
A Correctness Model for Pipelined
Microprocessors

Phillip J. Windley I and Michael L. Coe 2

Laboratory for Applied Logic, Brigham Young University, Provo, UT 84602-6576
Laboratory for Applied Logic, University of Idaho, Moscow, ID 84843-1010

Abst rac t . What does it mean for an instruction pipeline to be correct?
We recently completed the specification and verification of a pipelined
microprocessor called UINTA. Our proof makes no simplifying assump-
tions about data and control hazards. This paper presents the specifi-
cation, describes the verification, and discusses the effect of pipelining
on the correctness model. The most significant effect on the pipeline is
that data and temporal abstractions in the correctness model are not
orthogonal as they are in non-pipelined implementations.

1 I n t r o d u c t i o n

Much has been written over the years regarding the formal specification and
verification of microprocessors. Most of these efforts have been directed at non-
pipelined microprocessors. See IGor83, Bow87, CCLO88, Coh88, Joy88, Hun89,
Win90, Her92, SWL93, Win94a] for examples.

The verification of pipelined microprocessors presents unique challenges. The
correctness model is somewhat different than the standard correctness models
used previously (see Section 7.1). Besides the correctness model, the concurrent
operations inherent in a pipeline lead to hazards which must be considered in
the proof. There are three types of hazards:

- s t r u c t u r a l h a z a r d s which arise because of resource constraints (i.e. more
than one operation needing the ALU at a time),

- d a t a h a z a r d s which arise when data is needed before it has been calculated
or, alternately when data is changed before it has been used, and

- c o n t r o l h a z a r d s which arise when instructions change the flow of control
after some operations in the original flow of control have already begun.

Several papers have presented the verification of pipelined microprocessors:
In [SB90], the verification of a three stage pipelined machine name Mini-

Cayuga is presented. The verification is the first, to our knowledge, of a pipelined
microprocessor. Because the pipeline has only three stages, however, the verifi-
cation did not have to deal with data and control hazards in the pipeline.

The verification of a machine similar to the DLX processor of [HP90] is pre-
sented in [TK93]. The machine has a five stage pipeline and encounters data
and control hazards, but it is not clear from the presentation whether these are
dealt with in the proof or in the assumptions.

34

This paper presents the verification of a pipelined microprocessor called
UINTA. UINTA has a five stage pipeline which presents data and control haz-
ards (there are no structural hazards). Mitigation of the data hazards is done
using two levels of data forwarding; mitigation of the control hazards is accom-
plished using a delayed branch (2 stages). Our verification makes no assumptions
about software constraints or the ordering of instructions.

Our work in microprocessor verification has been characterized by the devel-
opment of formal models for microprocessor correctness and a standard model
of microprocessor semantics [Win93]. In [Win94a] we present the verification of
a non-pipelined microprocessor using our model, which we call the generic in-
terpreter theory. The generic interpreter theory does several things:

1. The formalization provides a step-by-step approach to microprocessor spec-
ification by enumerating the important definitions that need to be made for
any microprocessor specification.

2. Using the formalization, the verification tool can derive the lemmas that
need to be verified from the specification.

3. After these lemmas have been established, the verification tool can use the
formalization to automatically derive the final result from the lemmas.

Using the generic interpreter theory provides a standardized model that en-
sures that the theorems used can be put together in standard ways and used
in other places in the proof. One of the goals of the effort presented here was
to evaluate the use of the generic interpreter theory in verifying pipelined pro-
cessors. We will see that while the generic interpreter theory provides the same
benefits for most of the verification of UINTA, its fails in one important place.
This is discussed in more detail in Section 7.1.

The specification and verification of UINTA is done hierarchically to reduce
the abstraction distance between successive layers. As noted in [Me188], there
are four types of abstraction: structural, behavioral, data, and temporal. Where
possible, we limit the types of abstraction between any two layers. The four
specification models employed in the verification are:

- Electronic Block Model . This model is a structural description of register
transfer level. The model states how the major components such as the
register file and arithmetic logic unit (ALU) are connected together.

- Phase Model . This model is a behavioral abstraction of the electronic block
model. There is no data or temporal abstraction between the electronic block

model and the phase model.
- P ipe l ine Model . This model is a temporal abstraction of the phase model.

The two phases of the phase model are combined in the pipeline model. Each
time unit in the pipeline model represents one execution of each stage in the

pipeline.
- Arch i t ec tu ra l Model . This model is a data and temporal abstraction of

the pipeline model, the architectural model describes the instruction set
semantics and is intended to represent the assembly language programmer's

35

view of the microprocessor. We will say more about why we perform the
data and temporal abstract concurrently in Section 7.1.

The verification of UINTA shows that the resultant specifications and the-
orems need not be different from those used in non-pipelined microprocessor
verification, but that the correctness model and the important lemmas change
considerably. We will briefly present the specifications of each level (in a slightly
different order than that above) and concentrate on the parts of the verification
that differ significantly from previous microprocessor verifications.

