in the proof differs from our previous notion of correctness 
and then discuss the proof itself in three crucial areas: important lemmas, the 
proof tactic, and the correctness theorem. 

7.1 T h e  C o r r e c t n e s s  M o d e l  

The correctness model presented by the generic interpreter theory is based a 
notion of state stream abstraction. In the model, state stream u is an abstraction 
of state stream u' (written u __. u' ) if and only if 

1. each member of the range of u is a state abstraction of some member of the 

range of u' and 
2. there is a temporal mapping from time in u to time in u'. 

There are two distinct kinds of abstraction going on: the first is a data  abstrac- 
tion and the second is a temporal abstraction. Thus, using a state abstraction 
function, 5, and a temporal abstraction function, .~, we define stream abstrac- 

tion as follows 

u-<_ u' --- 3 (S :  S' -+ S). 3(3:: N --, N). 8 o u ' o J :  = 

where o denotes function composition. The importaat part of this model for our 
purposes is the orthogonality of the temporal and data abstractions (indicated 

by function composition). 
This is the crux of the problem with using the generic interpreter theory 

for verifying pipelined microprocessors: the data and temporal abstractions in 
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t+8 t+9 t t+ 1 t+2 t+3 t+4 t+5 t+6 t+7 

IF ~ / ~ ~  pcimem 

ID opo 

EX ~ ~ ~  nnpc 

MEM ~ ~ W !  dmem 

WB ~ ~ [ ~  reg 

Fig. 3. UINTA Pipeline Execution 

a pipeline are not orthogonal. Indeed, the correctness model depends on being 
able to mix the temporal and data abstractions. 

The following discussion gives some idea of what we mean when we say a 
pipeline is correct and shows how the temporal  and data abstractions are mixed. 
Suppose that we execute the following program fragment: 

PC Ins t ruc t ion  

y ADD xl x2 x3 
y + 1 LDI x4 x5 i n l  
y + 2 SUB x6 x4 x7 
y -4- 3 JMP z 

We can picture the execution of the pipe as shown in Figure 3. On the left of 
the figure are the names of the pipeline stages. On the top is the time relative 
to the start  of the execution of this code fragment. The square labeled ADD in 
the line labeled with ~.X indicates that  the execute stage of the pipeline performs 
the state transitions for the ADD instruction between time t + 2 and t + 3. The 
labels on the right side of the figure indicate the architectural model states that  
are updated in the corresponding stage. 

There are several points of interest regarding Figure 3: 

- The ADD instruction updates the data memory between times t + 3 and t + 4, 
for example, and the register file between times t + 4 and t + 5. The state 
transitions indicated by the architectural model are spread out over time. 
We call this skew. 

- Instruction execution can be delayed by hazards. The SUB instruction must 
wait to be executed because one of its arguments, x4, depends on the va lue  
being loaded by the LDI instruction. The value will not be ready for forward- 
ing to the ALU in time to avoid a delay. This is called a stall. The hardware 
automatically injects a N00P instruction, represented by blank cells, into the 
pipeline between the LDI and SUB instruction. 

- The skew is not uniform in the presence of stalls. For example, the effect of 
the LDI instruction on the rmpc state variable does not occur between times 
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+ 3 and i + 4, as we would expect, but  occurs between times ~ + 4 and f + 5. 
We call this shifting. 

Because of skewing, stalling, and shifting, the data and temporal abstraction 
cannot be separated, indeed, the architectural state variables, pc, axpc, and rmpc 
are all the same variable in the pipeline model, they are merely different temporal 
views of the same data. 

7.2 S t a t e  S t r e a m  A b s t r a c t i o n  

The discussion in the last section suggests that a function mapping the state 
stream of a pipeline into a state stream for a non-pipelined model must collect 
different pieces of the pipelined state stream at different times and packag e them 
into a state record to appear in the non-pipelined state stream at a particular 
time. This section describes such an abstraction function for UiNTA. 

The correctness model for UINTA depends on a function, called abs that  
maps a pipeline model state stream into an architectural model state stream. 
This function allows us to maintain the illusion in the architectural model that  
the state changes occur in ~ single t ime step hetween times t and t + 1. 

~de] abs s 
let 

let 
let 

t 
t '  = Te=p_Abs (A t .  -~(STALL ( I r  (s t ) )  ( I r l  (s t ) ) ) )  t in 
j = (STALL ( I r  (s ( t '  + 1)))  ( I r i  (s ( t '  + 1) ) ) )  --~ 1 ] 0 in 
reg ~ Pipelinegeg (s (t' + 4)) and 
pc ~ PipelinePc (s t') and 
npc ~ PipelinePr (s (t'+t)) and 
nnpc ~ PipelinePs (s ((t' + 2> + j)) and 
imem _~ PipelinelMem (s t') and 
dmem ~ PipelineDMem (s (t' + 3)) in 

State reg pc npc nnpc imem dmem 

The abs function is a curried function of two arguments. The first argument 
is the pipeline level state stream; the second argument is the architectural level 
time. Thus, abs ps  represents the a~chitectura~ level state stream tha t  is an 

abstract of the pipeline level state stream ps. 
In the function, the variable t '  is defined using the temporal abstraction 

function Temp-hbs [Win94a] as the next time after t when there is not a stall. 
The  variable j gets the value i if the next instruction stalls and 0 otherwise. 