2 A B r i e f I n t r o d u c t i o n t o H O L

To ensure the accuracy of our specifications and proofs, we developed them us-
ing a mechanical verification system. The mechanical system performs syntax
and type checking of the specifications and prevents the proofs from contain-
ing logical mistakes. The HOL system was selected for this project because is
has higher-order logic, generic specifications and polymorphic type constructs.
These features directly affect the expressibility of the specification language. Fur-
thermore HOL is widely available, robust, and has a growing world-wide user
base. However, there is nothing our work that requires the HOL theorem proving
system.

HOL is a general theorem proving system developed at the University of
Cambridge [CGM87, Gor88] that is based on Church's theory of simple types,
or higher-order logic [Chu40]. Similar to predicate logic in allowing quantification
over variables, higher-order logic also allows quantification over predicates and
functions thus permitting more general systems to be described.

For the most part, the notation of HOL is that of standard logic: V, 3, A, V,
etc. have their usual meanings. There are a few constructs that deserve special
attention due to their use in the remainder of the paper:

- HOL types are identified by a prefixed colon. Built-in types include :boo l
and :num. Function types are constructed using ---*. HOL is polymorphic;
type variables are indicated by a type names beginning with an asterisk.

- The HOL conditional statement, written a ~ b I c, means "if a, then b,
else c." A statement that would read "if a, then b, else if c then d else if
. . . else e" would appear in HOL as

a - - * b I
c - - ~ d I
�9 . . I e

- The construct l e t v l = e x p r l alld v2 = expr2 arid . . . in defines local
variables vl , v2, etc. with values expr l , expr2, etc.simultaneously.

- Comments in HOL are enclosed in percent signs, ~,

36

3 A r c h i t e c t u r a l S p e c i f i c a t i o n

Our intent is to present just enough of the specification of the architectural
level to show that it is unchanged from the standard model and to support the
discussion of the verification. Our presentation follows that of any denotational
semantics: we discuss the syntax, the semantic domain, and the denotations,
in that order. We conclude by showing the specification developed from the
denotations using the generic interpreter theory. A more complete discussion of
the use of HOL for specifying architectures is available in [Win94b].

3.1 In s t ruc t i on Set Syn tax

The instruction set for UINTA contains 27 instructions. The small number is not
an issue since, as we show later, the verification would not change significantly
with the addition of new instructions and the proof time is O(n) in the size of
the instruction set.

The instruction set contains instructions from most of the important classes
of instructions one would find in any instruction set: ALU instructions, immedi-
ate instructions, branch instructions, jump instructions, load instructions, and
store instructions. The following is the abstract syntax for part of the instruction
set:

Instruction =

LDI *ri *ri *short

STI *ri *ri *short

ADD *ri *ri *ri

ADDI *ri *ri *short

3MP *word26

BEQ *ri *short

NOOP

3 .2 Semant ic Domain

The semantic domain is a record containing the state variables that the assembly
language programmer would see. The name of the record and the name of each
field is given in backquotes and the type of each field is enclosed in double quotes:

create_record ~ State

[~Reg ~, ":.ri-->*wordn";

'Pc', ":*wordn";

' NPc ~, " : *wordn" ;

NNPc' , ": *wordn" ;

Imem ~ , ":*memory" ;

'Dmem c , ":*memory";

];;

y, register file

Z program counter Z

% next program counter Y,

Z next next program counter %

Z instruction memory Z

Z data memory Z

37

The register file is modeled as a function from register indices to n-bi t words,
the program counters are n-bit words. Imem and Dmem are both memories. The
legal operations on n-bit words and memories are specified algebraically. We do
not present those specifications here. Interested readers are referred to [Win94b].

The three instances of the program counter in the semantic domain are an ar-
tifact of the delayed branches, Because delayed branches appear to the assembly
language programmer, they are visible at the architectural level. We will see that
in lower level of the specification hierarchy, there is only one program counter
and the three program counters of the architectural level are merely temporal
projections of the single program counter.

The separation of the memory into instruction and data memory is a conve-
nience that allows us to ignore self modifying programs. Self modifying programs
do not cause much concern in a non-pipelined machine, but when instructions
are pipelined, an instruction in the pipeline can modify another instruction that
has already been loaded and started to execute. This kind of behavior hardly
seems worth the trouble it causes, so we disallow it.

3.3 I n s t r u c t i o n D e n o t a t i o n s

Instruction denotation can be given for classes of instructions. We call these spec-
ifications semantic frameworks since they specify a framework for the semantics
of an entire class of instructions. They are similar to the class level specifications
of [TK93]. For example, here is the semantic framework for the ALU instructions
in UINTA. Notice that it is parameterized by the ALU operation to be performed,
op:

1 ?d~ ALU_FM op Rd Ra Rb s e :
2 l e t reg = Reg s and
3 pc = Pc s and
4 nextpc = NPc s and
5 nextnextpc = NNPc s and
6 imem ~ Imem s and
7 dmem ~ Dmem s in
8 let a = INDEX_REG Ra reg and
9 b = INDEX_REG Rb reg in
i0 let result = op (a, b) in

ii let new_reg = UPDATE_REG Rd reg result and

12 new_pc = nextpc and
13 ne._nextpc = nextnextpc and

14 new_nextnextpc = inc nextnextpc in

15 (State ne._reg new_pc ne._nextpc new_nextnextpc imem dmem)

The framework is also parameterized by the destination register index, Rd and
the source register indices, Ra and Rb. Because the function is curried, applying
ALU_FM to an operation and the register indices like so:

(ALU_FM add Rd Ra Rb)

38

returns a state transition function (i.e., a function that takes a state, s, and
environment, e, and returns a new state).

Lines 2-7 of the preceding definition bind local names to the contents of the
fields of the state s. Lines 8-9 bind a and b to the contents of the register file,
reg , at indices Ra and Rb respectively. The op parameter is used to cMculate
the result in line 10. Lines 11-14 calculate new values for those members of
the state that change in this framework. For example, in line 11, a new register
file is calculated by updating the old register file at location Rd with the result
calculated in line 10. Line 15 creates the new state record that is returned as the
result of the function.

We create a denotation for the instruction set by relating the instruction

syntax to the

~def (M_INST (LDI Rd Ra imm)
LOAD_FM Rd Ra imm) A

(I~_INBT (ADD Bd Ira Rb) =
ALU_FM add Rd Ra Rb) A

(M_INST (SUB Rd aa Rb) =

ALU_FM sub Rd Ra Rb) A
(M_I~$T (ADDI Rd Ra lmm) =

ALUI_FM add Rd Ra imm) A
(M_INST (BNOT Rd Ra) =

UNARY_Fbl bnot Rd Ra) A
~_I~ST (3~LI Rd s =

JALI_FM Rd imm) A
(M_INST (BEQ Ra imm) =

BRA_FM eqzp Ra i~m) A

semantic frameworks using the following definition:

M_I~ST maps a valid instruction, given syntactically, to a state transition function

denoting the meaning of that instruction.

3.4 Interpreter Specification

The architectural level specification is created by the generic interpreter theory

from the preceding definitions:

Arch_Interp s e =
(Yr.

let k = Opcode s e in
(s (t q- I)) = M_INST k (s t) (e t))

The definition, in classic form, declares that the state of the architecture, s, at
t ime t q- 1 is a functmn~ M_.INST, of the state at t ime t.

$9

:i

Compamto*

MEM

WB
R�9 File

Fig. 1. UINTA Electronic Block Model

4 E l e c t r o n i c B l o c k M o d e l

The electronic block model, EBM, is a structural model of the register transfer
level and is shown in Figure 1. The model describes the connections between
the major components of the microprocessor. The EBM is the lowest level in
the verification hierarchy. For the most part there is a recognizable correspon-
dence between the EBM and synthesizable statements in a hardware description
language such as VHDL.

The EBM state record is shown in Figure The state of the EBM is, obviously,
larger than the state of the architectural level. Comparing the state record with
Figure 1 shows that the EBM state record contains a field for each register and
flipflop in the implementation. The EBM state record contains a field for each
component of the architectural state record as well as all of the state invisible at
the architectural level. Note that the next program counter, npc, and next next
program counter, nnpc are not present in the electronic block model; we will
discuss the disappearance of these later. The stage markers (in the comments)
indicate the stage in which the register is set, not the stage in which it is used.

40

crea te_record 'EbmState ~
['EbmReg', ":*ri-->*wordn"; ~ register file

CEbmPc~, ":*wordn"; ~ program counter

~EbmIMem ~ , ":*memory"; ~ instruction memory

~EbmDMem ~ , ":*memory"; ~ data memory

CEbmIr', ":*wordn"; ~ instruction register, fetch

'EbmIrl c , ":*wordn"; ~ instruction register, decode

'Ebmlr2', ":*wordn"; ~ instruction register, execute

~Ebmlr3 ~ , ":*wordn"; ~ instruction register, memory

'EbmA', ":*wordn"; ~ ALU input latch A

c EbmB ~, ":*wordn" ; ~ ALU input latch B

~EbmPcl', ":*wordn"; ~ program counter, decode

'EbmPc2 c , ":*wordn"; ~ program counter, execute
~EbmALUout ~ , ":*wordn"; ~ ALU output latch

~EbmALUoutl c , ":*wordn"; ~ ALU output latch, memory

CEbmDMAR', ":*wordn"; ~ data memory address register

CEbmSMDH~, ":*wordn"; ~ store memory data register

CEbmLMDR', ":*wordn"; ~ load memory data register

'EbmCond c , ":bool"; ~ branch condition flipflop

~EbmStall ~ , ":bool"; ~ stall flipflop

(clk ~, ":bool"; ~ 2 phase clock
];;

Fig. 2. UINTA Electronic Block Model State Record

The top-level description of the EBM connects three large blocks; the con-
trol block, the clock, and the data path; together. The structure is modeled in
the usual existentially quantified conjunction of predicates format. Each of the
predicates is itself an existentially quantified conjunction of predicates. When
fully expanded, the structural definition of UINTA is approximately four pages
of text.

~d4 uintaEBM s e p =

B (clk_l clk_2 .rsig rsig newstall:time-->bool).