An architectural level state record has five components 3.2: the register file, 
the program counter, the next program counter, the next next program counter, 

the instruction memory, and the data memory. 
If we examine Figure 3, we see that,  for example, the register file in the 

architectural model at t ime t, is the register file in the pipeline model skewed by 
4 from the next time after t there is not a stall. Thus, we define tog,  the register 
file component of the architectural level state record as: 
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let reg = PipelineReg (s (t' + 4)) and 

Other components of the architectural level state are defined similarly. Notice 
that  the pc, npr and nnpc are all defined in terms of the pipeline model pro- 
gram counter with differing skews. The value of nnpc is shifted when the next 
instruction stalls as indicated in Figure 3. 

7.3 I m p o r t a n t  L e m m a s  

There are two impor tant  lemmas in the verification of UINTA. The first, the data  
forwarding lemma, proves that  the data  forwarding behavior of the pipeline is 
correct: 

1 ~ Pipeline_Interp 
2 (A t. PipelineState (reg t) (pc t) (imem t) (dmem t) (Jr t) 

3 ( i r l  t )  ( i t 2  t )  (Jr3 t )  (a t )  (b t )  (pcl t )  
4 (pc2 t )  (aluout t )  (a luout l  t )  (dmar t )  
5 (smdr t) (Imdr t)) 
6 (A t .  Env(ivec t ) ( i n t  t ) ( r e s e t  t ) )  (A t .  p t )  
7 V t .  
8 let new_reg = 
9 INDEX_BEG xl 

I0 (IS_REG_WRITE(ir3(t+I)) -~ 
11 UPDATE_BEG (sel_Rd ( Jr3 (t+ I ) ) ) 
12 ( r e g ( t + l ) )  
13 (aluout 1 ( t + l ) )  I 
14 (CLASSIFY(ir3(t+I)) ----- LOAD) -+ 
IS UPDATE_BEG (sel_Rd(ir3 ( t + l ) )  ) 
16 (reg(tW1))  
17 ( l m d r ( t + l ) )  [ 
18 r e g ( t + l ) )  in 
19 ~((CLASSIFY(irl(t + 1)) = LOAD) A (xl = s e l R d ( i r l ( t  + 1) ) ) )  
20 ((INDEX_BEG x l ( r e g ( t + 4 ) ) )  ---- 
21 ((-~(xl ---- RO)) -* ( ( (x l  ----- s e l_Rd( i r2 ( t+2 ) ) )  A 
22 (CLASSIFY(ir2(t+2))=JUMPLII~I~)) --. pc2( t+2)  [ 
23 ( ( x l  = s e l _R d( i r2 ( t +2 ) ) )  A 
24 IS_BEG_WRITE(ir2(t+2))) --* aluout  ( t+2)  ] 
25 ((xl = sel_Bd(ir3(t+2))) h 
26 IS_REG_WBITE(ir3(t+2))) --+ aluoutl(t+9_) I 
27 ((xl = sel_Bd(ir3(t+2))) A 

28 (CLASSIFY(ir3(t+2))=LOAD)) --+ imdr(t+2) I 
29 new_reg I 
30 new_reg) ) 

The theorem states that  the pipeline model (lines 1-6) implies tha t  reading, x l ,  
from the register file at t ime t + 4 (line 20) is equivalent to the da ta  forwarding 
behavior of the pipeline (lines 21-30) which is reading values at t ime t + 2. 
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The other important  lemma is used to limit the case analysis in the proof. In 
the proof that  any given instruction works, we want to be very general about the 
instruction sequencing. Thus we do not want to make any assumptions about 
whether the instructions before the current instruction stalls or not. This means 
that  as we do the proof, we have to  do a case analysis on stalling. Whenever we 
don' t  stall, we can proceed with the the symbolic execution of the instruction 
and complete the proof for that  case, but there is always the left-over stall case 
to consider. The following lemma, however, limits the proof to one stall case 
split by showing that the pipeline cannot stall twice in a row (because the stall 
inserts NOOP which cannot cause a stall): 

~- pipeline_Int erp 
(A t. PipelineState (reg t) (pc t) (imem t) (dmem t) (ir t) 

( i r l  t )  (Jr2 t )  (Jr3 t )  (a t )  (b t )  (pcl t )  
(pc2 t) (aluout t) (aluoutl t) (drear t) 
(smdr t) (Imdr t)) 

(A t. Env(ivec t)(int t)(reset t)) (A t. p t) =~ 
(Vt . (STALL (ir t) (irl t)) =# 

~(STALL (Jr (t+l)) (irl (t+i)))) 

Without  this lemma, the symbolic execution would lead to an infinite number of 
case splits on stalling. Every pipeline, to be correct, must have a similar lemma 
showing that  it cannot issue an unlimited number of stalls. If it could, of course, 
the processor could go into an infinite loop of sorts under certain conditions. 
This is not usually the behavior one wants from a processor. 

7.4 T h e  I n s t r u c t i o n  Tac t i c  

The proof of UINTA breaks into 27 cases, one for each of the instructions in the 
instruction set. 3 Each of these instructions can be solved using the same tactic. 
The tactic considers each instruction under the case that  it stalls and the case 
that  is does not. In either case, the method of proof is symbolic execution of 
the pipeline model using a general purpose symbolic execution tactic that  we 

developed for microprocessor proofs. 
A s ing le /u in ta / ins t ruc t ion  can be verified in less than 10 minutes on an HP 

735 running HOL88 version 2.01 compiled with AKCL. Increasing the size of 
the instruction set thus increases the overall verification time linearly. Unless the 
instruction differs significantly from the instructions already in the instruction 
set, it is likely that  the tactic used to perform the verification will not change, 
so the human effort to add additional instructions is probably small. 

When there is an error, either in the design or the specification, the tactic 
fails, leaving a symbolic record of what the pipeline computed in each stage. We 

3 For larger instruction sets, we could have done case analysis on instruction classes 
(which correspond to the semantic frameworks) to limit the case explosion. 



49 

have found that this record is very helpful for debugging the implementation and 
specification as it is usually quite easy to see where what the pipeline computed 
differs from what the designer expected. 

7.5 The  C o r r e c t n e s s  T h e o r e m  

The overall correctness theorem (for this level in the proof hierarchy) shows 
that the pipeline model implies the architectural model when it is applied to an 
abstraction of the pipeline state stream: 

Pipeline_Interp s e p ~ Arch_Interp (abs s) e p 

This result can be combined with the proofs of the other levels (using the generic 
interpreter theory) to get a result that states the architectural model follows from 
the EBM. The overall form of the goal is familiar and has not changed from the 
goals commonly used in non-pipelined verification. 

8 T h e  C o r r e c t n e s s  M o d e l  a n d  H a z a r d s  

The correctness model we have developed handles read after write (RAW) data 
hazards in the general case as shown in the data forwarding lemma of Section 7.3. 
The same cannot be said of control and structural hazards because of the variety 
of design techniques for mitigating them. RAW data hazards are almost always 
mitigated by forwarding the needed information from later stages of the pipeline 
to earlier stages. Because a single technique suffices, a single model suffices. 

UINTA mitigates control hazards using delayed branching. As the discussion 
in Section 3 shows, delayed branching is visible at the architectural level. Another 
popular technique for mitigating control hazards, branch prediction, would not 

be visible at the architectural level. We have verified a processor that uses a 
simple form of branch prediction. As expected, changing the architectural model 
to that extent has significant effects on the abstraction function. For now, as 
the techniques for mitigating control hazards change, so will our verification 
methodology. 

While we have not used our methodology for reasoning about a pipelined 
architecture with structural hazards, we believe that the techniques we have 
outlined are sufficient with some minor changes. The most important change 
relates to skew in the abstraction function: the abstraction function of Section 7.2 
uses a specific number for the skew. A structural hazard could make the skew 
non-deterministic. In that case, the skew would have to be determined from 
a signal indicating when the structural hazard had cleared in the same way 
that asynchronous memory is specified now (see [Win94a] for more information). 
Aagaard and Leeser have described a very general methodology for reasoning 
about pipelines with structural hazards [AL94]. 
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9 Conclus ion  

We have completed the specification and verification of a pipelined micropro- 
cessor called UINTA. UINTA has a five stage pipeline with two levels of data 
forwarding and delayed branching. This paper has presented techniques for ver- 
ifying that  the pipeline model correctly implements the architectural model. 

Because we have developed tools for dealing with specifications and correct- 
ness theorems in a standard format, one of our goals in the verification of UINTA 
was to ensure that  the specification and correctness theorem were stated using 
that  format. The standard format has proven useful in proving properties about 
the architecture [Win91] and for extending the verification hierarchy [Win93]. 
The verification in this paper was completed using specifications exactly like 
those used for non-pipelined microprocessors. The correctness result is exactly 
like the correctness results for non-pipelined microprocessors. 

We have also presented the abstraction function at the heart of the correct- 
ness model and shown how and why it differs from the abstractions commonly 
used to verify non-pipelined microprocessors. This function is the essence of what 
it means to say that the UINTA pipeline correctly implements the UINTA archi- 
tecture. The function allows us to preserve the illusion that  instructions execute 
sequentially in the architectural model even though the pipelined implementa- 
tion performs operations in parallel. 

We are presently verifying a pipelined microprocessor called SAWTOOTH. 
SAWTOOTH has a different set of features that  UINTA including a simple form of 
branch prediction, user and multi-level system interrupts, a windowed register 
file, and supervisory mode. We plan to use the experience of verifying UINTA 
and SAWTOOTH to modify the generic interpreter theory to include pipeline 
semantics. 
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