(CONTROL_BLOCK (EbmIr o s, EbmIrl o s, EbmIr2 o s,

clk_1, EbmStall o s, newstall, rsig, wrsig)) A

(CLOCK_SPEC (clk o s, clk_1, clk_2)) A

(DATA_PATH (EbmReg o s, EbmPc o s, EbmIMem o s,
EbmDMem o s, EbmIr o s, EbmIrl o s, EbmIr2 o s, EbmIr3 o s,

EbmA o s, EbmB o s, EbmPcl o s, EbmPc2 o s, EbmALUout o s,

EbmALUoutl o s, EbmDMAR o s, EbmSMDR o s. EbmLMDR o s,

EbmCond o s, EbmStall o s, clk o s, elk_l, clk_2.

wrsig ,rsig, newstall))

41

The arguments to the predicates are not just values, but signals (time depen-
dent values). Thus, most of the arguments to the predicates are some function
name, such as EbmDMem, composed with the EBM state stream s. Because the
state stream, s, is a function with type " : t ime --+EbmState", composing a field
selector function with s returns a function with type " : t ime ---~f" where f is
the type of the field. For example, EbmDMem o s has type " : t ime ---**memory".

5 P h a s e M o d e l S p e c i f i c a t i o n

The phase model provides a behavioral abstraction of the EBM. The behavior
of the phase model is equivalent to the EBM (i.e. there is not data or temporal
abstraction). The phase model can be specified and verified from the EBM using
the generic interpreter theory.

We do not give the details of the specification or verification here. Like the
verification of most behavioral abstractions, the proof is quite irregular, but not
technically difficult.

6 P i p e l i n e M o d e l S p e c i f i c a t i o n

The pipeline model is a temporal abstraction of the phase model. The behavior
of the two phases is collapsed into one behavior for the pipeline. The data ab-
straction that takes place is mostly related to the temporal abstraction. Thus,
the state description is largely the same for the pipeline model as for the EBM.

The specification of the state transition in the pipeline model is given as one
large function since all of the changes take place concurrently. We will present
the behavior by stages, but keep in mind that the stages make their state changes
concurrently.

Fetch Stage. The primary state change in the fetch stage is loading the instruc-
tion register:

stalls occur when ...

let stall = STALL ir irl in

fetch stage

let new_ir = stall -+ ir

I decode_word (

fetch (imem, address pc)) in

The instruction register is unchanged in the event of a stall and gets the current
instruction from memory otherwise.

Decode Stage. The primary state change in the decode stage is loading the ALU
input latches, A and B from the register file:

42

Z decode stage, use ir and pc Z

let new_irl = stall -~ N00P

I ir and
nev_pcl = stall -~ pcl I pc and

new_a = INDEX_BEG (sel_Ra Jr) new_reg and

new_b = ((CLASSIFY ir) = STORE) -~

INDEX_BEG (sel_Rd ir) new_reg I

INDEX_REG (sel_Rb ir) new_reg in

In the event of a stall, the decode stage instruction register, i r l gets a NOOP
rather than the instruction in Jr .

i

Execute Stage. The execute stage can be broken into two large blocks. The first
block describes the state changes associated with the ALU:

execute stage, use irl andpcl Z

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

let bsrc = ((CLASSIFY irl) = STORE) -~ (sel_Rd irl) I

(sel_Rb irl) in

let ra = (sel_Ra irl) and

imm = (sel_Imm irl) in

let amux = 5

(~(ra = R0)) --+

(((ra ---- (sel_Rd Jr2)) A

(CLASSIFY ir2 = JUMPLINK)) -~ pc2 I

((ra = (sel_Rd ir2)) A

(IS_REG_WRITE ir2)) -* aluout I

((ra = (sel_Rd ir3)) A

(IS_BEG_WRITE ir3)) -* aluoutl I

((ra = (sel_Rd ir3)) A

(CLASSIFY Jr3 = LOAD)) --+ imdr I

a) l
a and

bmux = ... in

let new_ir2 = irl and

new_pc2 = pcl and

new_dmar = add (amux, shl (sel_Imm irl, 2)) and

new_smdr = bmux and

new_aluout =
((CLASSIFY iri) = ALU) --+ ((BINOP irl) (amux, bmux)) I

((CLASSIFY irl) = ALUI) -~ ((BINOP Jr1) (amux, imn)) I

((CLASSIFY irl) = UNARY) -. ((UNOP irl) amux) I
ARB in

The new value of the aluout latch is calculated from the value given by the amux
and bmux. These multiplexors supply the correct value for the respective inputs
to the ALU based on the data forwarding conditions. For example, in lines 9-10,
if the destination of the previous instruction in the pipe is the same as the A

43

source for the current instruction and that instruction writes to the register file,
then we supply the value in a l u o u t to the A input to the ALU rather than the
value in the A latch.

The second major state change in the execute stage is the calculation of the
new value for the program counter:

Z execute stage, use irl and pcl Z
1 l e t co n d = (CMPOP i r l amux) i n

2 let new_pc = stall -~ pc I
3 (((CLASSIFY irl) = BRA) A cond) -~

4 (add (pc2, shl (sel_Immirl, 2))) I
5 ((CLASSIFY irl) = JUMPLONG) -~

6 (add (pc2, shl (sel_Imm26 irl, 2))) I
7 ((CLASSIFY irl) = JUMPREG) --,

8 (add (amux, shl (sel_Imm irl, 2))) I
9 ((CLASSIFY irl) = JUMPLINK) --,

I0 (add (pc2, shl (sel_Imm irl, 2))) I
11 (inc pc) in

Note that in the event of a stall, the program counter does not change (line 2).
The new value of the program counter if the current instruction is a branch and
the condition is true, for example, is the sum of pc2 and the immediate portion
of the instruction shifted left twice for word boundary alignment (lines 3-4).

Memory Stage. The memory stage calculates values for the load memory data
register if the current instruction is a load or the stores a value in the data
memory if the current instruction is a store:

let new_Jr3 = Jr2 and

new_imdr = ((CLASSIFY Jr2) = LOAD) -*

(fetch (dmem, address dmar)) I
imdrand

new_dmem = ((CLASSIFY it2) = STORE) --,

(store (dmem, address dmar, smdr)) I
dmemand

new_aluoutl =((CLASSIFY ir2) = JUMPLINK) -+ pc2 1

aluout in

Write Back Stage. The write-back stage updates the register file if necessary:

I
let -~ new_reg =

(IS_REG_WRITE ir3) UFDATE_REG (sel_Rd ir3) reg aluoutl I
(CLASSIFY ir3 = LOAD) -~ UPDATE_REG (sel_Rd Jr3) reg Imdr I

reg in

44

The New Pipeline Stale. The new values calculated in the preceding code frag-
ments comprise the updated pipeline state. The state returned from the pipeline
model is a new pipeline state record created be the following expression:

(PipelineState new_reg new_pc imem new_dmem
new ir new_irl new_Jr2 new_Jr3

new a new_b new_pcl new_pc2

new aluout ne~_aluoutl

new dmar new_smdr new_imdr)

VeriJyiu9 the Pipeline Correct. The proof that ~he pipeline model is correctly
implemented by the phase model is done within the generic interpreter theory.
There are no special considerations or exceptions.

7 Verifying UINTA

In this section we will concentrate on the proof that the pipeline model imple-
ments the architectural model since this is the part of the proof that differs
from previous microprocessor verifications. We first discuss why the correctness
model at this level in the proof differs from our previous notion of correctness
and then discuss the proof itself in three crucial areas: important lemmas, the
proof tactic, and the correctness theorem.

7.1 T h e C o r r e c t n e s s M o d e l

The correctness model presented by the generic interpreter theory is based a
notion of state stream abstraction. In the model, state stream u is an abstraction
of state stream u' (written u __. u') if and only if

1. each member of the range of u is a state abstraction of some member of the

range of u' and
2. there is a temporal mapping from time in u to time in u'.

There are two distinct kinds of abstraction going on: the first is a data abstrac-
tion and the second is a temporal abstraction. Thus, using a state abstraction
function, 5, and a temporal abstraction function, .~, we define stream abstrac-

tion as follows

u-<_ u' --- 3 (S : S' -+ S). 3(3:: N --, N). 8 o u ' o J : =

where o denotes function composition. The importaat part of this model for our
purposes is the orthogonality of the temporal and data abstractions (indicated

by function composition).
This is the crux of the problem with using the generic interpreter theory

for verifying pipelined microprocessors: the data and temporal abstractions in

45

t+8 t+9 t t+ 1 t+2 t+3 t+4 t+5 t+6 t+7

IF ~ / ~ ~ pcimem

ID opo

EX ~ ~ ~ nnpc

MEM ~ ~ W ! dmem

WB ~ ~ [~ reg

Fig. 3. UINTA Pipeline Execution

a pipeline are not orthogonal. Indeed, the correctness model depends on being
able to mix the temporal and data abstractions.

The following discussion gives some idea of what we mean when we say a
pipeline is correct and shows how the temporal and data abstractions are mixed.
Suppose that we execute the following program fragment:

PC Ins t ruc t ion

y ADD xl x2 x3
y + 1 LDI x4 x5 i n l
y + 2 SUB x6 x4 x7
y -4- 3 JMP z

We can picture the execution of the pipe as shown in Figure 3. On the left of
the figure are the names of the pipeline stages. On the top is the time relative
to the start of the execution of this code fragment. The square labeled ADD in
the line labeled with ~.X indicates that the execute stage of the pipeline performs
the state transitions for the ADD instruction between time t + 2 and t + 3. The
labels on the right side of the figure indicate the architectural model states that
are updated in the corresponding stage.

There are several points of interest regarding Figure 3:

- The ADD instruction updates the data memory between times t + 3 and t + 4,
for example, and the register file between times t + 4 and t + 5. The state
transitions indicated by the architectural model are spread out over time.
We call this skew.

- Instruction execution can be delayed by hazards. The SUB instruction must
wait to be executed because one of its arguments, x4, depends on the va lue
being loaded by the LDI instruction. The value will not be ready for forward-
ing to the ALU in time to avoid a delay. This is called a stall. The hardware
automatically injects a N00P instruction, represented by blank cells, into the
pipeline between the LDI and SUB instruction.

- The skew is not uniform in the presence of stalls. For example, the effect of
the LDI instruction on the rmpc state variable does not occur between times

46

+ 3 and i + 4, as we would expect, but occurs between times ~ + 4 and f + 5.
We call this shifting.

Because of skewing, stalling, and shifting, the data and temporal abstraction
cannot be separated, indeed, the architectural state variables, pc, axpc, and rmpc
are all the same variable in the pipeline model, they are merely different temporal
views of the same data.

7.2 S t a t e S t r e a m A b s t r a c t i o n

The discussion in the last section suggests that a function mapping the state
stream of a pipeline into a state stream for a non-pipelined model must collect
different pieces of the pipelined state stream at different times and packag e them
into a state record to appear in the non-pipelined state stream at a particular
time. This section describes such an abstraction function for UiNTA.

The correctness model for UINTA depends on a function, called abs that
maps a pipeline model state stream into an architectural model state stream.
This function allows us to maintain the illusion in the architectural model that
the state changes occur in ~ single t ime step hetween times t and t + 1.

~de] abs s
let

let
let

t
t ' = Te=p_Abs (A t . -~(STALL (I r (s t)) (I r l (s t)))) t in
j = (STALL (I r (s (t ' + 1))) (I r i (s (t ' + 1)))) --~ 1] 0 in
reg ~ Pipelinegeg (s (t' + 4)) and
pc ~ PipelinePc (s t') and
npc ~ PipelinePr (s (t'+t)) and
nnpc ~ PipelinePs (s ((t' + 2> + j)) and
imem _~ PipelinelMem (s t') and
dmem ~ PipelineDMem (s (t' + 3)) in

State reg pc npc nnpc imem dmem

The abs function is a curried function of two arguments. The first argument
is the pipeline level state stream; the second argument is the architectural level
time. Thus, abs ps represents the a~chitectura~ level state stream tha t is an

abstract of the pipeline level state stream ps.
In the function, the variable t ' is defined using the temporal abstraction

function Temp-hbs [Win94a] as the next time after t when there is not a stall.
The variable j gets the value i if the next instruction stalls and 0 otherwise.

An architectural level state record has five components 3.2: the register file,
the program counter, the next program counter, the next next program counter,

the instruction memory, and the data memory.
If we examine Figure 3, we see that, for example, the register file in the

architectural model at t ime t, is the register file in the pipeline model skewed by
4 from the next time after t there is not a stall. Thus, we define tog, the register
file component of the architectural level state record as:

47

let reg = PipelineReg (s (t' + 4)) and

Other components of the architectural level state are defined similarly. Notice
that the pc, npr and nnpc are all defined in terms of the pipeline model pro-
gram counter with differing skews. The value of nnpc is shifted when the next
instruction stalls as indicated in Figure 3.

7.3 I m p o r t a n t L e m m a s

There are two impor tant lemmas in the verification of UINTA. The first, the data
forwarding lemma, proves that the data forwarding behavior of the pipeline is
correct:

1 ~ Pipeline_Interp
2 (A t. PipelineState (reg t) (pc t) (imem t) (dmem t) (Jr t)

3 (i r l t) (i t 2 t) (Jr3 t) (a t) (b t) (pcl t)
4 (pc2 t) (aluout t) (a luout l t) (dmar t)
5 (smdr t) (Imdr t))
6 (A t . Env(ivec t) (i n t t) (r e s e t t)) (A t . p t)
7 V t .
8 let new_reg =
9 INDEX_BEG xl

I0 (IS_REG_WRITE(ir3(t+I)) -~
11 UPDATE_BEG (sel_Rd (Jr3 (t+ I)))
12 (r e g (t + l))
13 (aluout 1 (t + l)) I
14 (CLASSIFY(ir3(t+I)) ----- LOAD) -+
IS UPDATE_BEG (sel_Rd(ir3 (t + l)))
16 (reg(tW1))
17 (l m d r (t + l)) [
18 r e g (t + l)) in
19 ~((CLASSIFY(irl(t + 1)) = LOAD) A (xl = s e l R d (i r l (t + 1))))
20 ((INDEX_BEG x l (r e g (t + 4))) ----
21 ((-~(xl ---- RO)) -* (((x l ----- s e l_Rd(i r2 (t+2))) A
22 (CLASSIFY(ir2(t+2))=JUMPLII~I~)) --. pc2(t+2) [
23 ((x l = s e l _R d(i r2 (t +2))) A
24 IS_BEG_WRITE(ir2(t+2))) --* aluout (t+2)]
25 ((xl = sel_Bd(ir3(t+2))) h
26 IS_REG_WBITE(ir3(t+2))) --+ aluoutl(t+9_) I
27 ((xl = sel_Bd(ir3(t+2))) A

28 (CLASSIFY(ir3(t+2))=LOAD)) --+ imdr(t+2) I
29 new_reg I
30 new_reg))

The theorem states that the pipeline model (lines 1-6) implies tha t reading, x l ,
from the register file at t ime t + 4 (line 20) is equivalent to the da ta forwarding
behavior of the pipeline (lines 21-30) which is reading values at t ime t + 2.

48

The other important lemma is used to limit the case analysis in the proof. In
the proof that any given instruction works, we want to be very general about the
instruction sequencing. Thus we do not want to make any assumptions about
whether the instructions before the current instruction stalls or not. This means
that as we do the proof, we have to do a case analysis on stalling. Whenever we
don' t stall, we can proceed with the the symbolic execution of the instruction
and complete the proof for that case, but there is always the left-over stall case
to consider. The following lemma, however, limits the proof to one stall case
split by showing that the pipeline cannot stall twice in a row (because the stall
inserts NOOP which cannot cause a stall):

~- pipeline_Int erp
(A t. PipelineState (reg t) (pc t) (imem t) (dmem t) (ir t)

(i r l t) (Jr2 t) (Jr3 t) (a t) (b t) (pcl t)
(pc2 t) (aluout t) (aluoutl t) (drear t)
(smdr t) (Imdr t))

(A t. Env(ivec t)(int t)(reset t)) (A t. p t) =~
(Vt . (STALL (ir t) (irl t)) =#

~(STALL (Jr (t+l)) (irl (t+i))))

Without this lemma, the symbolic execution would lead to an infinite number of
case splits on stalling. Every pipeline, to be correct, must have a similar lemma
showing that it cannot issue an unlimited number of stalls. If it could, of course,
the processor could go into an infinite loop of sorts under certain conditions.
This is not usually the behavior one wants from a processor.

7.4 T h e I n s t r u c t i o n Tac t i c

The proof of UINTA breaks into 27 cases, one for each of the instructions in the
instruction set. 3 Each of these instructions can be solved using the same tactic.
The tactic considers each instruction under the case that it stalls and the case
that is does not. In either case, the method of proof is symbolic execution of
the pipeline model using a general purpose symbolic execution tactic that we

developed for microprocessor proofs.
A s ing le /u in ta / ins t ruc t ion can be verified in less than 10 minutes on an HP

735 running HOL88 version 2.01 compiled with AKCL. Increasing the size of
the instruction set thus increases the overall verification time linearly. Unless the
instruction differs significantly from the instructions already in the instruction
set, it is likely that the tactic used to perform the verification will not change,
so the human effort to add additional instructions is probably small.

When there is an error, either in the design or the specification, the tactic
fails, leaving a symbolic record of what the pipeline computed in each stage. We

3 For larger instruction sets, we could have done case analysis on instruction classes
(which correspond to the semantic frameworks) to limit the case explosion.

49

have found that this record is very helpful for debugging the implementation and
specification as it is usually quite easy to see where what the pipeline computed
differs from what the designer expected.

7.5 The C o r r e c t n e s s T h e o r e m

The overall correctness theorem (for this level in the proof hierarchy) shows
that the pipeline model implies the architectural model when it is applied to an
abstraction of the pipeline state stream:

Pipeline_Interp s e p ~ Arch_Interp (abs s) e p

This result can be combined with the proofs of the other levels (using the generic
interpreter theory) to get a result that states the architectural model follows from
the EBM. The overall form of the goal is familiar and has not changed from the
goals commonly used in non-pipelined verification.

8 T h e C o r r e c t n e s s M o d e l a n d H a z a r d s

The correctness model we have developed handles read after write (RAW) data
hazards in the general case as shown in the data forwarding lemma of Section 7.3.
The same cannot be said of control and structural hazards because of the variety
of design techniques for mitigating them. RAW data hazards are almost always
mitigated by forwarding the needed information from later stages of the pipeline
to earlier stages. Because a single technique suffices, a single model suffices.

UINTA mitigates control hazards using delayed branching. As the discussion
in Section 3 shows, delayed branching is visible at the architectural level. Another
popular technique for mitigating control hazards, branch prediction, would not

be visible at the architectural level. We have verified a processor that uses a
simple form of branch prediction. As expected, changing the architectural model
to that extent has significant effects on the abstraction function. For now, as
the techniques for mitigating control hazards change, so will our verification
methodology.

While we have not used our methodology for reasoning about a pipelined
architecture with structural hazards, we believe that the techniques we have
outlined are sufficient with some minor changes. The most important change
relates to skew in the abstraction function: the abstraction function of Section 7.2
uses a specific number for the skew. A structural hazard could make the skew
non-deterministic. In that case, the skew would have to be determined from
a signal indicating when the structural hazard had cleared in the same way
that asynchronous memory is specified now (see [Win94a] for more information).
Aagaard and Leeser have described a very general methodology for reasoning
about pipelines with structural hazards [AL94].

50

9 Conclus ion

We have completed the specification and verification of a pipelined micropro-
cessor called UINTA. UINTA has a five stage pipeline with two levels of data
forwarding and delayed branching. This paper has presented techniques for ver-
ifying that the pipeline model correctly implements the architectural model.

Because we have developed tools for dealing with specifications and correct-
ness theorems in a standard format, one of our goals in the verification of UINTA
was to ensure that the specification and correctness theorem were stated using
that format. The standard format has proven useful in proving properties about
the architecture [Win91] and for extending the verification hierarchy [Win93].
The verification in this paper was completed using specifications exactly like
those used for non-pipelined microprocessors. The correctness result is exactly
like the correctness results for non-pipelined microprocessors.

We have also presented the abstraction function at the heart of the correct-
ness model and shown how and why it differs from the abstractions commonly
used to verify non-pipelined microprocessors. This function is the essence of what
it means to say that the UINTA pipeline correctly implements the UINTA archi-
tecture. The function allows us to preserve the illusion that instructions execute
sequentially in the architectural model even though the pipelined implementa-
tion performs operations in parallel.

We are presently verifying a pipelined microprocessor called SAWTOOTH.
SAWTOOTH has a different set of features that UINTA including a simple form of
branch prediction, user and multi-level system interrupts, a windowed register
file, and supervisory mode. We plan to use the experience of verifying UINTA
and SAWTOOTH to modify the generic interpreter theory to include pipeline
semantics.

References

[AL94]

[Bow87]

[CCLO88]

[CGM87]

[Chu40]

Mark D. Aagaard and Miriam E. Leeser. Reasoning about pipelines with
structural hazards. In Ramayya Kumar and Thomas Kropf, editors, Pro-
ceedings o] the 1994 Con]erenee on Theorem Provers in Circuit Design.
Springer-Verlag, September 1994.
Jonathan P. Bowen. Formal specificaiton and documentation of micropro-
cessor instruction sets. In Microprocessing and Microprogramming 21, pages
223-230, 1987.
S. D. Crocker, E. Cohen, S. Landauer, and H. Orman. Reverificati0n of a

microprocessor. In Proceedings o] the IEEE Symposium on Security and
Privacy, pages 166-176, April 1988.
Albert Camilleri, Mike Gordon, and Tom Melham. Hardware verification
using higher order logic. In D. Borrione, editor, From HDL Descriptions to
Guaranteed Correct Circuit Designs. Elsevier Scientific Publishers, 1987.
Alonzo Church. A formulation of the simple theory of types. Journal o]
Symbolic Logic, 5, 1940.

51

[Coh88]

[Gor83]

[GorS8]

[Her92]

[HP90]

[Hun89]

[JoyS8]

[MelS8]

[SB90]

[SWL93]

[TK93]

[Win90]

[Win91]

[Win93]

[Win94a]

[Win94b]

Avra Cohn. A proof of correctness of the VIPER microprocessor: The first
level. In G. Birtwhistle and P. Subrahmanyam, editors, VLSI Specification,
Verification, and Synthesis, pages 27-72. Kluwer Academic Publishers, 1988.
Michael J.C. Gordon. Proving a computer correct. Technical Report 41,
Computer Lab, University of Cambridge, 1983.
Michael J.C. Gordon. ttOL: A proof generating system for higher-order
logic. In G. Birtwhistle and P.A Subrahmanyam, editors, VLS1 Specifica-
tion, Verification, and Synthesis. Kluwer Academic Press, 1988.
John Herbert. Incremental design and formal verification of microcoded
microprocessors. In V. Stavridou, T. F. Melham, and R. T. Boute, editors,
Theorem Provers in Circuit Design, Proceedings of the IFIP WG 10.2 Inter-
national Working Conference, Nijmegen, The Netherlands. North-Holland,
June 1992.
John L. Hennesy and David A. Patterson. Computer Architecture: A Quan-
titative Approach. Morgan Kaufmann Publishers Inc., 1990.
Warren A. Hunt. Microprocessor design verification. Journal of Automated
Reasoning, 5:429-460, 1989.
Jeffrey J. Joyce. Formal verification and implementation of a microproces-
sor. In G. Birtwhistle and P.A Subrahmanyam, editors, VLSI Specification,
Verification, and Synthesis. Kluwer Academic Press, 1988.
Thomas Melham. Abstraction mechanisms for hardware verification. In
G. Birtwhistle and P. A. Subrahmanyam, editors, VLSI Specification, Veri-
fication and Synthesis. Kluwer Academic Publishers, 1988.
M. Srivas and M. Bickford. Formal verification of a pipelined microproces-
sor. IEEE Software, 7(5):52-64~ September 1990.
E. Thomas Schubert, Phillip J. Windley, and Karl Levitt. Report on the ucd
microcoded viper verification project. In Jeffery J. Joyce and Carl Seger, ed-
itors, Proceedings of the 1993 International Workshop on the HOL Theorem
Prover and its Applications., August 1993.
Sofiene Tahar and Ramayya Kumar. Implementing a methodology for for-
mally verifying RISC processors in HOL. In Jeffery J. Joyce and Carl Seger,
editors, Proceedings of the 1993 International Workshop on the HOL Theo-
rem Prover and its Applications., August 1993.
Phillip J. Windley.. The Formal Verification of Generic Interpreters. PhD
thesis, University of California, Davis, Division of Computer Science, June
1990.

Phillip J. Windley. Using correctness results to verify behavioral proper-
ties of microprocessors. In Proceedings of the 1EEE Computer Assurance
Conference, June 1991.

Phillip J. Windley. A theory of generic interpreters. In George J. Milne and
Laurence Pierre, editors, Correct Hardware Design and Verification Methods,
number 683 in Lecture Notes in Computer Science, pages 122-134. Springer-
Verlag, 1993.

Phillip J. Windley. Formal modehng and verification of microprocessors.
1EEE Transactions on Computers, 1994. (to appear).
Phillip J. Windley. Specifying instruction set architectures in HOL: A
primer. In Thomas Melham and Juanito Camilleri, editors, Proceedings
of the 1994 International Workshop on the HOL Theorem Prover and its
Applications. Sspringer Verlag, Spetember 1994.

